
139

Handling Bidirectional Control Flow

YIZHOU ZHANG, University of Waterloo, Canada

GUIDO SALVANESCHI, University of St. Gallen, Switzerland

ANDREW C. MYERS, Cornell University, USA

Pressed by the difficulty of writing asynchronous, event-driven code, mainstream languages have recently been

building in support for a variety of advanced control-flow features. Meanwhile, experimental language designs

have suggested effect handlers as a unifying solution to programmer-defined control effects, subsuming

exceptions, generators, and asyncśawait. However, despite these trends, complex control flowÐin particular,

control flow that exhibits a bidirectional patternÐremains challenging to manage.

We introduce bidirectional algebraic effects, a new programming abstraction that supports bidirectional

control transfer in a more natural way. Handlers of bidirectional effects can raise further effects to transfer

control back to the site where the initiating effect was raised, and can use themselves to handle their own

effects. We present applications of this expressive power, which falls out naturally as we push toward the

unification of effectful programming with object-oriented programming. We pin down the mechanism and the

unification formally using a core language that makes generalizations to effect operations and effect handlers.

The usual propagation semantics of control effects such as exceptions conflicts with modular reasoning

in the presence of effect polymorphismÐit breaks parametricity. Bidirectionality exacerbates the problem.

Hence, we set out to show the core language, which builds on the existing tunneling semantics for algebraic

effects, is not only type-safe (no effects go unhandled), but also abstraction-safe (no effects are accidentally

handled). We devise a step-indexed logical-relations model, and construct its parametricity and soundness

proofs. These core results are fully mechanized in Coq. While a full-featured compiler is left to future work,

experiments show that as a first-class language feature, bidirectional handlers can be implemented efficiently.

CCS Concepts: • Software and its engineering→ Control structures; Semantics.

Additional KeyWords and Phrases: Effect handlers, type systems, promises, iterators, exceptions, parametricity

ACM Reference Format:

Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers. 2020. Handling Bidirectional Control Flow. Proc.

ACM Program. Lang. 4, OOPSLA, Article 139 (November 2020), 30 pages. https://doi.org/10.1145/3428207

1 INTRODUCTION

Modern software places new demands on programming languages. In particular, the need to interact
with high-latency external entitiesÐusers, file systems, databases, and geodistributed systemsÐhas
led software to become increasingly event-driven. Callback functions are a conventional pattern
for event-driven programming, but unconstrained callbacks become complex and hard to reason
about as applications grow. Hence, it is currently in vogue for programming languages to build
in support for advanced control-flow transfer features like generators and asyncśawait. These
features support more structured programming of asynchronous, event-driven code.

Authors’ addresses: Yizhou Zhang, Cheriton School of Computer Science, University of Waterloo, 200 University Avenue

West, Waterloo, ON, N2L 3G1, Canada, yizhou@uwaterloo.ca; Guido Salvaneschi, University of St. Gallen, Rosenbergstrasse

51, 9000 St. Gallen, Switzerland, guido.salvaneschi@unisg.ch; Andrew C. Myers, Department of Computer Science, Cornell

University, Gates Hall, Ithaca, NY, 14853, USA, andru@cs.cornell.edu.

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART139

https://doi.org/10.1145/3428207

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3428207
https://doi.org/10.1145/3428207
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3428207&domain=pdf&date_stamp=2020-11-13

139:2 Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers

Meanwhile, algebraic effects [Bauer and Pretnar 2015; Plotkin and Power 2003; Plotkin and
Pretnar 2013] have emerged as a powerful alternative that allows programmers to define their
own control effects. They subsume a wide range of features including exceptions, generators, and
asyncśawait. Compared to the monadic approach to effects, algebraic effects compose naturally
without requiring awkward monad transformers, and enjoy a nice separation between the syntax
(i.e., a set of effect operations) and the semantics (i.e., handling of those operations).

However, even with these advanced language features at hand, programmers today still find
certain complex control-flow patterns painful to manage. As we argue, features found in mainstream
languages are not expressive enough to capture bidirectional control transfer without losing the
desirable guarantee that all effects are handled, and existing language designs of algebraic effects
cannot readily express this bidirectionality without falling back to patterns that algebraic effects
are intended to help avoid.
To resolve these challenges, we generalize the idea of algebraic effects. With algebraic effects,

effectful code initiates control transfer by raising effects that propagate up the dynamic call stack
to their handlers. With bidirectional algebraic effects, effect handlers can raise subsequent effects
that propagate in the opposite direction, to the site where the initiating effect was raised. This
bidirectionality makes it easy to transmit information and control, to and fro, between program
fragments. Accordingly, the type system requires the invocation site of an effect operation to handle
not only the initiating effect, but also the reverse-direction effects. All effects are guaranteed to

be handled.

The usual propagation semantics of control effects is known to interfere with abstraction bound-
aries in the presence of effect polymorphism, because higher-order functions can intercept effects
they are not supposed to handle [Biernacki et al. 2018; Convent et al. 2020; Zhang and Myers 2019;
Zhang et al. 2016]. A possible concern might be that bidirectional propagation would further muddle
the problem, leading to effect-polymorphic abstractions being violated in previously unidentified
ways. To address this concern, we provide bidirectional algebraic effects with a semantics that
respects abstraction boundaries, and we rigorously substantiate this strong abstraction claim. All
effects are guaranteed not to be accidentally handled.

Bidirectionality and the safety guarantees fall out naturally when a language designer views
algebraic effects through an object-oriented lens. In fact, the enabling and most visible language
change is a generalization of effect operations to make them appear like methods: the notion of an
effect operation is extended to allow it to declare further effects its handling code may raiseÐjust
as methods in Java can declare exceptions their implementations may throw. Accordingly, handlers
of bidirectional effects, which we call bidirectional handlers, are generalized to make them appear
like objects. In particular, a self handler, analogous to the self reference found in object-oriented
languages, is brought into the context of a handler definition. Self-reference makes a bidirectional
effect handler a fixpoint definitionÐit can ask that its own effects be handled by itself.
The complexity of bidirectional control flow is innate to many modern software applications;

bidirectional algebraic effects do not simply make this complexity disappear. Instead, the static
guarantees afforded by the type system enable programmers to reason compositionally about
bidirectional control flow and therefore to manage complex control flow more easily.

Contributions. The dynamic behavior of bidirectionality is attainable in many languages in vari-
ous waysÐthis paper does not aim to rediscover bidirectional control flow. Rather, the contributions
consist in (i) a language-design recipe that allows integrating bidirectional control effects in a
sound, unified, and efficient way, addressing a variety of programming challenges, and in (ii) formal
developments that capture the essence of the mechanism and that establish strong guarantees
about it, putting the mechanism on a sound theoretical footing. We proceed as follows:

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

Handling Bidirectional Control Flow 139:3

• Section 2 examines some control-flow features in mainstream languages and reviews algebraic
effects, identifying opportunities to improve support for bidirectional control transfer.

• Section 3 demonstrates the new programming abstraction informally (in the setting of a typical
object-oriented language) using its various applications, interspersed with discussions on
design issues.

• Section 4 shows that, importantly, an abstraction-safe mechanism for bidirectional effects
allows programmers to reason compositionally about correctness.

• Section 5 defines a core language, Olaf, capturing the informally introduced features and
unification from previous sections. It gives an operational semantics and a static semantics.

• Section 6 continues the formal developments with a logical-relations model for Olaf, culmi-
nating in proofs of coveted properties including type safety and parametricity. These formal
results are fully mechanized using the Coq proof assistant.

• Section 7 discusses compilation issues. Experimental results on hand-translated examples
argue for supporting bidirectional handlers as a first-class language feature.

• Section 8 discusses related work in more detail, and Section 9 concludes.

2 BACKGROUND: ASYNCśAWAIT, GENERATORS, AND ALGEBRAIC EFFECTS

Complex, asynchronous, bidirectional control flow is already a reality for programmers today.
This section identifies real-world programming challenges involving bidirectional control flow and
shows how existing mechanisms fall short in addressing them.

AsyncśAwait with Promises. An array of languagesÐfor example, C# [Bierman et al. 2012],
JavaScript [ECMA International 2018], Rust [Rust language team 2018], and Swift [Lattner and Groff
2019]Ðhave recently added, or are planning to add, support for asyncśawait and the accompanying
promises abstraction [Liskov and Shrira 1988], also known as futures or tasks.
As an example, consider the C# program in Figure 1. Method HttpGetJson (lines 2ś6) sends

an HTTP GET request to retrieve a web page by asynchronously running HttpGet (line 1), and
converts the raw bytes into JSON format. Because HttpGetJson is declared async, calling it (line 9)

1 static byte[] HttpGet(String url);

2 static async Task<Json> HttpGetJson(String url) {

3 Task<Json> t = Task.Run(() => HttpGet(url));

4 byte[] bytes = await t;

5 return JsonParse(bytes);

6 }

7 static async Task Main() {

8 string url = "xyz.org"

9 Task<Json> t = HttpGetJson(url);

10 ... // do things that do not depend on the query result
11 Json json = await t; // block execution until query terminates
12 ...
13 }

Figure 1. Using asyncśawait in C#

does not block computations that do
not depend on the result of the request
(line 10). The programmer awaits the task
when they need the result to be ready.
Sending HTTP GET requests may raise
exceptions (e.g., due to connection is-
sues); the reasonable point for such an
exception to emerge is where the tasks
are awaited (lines 4 and 11). While await
sends a signal to a task scheduler on the
.NET runtime stack, the exceptions ap-
pear to propagate in the opposite direc-
tion, from the .NET runtime to the await sites.
However, existing languages that support asyncśawait do not enforce at compile time that

exceptions raised by asynchronous computations are handled. The lack of this static assurance
makes asynchronous programming error-prone. For example, the C# compiler accepts the program
above without requiring that an exception handler be providedÐif the asynchronous query does
result in an exception, the program crashes. The situation is worse in JavaScript: an exception
raised asynchronously is silently swallowed if not otherwise caught. Such unhandled exceptions
have been identified as a common vulnerability in JavaScript programs [Alimadadi et al. 2018].

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

139:4 Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers

try { node.iter() }

with yield(x) {

print(x)

resume()

}

(c) Client code handles Yield

effect Yield[X] {

def yield(X) : void

}

(a) Effect signature Yield

1 class Node[X] {

2 var head : X

3 var tail : Node[X]

4 ...
5 def iter() : void raises Yield[X] {

6 yield(head)

7 if (tail != null)

8 tail.iter()

9 }

10 }

(b) Iterator raises Yield

Figure 2. Yielding iterators via algebraic effects

It is no surprise that C# and JavaScript do not check asynchronously raised exceptions, since
neither statically checks exceptions in the first place, unlike Java [Gosling et al. 2018]Ðwhich is
unfortunate because in practice, most exceptions arising from C# code are undocumented [Cabral
and Marques 2007]. However, since asynchronously raised exceptions do not propagate through
the regular exception mechanism, it is not clear how to do this checking even in languages like
Java that do have checked exceptions.

Generators. Coroutine-style iterators, usually called generators, are a convenient construct avail-
able in many languages [ECMA International 2018; Griswold et al. 1981; Hejlsberg et al. 2003;
Liskov et al. 1977; Murer et al. 1996; Thomas et al. 2004; van Rossum 2003]. They help avoid the
verbose, error-prone pattern of maintaining complex state machines inside iterator objects as seen
in Alphard [Shaw et al. 1977] and more recently in Java.
However, a weakness of generators is that they do not allow clients to concurrently modify

the underlying collections or streams being iterated over. A client iterating over a priority queue
might want to change the priority of a received element; similarly, a client iterating over a stream
of database records might want to remove one of those records from the database. Generators in
the mentioned languages lack the expressiveness to solve these programming challenges. In such
languages, the programmer either resorts to implementing iterators as even more complex state
machines, or simply shies away from defining powerful, reusable iterator abstractions.

Algebraic Effects. Algebraic effects [Plotkin and Power 2003; Plotkin and Pretnar 2013] are a
powerful unifying language feature that can express exceptions, generators, asyncśawait, and other
related control-flow mechanisms including coroutines and delimited control [Bauer and Pretnar
2015; Bračevac et al. 2018; Dolan et al. 2017; Forster et al. 2017; Kammar et al. 2013; Leijen 2017b].
The hallmark of algebraic effects is adding support for signatures for control effects and for handlers
as implementations of these signatures.
An effect signature defines one or more operations. For example, the signature in Figure 2a,

named Yield and parameterized by a type variable X, contains exactly one operation, yield. The
operation takes as argument a value of type X.

Lines 5ś9 of Figure 2b uses Yield to define a coroutine-style iterator for nodes in a linked list: it
recursively iterates over the tail after yielding the head. Invoking an effect operation raises the
corresponding effect: because iter invokes yield (line 6), calling iter can raise the Yield effect.
Static checking of effects requires this effect be part of the method’s type, in its raises clause
(line 5).

The client program in Figure 2c traverses a chain of nodes by calling iter and handling its Yield
effect. Effectful computations are enclosed by try ... with, followed by a handler that implements
the effect operations. Each time that the effect yield is raised, the recursive iterator computation

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

Handling Bidirectional Control Flow 139:5

calls

calls

iter

iter

Client

(1)

calls

calls

iter

calls

iter

iter

Client

(2)

calls

calls

handles

yield

iter

calls

iter

iter

Client

r
a
ise

s

(3)

calls

calls

handles

yield

iter

calls

iter

itercalls

print

Client

r
a
ise

s
(4)

calls

calls

handles

yield

iter

calls

iter

iter

Client
r
a
ise

s

(5)

calls

calls

iter

calls

iter

iter

Client

(6)

Figure 3. Stack snapshots of the program in Figure 2.

in Figure 2b is suspended and control transferred to the handler in Figure 2c, which prints the
yielded element. Control then resumes in the iterator. The resulting execution is similar to using a
generator in C#, Python, or Ruby. The sequence of stack frames that result is shown in Figure 3.

Handlers can resume computations suspended by the raising of effects, by calling the resumption
denoted by the special resume function. This resume function is essentially a delimited continu-
ation [Felleisen 1988]. It takes as input the result of the effect operation. The call to resume in
Figure 2c takes no argument because the result type of yield is void.
Figure 3 visualizes the control flow in one iteration using stack diagrams, with each diagram

capturing the stack at a single point in time:

(1) The iterator has finished processing the first two elements of the list (hence the two iter

frames).
(2) A third iter frame is created; the iterator begins to process the third element.
(3) The iterator raises a Yield effect. The effect is then caught by the client’s handler.
(4) The client prints the yielded element.
(5) Printing finishes.
(6) Handling of Yield finishes. Control is returned to the iterator.

The handler in Figure 2c abbreviates the full signature of the effect operation. The expanded
form is shown below. We will write handlers mostly in the abbreviated syntax.

try { node.iter() }

with yield(x : X) : void { ... }

In many practical uses of algebraic effects, as in the example above, invoking resume is the
last action performed by an effect handler. We call this a tail resumption and call such handlers
tail-resumptive. Not all effect handlers are tail-resumptive; for example, exception handlers are
typically abortive: they do not resume the computation that raised the effect. Handlers that are
either tail-resumptive or abortive can be compiled to efficient code because there is no need to save
stack frames once resume is invoked or the handler aborts [Leijen 2017c].

Although algebraic effects subsume generators, they do not address the limitations of generators
outlined earlier: handler code cannot raise an effect transferring control back to the iterator code
to perform a concurrent modification to the data structure. Similarly, algebraic effects can express
asyncśawait, but they are awkward when exceptions can be raised asynchronously: a handler
running asynchronous computations cannot propagate exceptions raised by those computations
back to the await site. Beyond generators and asyncśawait, there are other interesting control-flow
applications that algebraic effects cannot yet readily support. What is needed is a unified mechanism
that can express all these programming challenges easily.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

139:6 Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers

17 var node : Node[int] = ...
18 try { node.iter() }

19 with yield(x) resume {

20 if (x < 0) behead() else replace(x * 2)

21 }

22 with behead() resume { // handle removal of the first
23 node = node.tail // element in node

24 }

(c) Client code raises interrupts

interface Yield[X] {

def yield(X) : void raises Replace[X] | Behead

}

interface Replace[X] { def replace(X) : void }

interface Behead { def behead() : void }

(a) Effect signatures

1 class Node[X] {

2 var head : X

3 var tail : Node[X]

4 ...
5 def iter() : void raises Yield[X] | Behead {

6 try { yield(head) }

7 with replace(x) resume { // handle replacement
8 head = x // of head

9 }

10 if (tail != null)

11 try { tail.iter() }

12 with behead() resume { // handle removal of the
13 tail = tail.tail // first element in tail

14 }

15 }

16 }

(b) Iterator handles interrupts

Figure 4. Yielding iterators with reverse-direction interrupts for replacing and removing yielded elements

3 BIDIRECTIONAL ALGEBRAIC EFFECTS, INFORMALLY

We generalize algebraic effects to offer the missing flexibility: handlers of effect operations can
themselves raise effects that are handled by callers of the effect operations. Before defining a
formal semantics in Section 5, we first introduce the mechanism informally via examples written
in a syntax similar to that of Java, Scala or Kotlin, although the ideas could apply to many other
languages, especially those with an object-oriented flavor.

3.1 Generators with Concurrent Modification

We want to extend the iterator abstraction of Figure 2 so that iterator clients can issue interrupts to
request that the yielded element be replaced or removed. Note that implementing iterators that
support such concurrent modifications is awkward in standard OO languages [Liu et al. 2006].
We start by changing the signature of Yield, as shown in Figure 4a. Apart from being defined as
an interface (the reason for which will soon become clear), this signature differs from the one
in Figure 2a by declaring that yield may itself raise two additional effects, Replace and Behead,
corresponding to the two kinds of concurrent modifications that client code can request. (A raises

clause may include multiple effects, separated by vertical bars.) Allowing effect operations to declare
their own raises clauses is a key generalization we make to accommodate bidirectionality.
With the modified Yield effect, the client code in Figure 4c is able to remove negative integers

from a list and to double the non-negative ones even while iterating over the list: the handler
(lines 19ś21) passes to the resumption a computation, which invokes either operation behead or
replace based on the integer yielded. Notice that resume takes as input a computation, rather than
a value, as signified by the use of curly braces instead of parentheses.
The resumption accepts a computation whose type and effects must match the result type and

effects of the effect operation. For example, in Figure 4c, the resumption to a yield call (line 19)
accepts a computation that may raise Replace[int] and Behead.
Meanwhile, the type system guarantees that the resumptionÐthe suspended computation in

the iteratorÐcontains handlers for both effects, so that invoking operations replace and behead

can cause control to safely transfer back to the handlers in the iterator. The new iterator code in
Figure 4b differs from Figure 2b in adding these two handlers.

To handle Replace, the handler (lines 7ś9, Figure 4b) updates the head value of the list, and then
resumes what is left off by the raising of replace in the yield handler (line 19, Figure 4c). What is

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

Handling Bidirectional Control Flow 139:7

calls

calls

iter

iter

Client

(1)

calls

calls

iter

calls

iter

iter

Client

(2)

calls

calls

handles

yield

iter

calls

iter

iter

Client

r
a
ise

s

(3)

calls

calls

handles

yield

iter

calls

iter

iter

Client

r
a
ise

s

replace

handles

r
a
ise

s

(4)

calls

calls

handles

yield

iter

calls

iter

iter

Client
r
a
ise

s

(5)

calls

calls

iter

calls

iter

iter

Client

(6)

Figure 5. Stack snapshots of the program in Figure 4.

left to be done there is to resume what is left off by the raising of yield in the iterator code (line 6,
Figure 4b).
The stack diagrams in Figure 5 visualize the control flow:

(1) The iterator has finished processing the first two elements of the list.
(2) A third iter frame is created; the iterator begins to process the third element.
(3) The iterator raises a Yield effect. The effect is then caught by the client’s handler.
(4) The client issues a reverse-direction interrupt to ask that the third element of the list be

replaced. This Replace effect is caught by the iterator.
(5) Handling of Replace finishes. The iterator returns control to the client’s Yield handler.
(6) Handling of Yield finishes. The client returns control to the iterator.

Because effect Replace appears to propagate down the stack, in the reverse direction of Yield, we
call these bidirectional effects.

However, it is largely unnecessary to look at stack diagrams to understand control flow. A more
meaningful interpretation is to view both Yield and Replace as propagating outward through
evaluation contexts to callers. A Yield effect raised by iter propagates to the caller of iter; in the
context of the itermethod, this caller is represented by return, the return address of iter. Similarly,
a Replace effect raised by the yield handler propagates to the caller of yield; in the context of the
yield handler, this caller is represented by resume, the computation to be resumed after yield is
handled.
In each of the handlers in Figure 4, resume envelops the entire handler computation. In this

common case, we allow eliding the curly braces surrounding resume { ... }. For example, the handler
on lines 19ś21 is desugarred to the following syntax:

try { node.iter() }

with yield(x) { resume { ... } }

The Behead interrupt must be handled differently than Replace, because removing a node from a
linked list is a nonlocal updateÐit is most appropriately done at a level that łownsž the current
list, that is, either the preceding node in the list (Figure 4b) or the client code (Figure 4c). Notice
that in this example, the client code, in addition to the iterator code, must be prepared to handle
Behead. The client code refers to a linked list by holding a reference to the first node of the list. So
when the first node is łbeheadedž, it is only natural to expect the client code to handle this event
specially. If list nodes could be accessed only indirectly (as in Java, through a LinkedList object),
handling of Behead could be hidden from client code.
Instead of handling Behead immediately after it surfaces from the call site of yield (as we did

to Replace), Behead is propagated to the call site that triggers the iteration of the current list.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

139:8 Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers

Hence, Behead occurs in the raises clause of iter (line 5, Figure 4b), as static checking of effects
entails. Accordingly, the type system requires the two call sites of iter to deal with Behead. Both
handle behead by replacing the reference to a list with its tail (line 12ś14, Figure 4b and line 22ś24,
Figure 4c).
Although the control flow is complex, reasoning about it remains tractable, especially because

the static checking of bidirectional effects offers guidance on how to program the control flow.

An economy of language constructs. As the syntax and the semantics suggest, bidirectionality
makes effect signatures and ordinary object interfaces become nearly indistinguishable: both effect
operations and object methods can raise effects, and effects always propagate to the caller. This
correspondence motivates their unification as a single language construct; throughout the paper, we
define effect signatures as interfaces. Moreover, as we introduce later, every bidirectional handler
has access to a self handler that it can use to handle effects, analogous to how every object has
access to a self (receiver) object on which it can make method calls.

This unification is not merely a syntactic pun. We pin down this unification in the core language
(Section 5), which further allows methods and handlers to be defined using the same construct: an
ordinary method definition can be viewed as an effect handler where the entire method body is
passed to a tail resumption (cf., return).

Nevertheless, in the surface language we distinguish them to allow for a familiar programming
experience where return statements retain their idiomatic meaning in methodsÐthat is, return
signifies the act of returning to the caller rather than the resumption per se, and method definitions
with a void return type need not have explicit return statements.

Raising effects within handlers. In existing languages, exceptions (and algebraic effects) raised
within handlers are propagated to the local context of the handler, rather than to the handler
resumption. Bidirectional algebraic effects are compatible with this semantics: so long as the
computation raising the effect is not passed to a handler resumption that, per the raises clause,
can handle the effect, the normal handling behavior is obtained.

Workarounds. One might think that an alternative to bidirectional effects would be to make
yield return a value of some algebraic data type (ADT) indicating the interrupt event and for the
client to pattern-match on the returned ADT value. Note that the tryświth syntax is an entirely
cosmetic choice made to match the Java-like surface language; in fact, algebraic-effects designs
for functional languages often use a syntax similar to pattern-matching ADTs: a handler case-
analyzes the result of an effectful computation. Consequently, using ADTs as return types of effect
operations would not noticeably clarify the code, but it would reduce expressive power: control
could not be transferred back to the client code after Replace or Behead were handled. It would also
be syntactically heavier-weight: one would have to convert ADT values to algebraic effects. For
comparison, Figure 15 shows how the iter code would look if yield returned an ADT value.

A more general way is to make a yield handler resume with a callback value that is the thunked
handler computation. But it also means callers of yield must voluntarily comply with the contract
by remembering to force the thunkÐcontrol transfer via callbacks is a pattern algebraic effects are
intended to help avoid. Moreover, this approach can be rather inefficient; Section 7 explores the
performance implications when it is used to compile bidirectional effects.

3.2 AsyncśAwait with Exceptions

We want to use algebraic effects to express both asyncśawait and asynchronously raised exceptions,
while statically ensuring that all exceptions are handled.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

Handling Bidirectional Control Flow 139:9

interface Exn[X] { def exn(X) : void }

interface Async {

def async[X,Y](Fun2[X,Y]) : Promise[X,Y]

def await[X,Y](Promise[X,Y]) : X raises Exn[Y]

}

type Fun2[X,Y] = () → X raises Exn[Y] | Async

(a) Effect signatures Exn and Async

class Promise[X,Y] {

var state : Sum[List[Awaiter[X,Y]],Fun1[X,Y]]

Promise() { this.state = inl([]) }

}

type Awaiter[X,Y] = Fun1[X,Y] → void

type Fun1[X,Y] = () → X raises Exn[Y]

(b) Definition of the Promise structure

Figure 6. Type-level definitions for expressing exceptional asyncśawait

56 def exec[X,Y](f2 : Fun2[X,Y],

57 p : Promise[X,Y]) : void raises Async {

58 val f1 : Fun1[X,Y]

59 try {

60 val x = f2()

61 f1 = fun() → x

62 } with exn(y) {

63 f1 = fun() → exn(y)

64 }

65 jobs.enqueue(fun() → {

66 match (p.state) {

67 | inl(awaiters) ⇒
68 p.state = inr(f1)

69 for (awaiter in awaiters)

70 jobs.enqueue(fun() → awaiter(f1))

71 | inr(_) ⇒ assert(false) // impossible
72 }

73 })

74 }

(e) Helper: executes f2; memoizes the result in p

14 val loop = new EventLoop()

15 loop.run(main)

(b) Running main in an event loop

1 def httpGet(String) : byte[] raises Exn[Http]

2 def httpGetJson(url : String) : Json raises

3 Async | Exn[Http] { // asynchronous method
4 val p = async(fun() → httpGet(s))

5 val bytes = await(p)

6 return jsonParse(bytes)

7 }

8 def main() : void raises Async {

9 val url = "xyz.org"

10 val p = async(fun()→ httpGetJson(url))

11 ... // do things that do not depend on the query result
12 try { val json = await(p); ... }
13 with exn(http) { ... }
14 }

(a) User program with effect Async

38 def handleAsync(f : () → void raises Async) : void {

39 try { f() }

40 with async[X,Y](f2 : Fun2[X,Y]) : Promise[X,Y] {

41 val p = new Promise[X,Y]()

42 __new_thread {

43 handleAsync(fun() → exec(f2, p))

44 }

45 resume { p }

46 }

47 with await[X,Y](p : Promise[X,Y]) : X raises Exn[Y] {

48 match (p.state) {

49 | inl(awaiters) ⇒
50 awaiters.add(fun(f1) → resume { f1() })

51 | inr(f1) ⇒
52 resume { f1() }

53 }

54 }

55 }

(d) Async handler

16 class EventLoop {

17 val jobs : Queue[() → void]

18

19 EventLoop() { this.jobs = new Queue() }

20

21 def run(f : () → void raises Async) : void {

22 handleAsync(f)

23 while (true) {

24 try {

25 jobs.dequeue().apply() // run next queued job
26 } with exn(nse) {

27 continue // queue is empty; keep polling it
28 }

29 }

30 }

31

32 def handleAsync(f : ()→void raises Async) :

33 void { ... } // Figure 7d
34

35 def exec[X,Y](f2 : Fun2[X,Y], p : Promise[X,Y]) :

36 void raises Async { ... } // Figure 7e
37 }

(c) Event loop

Figure 7. Using and handling exceptional asyncśawait. Asynchronously raised exceptions are back-propagated

to await sites in the user program. Compared with the C# program in Figure 1, the added static checking

requires the user program in Figure 7a to handle asynchronously raised exceptions, but otherwise adds

no essential syntactic overhead compared to Figure 1. Figures 7bś7e implements the runtime that handles

asynchrony.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

139:10 Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers

Exceptions are expressed through the Exn effect, defined in Figure 6a. Its operation exn takes as
input a union of tags, which are instances of singleton classes indicating particular exceptional
conditions. For example, we use Exn[Http] for exceptions that occurred when processing HTTP
requests, Exn[NSE] for no-such-element exceptions raised when an empty queue is polled, and
Exn[Http|NSE] for the union of the two exceptional conditions.

The Async effect has two operations, async and await. Both operations are parameterized by two
type variables, one denoting the result type of the asynchronously running computation, and the
other the kind of exception it may raise. Operation async takes as input a computation and returns
a promise: the computation is scheduled to run by an Async handler, and when it finishes, its result,
which is either a value or an exception, is memoized by the promise. Awaiting the promise either
gives back the value or raises the exception.
The Async signature is recursive in that operation async accepts a computation whose effects

can include not only Exn[Y] but also Async. This type-level recursion is useful because it allows for
promises that await other promises, a usage pattern found in many JavaScript and C# programs
(including the program in Figure 1).

Using exceptional asyncśawait. TheC# program in Figure 1 can be ported to use this Async effect,
as Figure 7a shows. It has the same run-time behavior, but stronger static checking. Because method
httpGet may raise Exn[Http], the promises on lines 4 and 10 have types Promise[byte[],Http] and
Promise[Json,Http] respectively, and thus awaiting them may raise Exn[Http]. The type system
then requires a handler for this asynchronous exception to be providedÐall exceptions, asyn-
chronously raised or not, are guaranteed to be handled.

The type-level recursion in Async allows invoking operation async with a computation that has
effect Async (line 10), capturing the fact that the resulting promise awaits another one (line 5).

We remark that in Figure 7, only Figure 7a is user-level code, showing that we add no essential
syntactic burden compared to Figure 1. The rest of Figure 7 implements the runtime that handles
asynchrony, with probably reasonable and excusable complexity.

The promises abstraction. Like JavaScript promises, promises are in one of three possible states,
expressed using a Sum type in Figure 6b. A promise is either (1) pending completion with a list of
awaiters that will run after the promise is complete, (2) is complete with a value, or (3) is complete
with an exception. Promises are initialized to pending completion with no awaiters. The two
completion states are expressed via a function of type () → X raises Exn[Y], or Fun1[X,Y] for short.
The awaiters are resumptions to calls to await; they are higher-order functions taking as input a
function of type Fun1[X,Y]. Whereas the Async handler in the language runtime can create and
inspect promises directly, user programs are supposed to introduce and eliminate promises only
indirectly via operations async and await.

Handling exceptional asyncśawait. Typically a scheduler for asynchronous computations exists
in the language’s runtime, as is the case with JavaScript and C# (although an algebraic-effects
encodingmakes it possible for software components to handle their own Async effects).We present in
Figures 7cś7e a possible implementation of the runtime in a style similar to those of JavaScript (e.g.,
Node.js [Node]), which maintains a queue of jobs run by an event loop. Asynchronous computations
of the main program is run in this event loop, as Figure 7b suggests.

Initially, the queue is empty (line 19), and the main program is run inside an Async handler (line 22)
that handles all requests to start asynchronous computations and to await their results. New jobs
are enqueued on completion of asynchronous computations (lines 65ś73). The queued jobs are
then run in the event loop (line 25). For simplicity, we use FIFO scheduling.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

Handling Bidirectional Control Flow 139:11

Figure 7d defines the Async handler. To handle async, the handler creates a new promise, creates
a thread using a __new_thread intrinsic, and returns the promise (lines 40ś46). The new thread
executes the computation f2 asynchronously by calling a helper function exec, defined in Figure 7e.
It stores the result of f2 into a function f1 that represents a control-stuck computationÐinvoking f1

either immediately returns a value or immediately raises an exception (lines 59ś64). Lines 65ś
73 then schedule the events that should happen after the asynchronous computation’s result is
ready: they include transitioning the promise into one of the two completion states (line 68), and
scheduling all code awaiting the promise to run (lines 69ś70). In the case that f1 is exceptional,
invoking an awaiter with f1 (line 70) effectively causes control to transfer to the exception handler
in the user program (line 13). While exec handles Exn[Y] for f2, it does not handle its Async effect.
So the call to exec is enclosed in the very Async handler being defined (line 43).
How to handle await depends on the promise’s state. To handle await for a promise that is still

pending completion (lines 49ś50), the resumption to the await call is added to the awaiter list of
the promise. Otherwise (lines 51ś52), the promise must be complete, and the resumption is invoked
with the result memoized by the promise.

Prior encodings. The ability to encode promise-based asyncśawait [Dolan et al. 2017; Leijen
2017a,b] speaks to the expressive power of algebraic effects,1 but encodings in existing language
designs compromise on how they accommodate exceptional computations. Koka [Leijen 2017a,b]
supports structured asynchrony via algebraic effects, but uses an either monad for possible excep-
tional outcomes of the await operationÐbut encoding exceptional outcomes into monadic values
is a pattern that algebraic effects in Koka are intended to help avoid! Unlike Koka, Multicore
OCaml [Dolan et al. 2017] does not check algebraic effects statically. To notify user programs about
asynchronously raised exceptions, the language adds a special discontinue construct. It is our
goal to treat asyncśawait and asynchronous exceptions in a more unified way: both are statically
checked algebraic effects.

3.3 Communication Protocols

It has been shown before that algebraic effects can express interprocess communication, but not
without using a more exotic form of effect handlers that deviates from the original categorical
interpretation of effect handlers by Plotkin and Pretnar [2013]. In particular, prior work relies on
shallow handlers to keep the encoding syntactically light [Kammar et al. 2013; Lindley et al. 2017].

Bidirectional algebraic effects offer an alternative: since we allow all effect signatures to declare
further effects, a series of raised effects can, in general, bounce back and forth an arbitrary number
of times, turning effect signatures into statically checked communication protocols. We demonstrate
this capability using the effect signatures Ping and Pong (Figure 8a) to obtain a pair of functions
that send messages to (i.e., raise effects at) each other in lockstep.
Effects Ping and Pong are mutually recursive. While invoking ping (resp. pong) appears to one

process as sending a message, it appears to the other process as receiving the message, as that
other process must handle ping (resp. pong). Because ping (resp. pong) declares it may raise Pong

(resp. Ping), a process typed with effect Ping (resp. Pong) should be prepared to receive a Pong (resp.
Ping) message after sending a Ping (resp. Pong). The same process is allowed to do more pings (resp.
pongs) on receiving the Pong (resp. Ping). The operations in this example do not carry a payload; a
more involved example can be found in Section 4.

1In JavaScript and C#, async functions implicitly wrap their return values in promises (e.g., line 5 in Figure 1). An algebraic-

effects encoding does not automatically support this behavior, but does not preclude it either. This eager wrapping possibly

encourages the anti-pattern of unnecessary promises [Alimadadi et al. 2018; Okur et al. 2014].

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

139:12 Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers

15 try {

16 pinger(0, 50)

17 } with ping() resume {

18 ponger()

19 }

(c) Client code

interface Ping {

def ping() : void raises Pong

}

interface Pong {

def pong() : void raises Ping

}

(a) Effect signatures

1 def pinger(i, N : int) : void raises Ping {

2 try {

3 if (i < N)

4 ping()

5 } with pong() resume {

6 pinger(i + 1, N)

7 }

8 }

9 def ponger() : void raises Pong {

10 try { pong() }

11 with ping() resume {

12 ponger()

13 }

14 }

(b) Processes with effects Ping and Pong

6b

7

10b

ping

ping

4b

5

8b

pinger

ping

31 2a

2b

9 11

4a

8a

12a

6a

10a

ponger

ponger

pong

Client

pinger

pinger

pong

ponger

(d) Stack snapshot

Figure 8. Processes pinger and ponger send messages to each other in lockstep.

Figure 8b shows two methods, pinger and ponger, typed with effects Ping and Pong, respectively.
They are glued together by the client code in Figure 8c. At each step, pinger does a ping (line 4),
and ponger reacts to it by doing a pong (line 10), upon receiving which, pinger recursively calls
itself (line 6). This interaction happens 50 times, after which the communication ceases. Figure 8d
visualizes the control flow. As in Figures 3 and 5, dashed arrows signal raising an effect to a stack
frame where its handler is found, while solid arrows signal handler invocations and ordinary
method calls.
Effects Ping and Pong can be viewed as specifying a communication protocol, where the effect

signatures choreograph the sending and receiving of messages. Processes statically typed with
these effects conform to the protocol dynamically. In this sense, bidirectional algebraic effects offer
an expressive behavioral-typing discipline resembling session types [Honda et al. 1999].

3.3.1 Deep versus Shallow. Previous work raises the distinction between deep handlers and shallow
handlers [Kammar et al. 2013]. They differ in the construction of handler resumptions: the resump-
tion to a deep handler contains the very handler at its outermost layer, so subsequent effects raised
in the resumption can be handled by the same handler. Handlers of algebraic effects, as originally
introduced by Plotkin and Pretnar [2013], are deep: an effect handler is a fold (in category-theoretic
terms, a catamorphism [Meijer et al. 1991]) over the algebra of effect operations. It has been argued
that deep handlers behave more regularly and admit easier reasoning [Kammar et al. 2013; Lindley
et al. 2017]. However, interprocess communication has been identified as the quintessential example
where shallow handlers lead to an easier encoding [Hillerström and Lindley 2018; Kammar et al.
2013]. By contrast, our encoding does not rely on shallow handlers, and has the added benefit of
capturing the sequencing of effects in the signatures. Nonetheless, we do not claim to settle the
debate over deep vs. shallow; it is not clear that the two encodings faithfully reflect each other, and
other applications of shallow handlers might emerge in the future.

3.3.2 Deep, Bidirectional Handlers Are Recursive Definitions. The deep-handling semantics hints
at recursion. However, before bidirectional handlers, handlers have been unable to exploit this
recursion to specify that they should handle their own effects, because handler resumptions can
only accept a value whose type matches the operation’s result type. By contrast, bidirectional
handlers allow passing to resume a computation that, in addition to the effects in the raises clause,
has the effect currently being handled.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

Handling Bidirectional Control Flow 139:13

We can use this feature to simplify the code of Figures 8b and 8c for a client that is privy to how
ponger is implemented. Notice there are two identical handlers for PingÐone on lines 11ś13 in
ponger, and the other on lines 17ś19 in the clientÐmeaning all Ping effects are handled identically.
So we should be able to obtain the same bidirectional communication by keeping the Ping handler
in the client code but doing away with the one in ponger. The new ponger looks as follows:

def ponger() : void raises Pong | Ping { pong() }

It has an additional Ping effect because we got rid of the handler. Despite this change, the client code
in Figure 8c continues to type-check. The additional Ping effect raised by calling ponger (line 18) is
handled by the very handler being defined.
This recursion in handling makes deep, bidirectional handlers effectively fixpoint definitions.

While the binding structure of this fixpoint remains rather vague at this point, Section 4.3.2 makes
it precise.

4 RETAINING PARAMETRICITY

The typical semantics for handling algebraic effects is to search for the dynamically closest enclosing
handler with a matching effect signature; in fact, this semantics works for the examples discussed
so far. However, this semantics is known to be in conflict with modular reasoning: higher-order,
effect-polymorphic abstractions can accidentally handle effects they are not designed to handle,
breaking abstraction boundaries [Biernacki et al. 2018; Zhang and Myers 2019; Zhang et al. 2016].
For example, the higher-order function map is declared to be polymorphic over an effect variable α
that ranges over the effects its argument function f may raise. The intended run-time behavior is
for these effects to be propagated to the caller of map.

def map[X,Y,α](l : List[X], f : X → Y raises α) : List[Y] raises α

However, a problematic semantics could lead to map accidentally handling f’s effects if the imple-
mentation of map happens to contain an effect handler with a matching signature.
Previous work gives an alternative tunneling semantics to algebraic effects, addressing the

accidental handling problem without giving up the appeal of algebraic effects [Zhang and Myers
2019]. In this section, we show that bidirectional algebraic effects create new possibilities of
accidental handling, but that abstraction safety can be retained by adapting the tunneling semantics.

4.1 The Problem of Accidental Handling

We call the typical algebraic-effects semantics the signature-based semantics because it identifies
a propagating effect by its signature. We show that if a signature-based semantics were used,
resumptions to bidirectional handlers could handle effects by accident.
Suppose we want to use the ping-pong protocol to define two processes where one process

fetches webpages for HTTP URLs it receives from the other process. Both processes may make
asynchronous queries. To this end, effect signatures Ping and Pong are modified (Figure 9a) to carry
a payload and to be parameterized by an effect variable ranging over the extra effects the processes
may have. A pair of processes with these two effects are composed using method pingpong defined
in Figure 9b. It is effect-polymorphic, allowing the processes to have additional effects.
Whereas major platforms supporting asyncśawait dispatch asynchronous jobs using a single

dispatcher in the runtime, the ability to treat asyncśawait as a regular algebraic effect enables
software components to handle their own Async effects. This ability is useful, for example, when a
special event loop is wanted, or when Async effects must be monitored [Leijen 2017a].

The processes are defined in Figure 9c. Process pinger reads URLs asynchronously from an input
source (line 10) and handles its own Async effect (lines 15ś16). Process ponger issues asynchronous

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

139:14 Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers

interface Ping[α] {

def ping(String) : void raises Pong[α]|α
}

interface Pong[α] {

def pong(String) : void raises Ping[α]|α
}

(a) Effect signatures

1 def pingpong[α](
2 f1 : ()→void raises Ping[α]|α,
3 f2 : String→void raises Pong[α]|α) :
4 void raises α {

5 try { f1() }

6 with ping(s) resume { f2(s) }

7 }

(b) Playing ping-pong

8 def pinger[α]() : void raises Ping[α] |α {

9 try {

10 val url = await(async(read))

11 ping(url)

12 } with pong(data) {

13 write(data)

14 resume { pinger() }

15 } with async(f) { ... // This Async handler is intended ONLY for
16 } with await(p) { ... // the async and await calls on line 10
17 } with exn(io) { ... }
18 }

19 def ponger[α](url : String) : void raises Async | Pong[_] |α {

20 try {

21 val json = await(async(fun()→ httpGetJson(url)))

22 pong(json["data"])

23 } with ping(url) resume {

24 ponger(url)

25 } with exn(http) { ... }
26 }

(c) Processes Pinger and Ponger

Figure 9. Program pingpong(pinger,ponger) risks accidental handling under the signature-based semantics

HTTP GET requests (line 21) but chooses to let an outer event loop to handle its Async effects;
hence Async appears in its raises clause. Underscores are placeholders for inferred effects. The
signature-based semantics would infer, via unification, the placeholder effect in the definition of
ponger to be Async|α .

Program pingpong(pinger, ponger) starts the bidirectional communication. The signature-based
semantics would instantiate the effect variable α of pingpong to be Async, that of pinger to be Async,
and that of ponger to be the empty effect. The program as a whole would have effect AsyncÐthe
programmer expects an outer event loop to handle ponger’s Async effects.

However, under the signature-based semantics, the program would not execute in the expected
way. When ponger invokes either operation async or await, the dynamically closest enclosing
handler for Async would intercept and handle it: climbing up the call chain, ponger is called by ping

(lines 6 and 24), which is invoked on line 11, which is enveloped by the Async handler intended
only for the async and await calls on line 10. The programmer is in for a surprise.

This phenomenon of handler resumptions accidentally handling effects is new; key ingredients
of the example include bidirectionality and effect signatures parameterized over effects, which are
missing in previous work addressing accidental handling [Biernacki et al. 2018; Zhang and Myers
2019]. Still, we can rely on the prior work to help us understand the crux of the problem.

4.2 A Loss of Parametricity

An insight of prior work [Biernacki et al. 2018; Zhang and Myers 2019] is that accidental handling
reflects a loss of parametricity. Reynolds’ Abstraction Theorem for System F [Reynolds 1983]

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

Handling Bidirectional Control Flow 139:15

implies that parametricity of type polymorphism relies on polymorphic functions not being able to
make decisions based on the types instantiating the type parameters. Analogously, parametricity of
effect polymorphism requires that effect-polymorphic functions not make decisions based on the
effects they are instantiated with. The signature-based semantics runs afoul of this requirement.
In the example above, pinger is a function polymorphic over an abstract effect α . But under the
signature-based semantics, it would be able to inspect, at run time, the signatures of propagating
effects otherwise statically denoted by α , causing accidental handling.

A loss of parametricity is a loss of modular reasoning. The signature-based semantics means, for
example, that one cannot reason modularly about the program context pingpong(pinger,•) by just
looking at the types and without knowing how pinger is implemented. The hole expects a function
of a type as shown on line 3 of Figure 9b, which does not speak of Async. Yet filling the hole with a
function with effect Async would lead to surprise.

4.3 Tunneling via Lexically Scoped Handlers

To restore parametricity, we adapt the idea of tunneled algebraic effects [Zhang and Myers 2019].
Tunneling echoes the modular reasoning requirement that handlers should only handle effects
they are locally ławarež of; otherwise, effects tunnel through handlers. For example, the definition
of pinger is polymorphic over the effect variable α it binds, so it ought to be łobliviousž to any
propagating effects that correspond to α at run timeÐthese effects tunnel through the handler
in pinger. By contrast, the call site pingpong(pinger,ponger) is ławarež that ponger may raise
AsyncÐthe call site is thus required to handle this effect.

This modular reasoning requirement suggests that the tunneling semantics choose handlers
lexically. This lexical scoping of handlers generalizes naturally to bidirectional algebraic effects,
with handler bindings brought into the lexical scope in three ways:

(1) a tryświth statement binds an identifier, corresponding to the handler following with, for
use in the try-block computation,

(2) a raises clause binds a set of identifiers, each corresponding to an effect signature in the
clause, for use in the method body or handler body, and

(3) a handler definition binds an identifier named self, corresponding to the current handler, for
use in the handler body.

The first two ways are a straightforward adaptation of the tunneling semantics. The third way ex-
plains why a bidirectional handler can demand its own effects to be handled by itself (Section 3.3.2).
The approach of Zhang and Myers [2019] is that programs written in the usual syntax are

desugared to give handler bindings explicit names. Handlers for effectful computations are then
chosen by resolving an omitted handler to the lexically closest enclosing binding. Because handlers
are resolved lexically, effects appear to tunnel to handlers without allowing dynamically enclosing
handlers to intercept them, even if they have identical signatures.
As an example, Figure 10 shows the desugaring of pinger (Figure 9c). It makes explicit all

handler bindings and references to the bindings. Desugaring the raises Ping[α] clause introduces
an identifier HPi into the pinger body; it denotes the handler used to handle Ping[α] effects raised
by pinger. Invoking operation ping (line 4, in the try block) requires a Ping[α] handler to be
provided. This handler is resolved to HPi, the lexically closest enclosing binding for the signature.
The invocation also requires a handler for Pong[α] to be provided, because operation ping is defined
to raise Pong[α]. This handler is resolved to HPo, the binding introduced into the try block by one
of the surrounding handler definitions. The locally defined Async handler, denoted by HA, is used to
handle the invocations of async and await (line 3).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

139:16 Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers

1 def pinger[α][HPi : Ping[α]]() : void raises HPi |α {

2 try {

3 val url = HA.await[HE](HA.async(read))

4 HPi.ping[HPo](url)

5 } with HPo : Pong[α] = {

6 def pong[HPi : Ping[α]](data : String) : void raises HPi |α {

7 write[HE](data)

8 resume { pinger[α][HPi]() }

9 }

10 } with HA : Async = {

11 def async[X,Y](f : Fun2[X,Y]) : Promise[X,Y] { ... }
12 def await[X,Y][HE : Exn[Y]](p : Promise[X,Y]) : X raises HE { ... }
13 } with HE : Exn[IO] = { ... }
14 }

15 def ponger[α][HA : Async][HPo : Pong[HA|α]](url : String) : void raises HA |HPo |α { ... }

// Client code
pingpong[HA2](pinger[HA2], ponger[∅][HA2])

Figure 10. Desugaring pinger, ponger, and the client program

Figure 10 also shows the desugaring of the client program pingpong(pinger,ponger). Assuming
HA2 denotes a surrounding Async handler, it instantiates the effect variable of pingpong to be HA2,
that of pinger to be HA2, and that of ponger to be the empty effect. The client program as a whole
has effect HA2, indicating it uses the outer Async handler to handle Async effects raised by ponger.

4.3.1 Lifetimes as Effects. Effect handlers obey a stack discipline. A handler’s lifetime begins when
the corresponding try-block is entered, and ends when the try-block computation is done: the
handler cannot outlive the lexical structure binding it. The desugaring outlined above makes it
explicit that references to handlers are passed as lexically scoped arguments. But lexical scoping
alone does not prevent closures that outlive handlers from capturing them, making them dangling
references.
To prevent such dangling references, the type system follows prior work [Biernacki et al. 2020;

Brachthäuser et al. 2020; Zhang and Myers 2019] in treating handler lifetimes as computational
effects, in a similar way to region-based type systems [Grossman et al. 2002; Lucassen and Gifford
1988; Tofte and Talpin 1997]. A computation that uses handlers to handle algebraic effects is typed
with the lifetimes of those handlers as its computational effects.

Such lifetime effects, denoted by handler identifiers, are written in raises clauses of desugared
types. For example, desugaring the raises Ping[α] clause not only introduces the handler binding
HPi, but also means the method has lifetime effect HPi. Because the method body is typed with the
lifetime of HPi, it cannot outlive HPi; it is thus allowed to use the non-dangling reference HPi to
invoke ping.

The desugaring that introduces explicit handler bindings can thus be understood as also assigning
default lifetimes automatically as follows: an ordinary object is not lifetime-bounded, since its
lifetime is the same as the heap region; the lifetime of a handler is bounded by the tryświth
stack region to which it is attached; and a method with a raises clause is lifetime-polymorphic.
Assigning default lifetimes is present in Cyclone (default regions [Grossman et al. 2002]) and Rust
(lifetime elision [Klabnik and Nichols 2019]). We do not require the complexity of these full-blown
region-based type systems, however, because only handlers are lifetime-bounded and because
handler lifetimes are restricted to stack regions.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

Handling Bidirectional Control Flow 139:17

programs P ::= I ;
L
t

interface definitions I ::= interface F[α] {T }

operation signatures T , S ::= ∀α .T | ∀ζ .T | τ→T | [τ]c

types τ ,σ ::= 1 | ννν ℓ F[c] | ννν ℓ T | cont [τ1]c1⇝ [τ2]c2

composite effects c ::= ∅ | c, e

atomic effects e ::= α | ℓ

lifetimes ℓ ::= ζ | L

operation implementations D ::= Λα .D | Λζ .D | λx.D | λk. t

values v,u ::= x | () | fix self is νννL D | νννL D | cont K

terms t, s ::= v | t .op | t c | t ℓ | t s |
L
t | t | let x = t in s | throw t s

evaluation contexts K ::= [·] | K .op | K c | K ℓ | K t | v K | K | let x = K in t | throw K t

effect variables α lifetime variables ζ lifetime constants L value variables x, k,H, self, ... interface names F

Figure 11. Syntax of Olaf

try { pinger[HPi]() }

with HPi : Ping = {

def ping[HPo : Pong]() : void raises HPo {

resume { ponger[HPo][self]() }

}

}

4.3.2 Fixpoint Handlers. The availability of a self han-
dler makes it precise that bidirectional (deep) handlers
are fixpoint definitions: the fixpoint is taken of a handler
definition quantifying over self. Because the resump-
tion to a deep handler is enveloped by the same handler,
the computation passed to resume cannot outlive the
handler and can thus safely use it to handle its effects. The figure above shows how Figure 8c is
desugared using self, assuming ponger has the signature as shown in Section 3.3.2.
Since being self-referential is also a key characteristic of objects, it seems that objects and

handlers are almost unifiable. Section 5 makes this unification precise for a core language.

5 A CORE LANGUAGE

We study the formal foundation of bidirectional algebraic effects using a core language, Olaf, that
captures the key aspects of the language mechanism introduced in Sections 3 and 4.
Olaf is both functional and object-oriented. Like a lambda calculus, it does not support imperative

state. Like an object-oriented language, it supports the separation between objects and interfaces,
and objects in Olaf are self-referential. Olaf supports effect signatures and handlers using the same
constructs for object interfaces and objects. The effect-handling construct tryświth is captured by
something that resembles delimited control [Gunter et al. 1995], following prior work [Brachthäuser
et al. 2020; Zhang and Myers 2019].
Olaf is intended to capture the essence of the language mechanism. It makes simplifications

similar to existing formalisms of algebraic effects with lexically scoped effect handlers [Biernacki
et al. 2020; Zhang and Myers 2019]: it is assumed that handlers are always given explicitly for
effectful computations (rather than resolving elided handlers to the closest lexically enclosing
binding) and that effect signatures contain exactly one effect operation. Lifting these restrictions is
straightforward but adds syntactic complexity that obscures the key issues. Because of its recursive
interface definitions and fixpoint handlers, Olaf is Turing-complete.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

139:18 Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers

5.1 Syntax

Figure 11 presents the syntax of Olaf. Metavariables standing for identifiers have a lighter color.
An overline denotes a (possibly empty) sequence of syntactic objects. For instance, e denotes a
sequence of effects; an empty sequence is ∅. Effect sequences, or composite effects, are denoted by c.

The type system tracks handler lifetimes as effects. An effect e is either an effect variable α or a
lifetime ℓ, which is either a lifetime variable ζ or a lifetime constant L. Lifetime effects compose
easily, since effect sequences are essentially setsÐthe order and multiplicity of effects in a sequence
are irrelevant. Substituting an effect sequence e for an effect variable α in another effect sequence
works by flattening e and replacing α with the flattened effects. Substituting a lifetime ℓ for a
lifetime variable ζ works in the usual way.

A value v is either a variable x, the unit value (), a handler value fix self is νννL D, an operation value
νννL D, or a continuation cont K . Continuations are represented by evaluation contexts K . In a term
of form throw t s, term t must evaluate to a continuation, after which s is placed in the evaluation
context representing the continuation.

While in Section 4.3 lifetimes are identified by handler bindings, in Olaf lifetimes are decoupled
from handlers and form a separate syntactic category: handler values (subsuming objects) are of
form fix self is νννL D, consisting of an operation implementation D and the lifetime L of the value.
Handler values are fixpoints; the self variable is bound in D. An operation value is of form νννL D; it is
the result of unrolling the fixpoint definition of a handler value to extract the operation.

Lifetime constants L are declared by, and bound in, -terms. Olaf encodes the tryświth construct

using -terms. The computation t guarded by a
L
may have lifetime effect L. While -terms bind

and discharge lifetime effects, -terms invoke handlers and thus introduce lifetime effects.
A term has either the unit type 1, a handler type (a.k.a. an interface type) ννν ℓ F[c], an operation

type ννν ℓ T , or a continuation type cont [τ1]e1⇝ [τ2]e2 . Handler values have handler types, while
operation values have operation types. A term of form t .op extracts the operation value from a
handler value, by unrolling the fixpoint handler definition. A continuation of type cont [τ1]e1⇝ [τ2]e2
can be applied to a computation of type [τ1]e1 .
An operation implementation D is possibly polymorphic over effect variables (Λα .D), lifetime

variables (Λζ .D), and value variables (λx.D). Correspondingly, the operation signatureT of a handler
can be effect-polymorphic (∀α .T), lifetime-polymorphic (∀ζ .T), and value-polymorphic (τ→T). The
last parameter k of an operation implementation is a continuationÐto wit, the handler resumption.
An operation has a result type [τ]c ; the handler resumption is able to discharge effects in c. Unlike
previous work that gives algebraic effects operational meanings [Biernacki et al. 2019; Leijen 2017b;
Lindley et al. 2017; Zhang and Myers 2019], handler resumptions in Olaf are evaluation contexts
taking as input (possibly effectful) computations, instead of functions that take only pure values.

An Olaf program consists of a set of interface definitions and a łmainž term to be evaluated. The
interfaces are mutually recursive and can be parameterized by effect variables. The łmainž term is
guarded by a , which binds a lifetime constant. This lifetime constant is used as the lifetime of
handler values that correspond to ordinary objects; they exist for the full lifetime of the program
and hence need not obey the usual stack discipline imposed on other handlers.

Example. Olaf is less removed from the informal surface language used in Sections 3 and 4 than
its syntax might suggest. Below we encode function pinger (Figure 10) in Olaf. This example
demonstrates how Olaf encodes various language constructs including handler bindings, the tryś
with construct, functions and function calls, and handlers and handler invocations.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

Handling Bidirectional Control Flow 139:19

The (recursive) function pinger is encoded as a (self-referential) object, which is expressed as a
handler value that applies its resumption to its body tpinger:

fix pinger is νννL0 Λα .ΛζPi. λHPi. λk. throw k tpinger

In the informal language of Section 4, a handler binding denotes both the handler and also its
lifetime. In Olaf, a handler binding is modeled with two bindings, one for a lifetime and the other
for a value variable: the value variable stands for a handler of the given lifetime. For example,
Pinger[α] in the raises clause of pinger is modeled in Olaf by a handler binding HPi and a lifetime
binding ζPi, where HPi has lifetime ζPi.
Function pinger, encoded as an object, need not obey a stack discipline, so it has lifetime L0,

which is assumed to be the lifetime constant declared by the guarding the łmainž program. Term
tpinger, that is, the body of pinger, looks as follows, where the bindings α , ζPi, HPi, k, and the self
reference pinger, are in scope:

tpinger
def
=

L
let HE = fix self is νννL ... in
let HA = fix self is νννL ... in
let HPo = fix self is νννL Dpong in

let url = HA.op L HE read in (line 3)

HPi.op L HPo (url) (line 4)

Dpong

def
= ΛζPi. λHPi. λdata. λk.

let _ = write.op L HE data in (line 7)

throw k
(

pinger.op α ζPi HPi

)

(line 8)

The body of pinger is a try block followed by a series of handlers. A tryświth statement is encoded

in Olaf as
L
let H = fix self is νννL D in t , where D is the implementation of the effect operation, and t

is the try-block computation, which may invoke handler H. A handler should not outlive its tryś
with statement, so the handler value has the same lifetime as declared by the -term. In term tpinger

above, all three handlers, HE, HA, and HPo, have the same lifetime L because there is only one try.
Operation invocations on handlers (subsuming method calls on objects) are encoded as -terms.

For example, the try-block computation HPi.ping[HPo](...) (line 4, Figure 10) invokes HPi, so it is
encoded in Olaf as HPi.op L HPo ..., where L is the lifetime of HPo. Similarly, the recursive call to
pinger (line 8) is also encoded as a -term. (For simplicity, in the encoding above we have assumed
the two operations of Async are combined into one.)

5.2 Operational Semantics

To give an operational semantics to Olaf, terms and evaluation contexts in Figure 11 are extended
with a -construct:

terms t, s ::= ... |
L
t evaluation contexts K ::= ... |

L
K

Figure 12 defines the small-step operational semantics. Individual reduction steps take the form
L1 ; t1−→L2 ; t2 , meaning that term t1 steps to term t2 while the set of freshly created lifetime
constants possibly grows from L1 to L2. Per rule [down], a lifetime constant L1 declared by a -term
is replaced by a fresh copy L2 when the -term is reduced to a -term. While -terms lexically bind

lifetime constants, -terms are non-binding constructs; evaluation contexts of form
L
K serve as

stack delimiters. This use of freshness is analogous to how calculi with reference cells allocate fresh
memory locations; closed terms can mention fresh identifiers. The distinction between and is
not apparent in Zhang and Myers [2019], albeit present in their Coq formalization; Biernacki et al.
[2020] clarify the distinction.
Rule [op] exposes the operation implementation of a handler by unrolling the fixpoint handler

value. Rule [downup] handles operation invocations. To execute the operation’s implementation, a
resumption must be found to substitute for the free variable k. Because the operation value νννL0 λk. t

has lifetime L0, the surrounding evaluation context is searched for a stack delimiter
L0 . The part

of the evaluation context delimited by
L0 is then used as the resumption. In comparison, prior

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

139:20 Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers

L1 ; t1−→L2 ; t2

[ktx]
L1 ; t1−→L2 ; t2

L1 ; K[t1]−→L2 ; K[t2]
[let] L ; let x = v in t −→L ; t {v/x}

[op] L ;
(

fix self is νννL0 D
)

.op−→L ; νννL0 D
{

fix self is νννL0 D
/

self
}

[eapp] L ;
(

νννL0 Λα .D
)

c −→L ; νννL0 D {c/α }

[lapp] L ;
(

νννL0 Λζ .D
)

L1−→L ; νννL0 D {L1/ζ }

[app] L ;
(

νννL0 λx.D
)

v −→L ; νννL0 D {v/x}

[throw] L ; throw (cont K) t −→L ; K[t]

[down] L ;
L1 t −→L, L2 ;

L2 t {L2/L1}
(

L2 < L
)

[downval] L ;
L0 v −→L ; v

[downup] L ;
L0 K

[

νννL0 λk. t
]

−→L ; t
{

cont
L0K

/

k
}

(L0 ↷ K)

L ↷ K

L ↷ [·]
L ↷ K

L ↷ K c

L ↷ K

L ↷ K L′

L ↷ K

L ↷ K t

L ↷ K

L ↷ v K

L ↷ K

L ↷ K

L ↷ K

L ↷ let x = K in t

L ↷ K

L ↷ throw K t

L ↷ K

L ↷ K .op

L ↷ K L , L0

L ↷
L0 K

Figure 12. Operational semantics of Olaf

formalisms of lexically scoped handlers would use the value λy.
L0 K[y], rather than cont

L0 K , as

the resumption. Because handlers are deep, the resumption has
L0 at its outermost layer. When

the operation value corresponds to an ordinary function, its lifetime L0 must have been introduced

by evaluating the
L0 guarding the łmainž term. So what [downup] does in this case is essentially

calling the function with the łcurrent continuationž (in Scheme parlance).

5.3 Static Semantics

Figure 13 presents the term-typing rules of Olaf. Term typing rules have form ∆ |Θ | Γ | Ξ ⊢ t : [τ]e ,
where ∆, Θ, Γ, and Ξ are binding contexts. The judgment form says that under these environments
term t has type τ and effects e. Rule [t-up] types operation invocations. The effects of this term
include the operation value’s own lifetime and the effects in the operation’s result type.

Rule [t-down] shows that the lifetime constant L declared by a
L
t term can appear in the

effects of the computation guarded by
L
: to type-check t , the environment Θ of lifetime constants

is augmented with L. The environment also tracks the type and effects [τ]c of the entire compu-

tation
L
t . Importantly, however, L must not occur free in [τ]c ; while t has lifetime L,

L
t lives

beyond L. Notice that we do not give a typing rule for the auxiliary -form, which only emerges
when evaluating a Olaf program.

Rule [t-fix] type-checks a handler value. The operation of the handler is type-checked with the
self reference in scope. The self reference has the same type νννL F[c] as the handler value. Using the
self reference triggers the lifetime effect L.

Rule [t-klam] type-checks an operation value whose parameters (except for the resumption) are
already in scope. A salient difference from previous work is that the type of the resumption, apart
from being a continuation type, does not have to exactly match the result type and effect [τ1]c1 of
the operation: the continuation can be applied to a computation with the additional lifetime effect L
that is the lifetime of the current value. A consequence is that the computation the resumption is
applied to is allowed to use the self reference to handle its effects.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

Handling Bidirectional Control Flow 139:21

∆ |Θ | Γ | Ξ ⊢ t : [τ]c ∆ ::= ∅ | ∆, α Θ ::= ∅ | Θ, ζ Γ ::= ∅ | Γ, x :τ Ξ ::= ∅ | Ξ, L : [τ]c

[t-unit]∆ |Θ | Γ | Ξ ⊢ () : [1]∅ [t-var]
Γ(x) = τ

∆ |Θ | Γ | Ξ ⊢ x : [τ]∅
[t-up]

∆ |Θ | Γ | Ξ ⊢ t :
[

νννL [τ]c1

]

c2

∆ |Θ | Γ | Ξ ⊢ t : [τ]c1, c2, L

[t-op]

∆, α |Θ | Γ | Ξ ⊢ t :
[

νννL F[c1]
]

c2
signature(F) = interface F[α] {T }

∆ |Θ | Γ | Ξ ⊢ t .op :
[

νννLT {c1/α }
]

c2

[t-fix]

signature(F) = interface F[α] {T }

∆ |Θ | Γ, self :νννL F[c] | Ξ ⊢ νννL D :
[

νννLT {c/α }
]

∅

∆ |Θ | Γ | Ξ ⊢ fix self is νννL D :
[

νννL F[c]
]

∅

[t-elam]

∆, α |Θ | Γ | Ξ ⊢ νννL D :
[

νννLT
]

∅

∆ |Θ | Γ | Ξ ⊢ νννL Λα .D :
[

νννL ∀α .T
]

∅

[t-llam]

∆ |Θ, ζ | Γ | Ξ ⊢ νννL D :
[

νννLT
]

∅

∆ |Θ | Γ | Ξ ⊢ νννL Λζ .D :
[

νννL ∀ζ .T
]

∅

[t-lam]

∆ |Θ | Γ, x :τ | Ξ ⊢ νννL D :
[

νννLT
]

∅

∆ |Θ | Γ | Ξ ⊢ νννL λx.D :
[

νννL τ→T
]

∅

[t-klam]

Ξ(L) = [τ2]c2
∆ |Θ | Γ, k :cont [τ1]c1,L⇝ [τ2]c2 | Ξ ⊢ t : [τ2]c2

∆ |Θ | Γ | Ξ ⊢ νννL λk. t :
[

νννL [τ1]c1

]

∅

[t-eapp]

∆ |Θ | Γ | Ξ ⊢ t :
[

νννL ∀α .T
]

c2
∆ |Θ | Ξ ⊢ c1

∆ |Θ | Γ | Ξ ⊢ t c1 :
[

νννLT {c1/α }
]

c2

[t-lapp]
∆ |Θ | Γ | Ξ ⊢ t :

[

νννL ∀ζ .T
]

c
Θ | Ξ ⊢ ℓ

∆ |Θ | Γ | Ξ ⊢ t ℓ :
[

νννLT {ℓ/ζ }
]

c

[t-app]

∆ |Θ | Γ | Ξ ⊢ t :
[

νννL τ→T
]

c
∆ |Θ | Γ | Ξ ⊢ s : [τ]c

∆ |Θ | Γ | Ξ ⊢ t s :
[

νννLT
]

c

[t-down]

∆ |Θ | Γ | Ξ, L : [τ]c ⊢ t : [τ]c , L
∆ |Θ | Ξ ⊢ τ ∆ |Θ | Ξ ⊢ c

∆ |Θ | Γ | Ξ ⊢
L
t : [τ]c

[t-cont]
∆ |Θ | Γ | Ξ ⊢ K : [τ1]c1 ⇝ [τ2]c2

∆ |Θ | Γ | Ξ ⊢ cont K :
[

cont [τ1]c1⇝ [τ2]c2
]

∅

[t-let]

∆ |Θ | Γ | Ξ ⊢ s : [σ]c
∆ |Θ | Γ, x :σ | Ξ ⊢ t : [τ]c

∆ |Θ | Γ | Ξ ⊢ let x = s in t : [τ]c

[t-throw]

∆ |Θ | Γ | Ξ ⊢ t :
[

cont [τ1]c1⇝ [τ2]c2
]

c2
∆ |Θ | Γ | Ξ ⊢ s : [τ1]c1

∆ |Θ | Γ | Ξ ⊢ throw t s : [τ2]c2
[t-sub]

∆ |Θ | Γ | Ξ ⊢ t : [τ1]c1
⊢ c1 ≤ c2 ⊢ τ1 ≤ τ2

∆ |Θ | Γ | Ξ ⊢ t : [τ2]c2

Figure 13. Rules for typing Olaf terms

Rules for type-level well-formation and orderings are deferred to the accompanying technical
report [Zhang et al. 2020]. Because composite effects are sets, the subeffecting relation ⊢ c1 ≤ c2

simply says c1 is a subset of c2.

6 ESTABLISHING PARAMETRICITY FOR A LOGICAL-RELATIONS MODEL

As Section 4.2 argues, the key property to establish about Olaf should be parametricity. To this end,
this section develops a logical-relations model for Olaf, and shows it satisfies parametricity and is
sound with respect to contextual equivalence. These results, fully mechanized in Coq, provide a
rigorous account for abstraction safety and also imply type safety.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

139:22 Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers

Semantic Types

J1Kδ
θ
(ω, v1, v2)

def
= v1 = () ∧ v2 = ()

q
ννν ℓ F[c]

y
δ
θ
(ω, v1, v2)

def
= ∃T . signature(F) = interface F[α] {T } ∧

∃L1,D1, L2,D2. vi = fix self is νννLi Di (i = 1, 2) ∧

▷
q
ννν ℓ T {c/α }

y
δ
θ

(

ω, νννL1 D1, ννν
L2 D2

)

q
ννν ℓ T

y
δ
θ
(ω, v1, v2)

def
= ∃L1,D1, L2,D2. θiℓ = Li ∧ vi = ννν

Li Di (i = 1, 2) ∧

JT Kδ
θ
(ω, ℓ, D1, D2)

q
cont [τ1]c1⇝ [τ2]c2

y
δ
θ
(ω, v1, v2)

def
= ∃K1,K2. vi = cont Ki (i = 1, 2) ∧ K

q
[τ1]c1⇝ [τ2]c2

y
δ
θ
(ω, K1, K2)

Semantic Operation Signatures

J∀α .T Kδ
θ
(ω, ℓ, D1, D2)

def
= ∃D′

1,D
′
2. Di = Λα .D′

i (i = 1, 2) ∧ ∀ω′, L1, L2,ψ . ω ⊆ ω′ ⇒

ψ ⊆ ω′ ⇒ JT K
α 7→

〈

L1, L2,ψ
〉

θ
δ
(

ω′, ℓ, D′
1

{

L1

/

α1

}

, D′
2

{

L2

/

α2

})

J∀ζ .T Kδ
θ
(ω, ℓ, D1, D2)

def
= ∃D′

1,D
′
2. Di = Λζ .D′

i (i = 1, 2) ∧ ∀ω′, L1, L2,φ
′. ω ⊆ ω′ ⇒

Li ∈ ω
′
i (i = 1, 2) ⇒ JT Kδ

θ , ζ 7→ ⟨L1, L2, φ
′ ⟩

(

ω′, ℓ, D′
1 {L1/ζ1}, D

′
2 {L2/ζ2}

)

Jτ→T Kδ
θ
(ω, ℓ, D1, D2)

def
= ∃D′

1,D
′
2. Di = λx.D

′
i (i = 1, 2) ∧ ∀ω′,v1,v2. ω ⊆ ω′ ⇒

Jτ Kδ
θ
(ω′, v1, v2) ⇒ JT Kδ

θ

(

ω′, ℓ, D′
1 {v1/x}, D

′
2 {v2/x}

)

J[τ]c Kδθ (ω, ℓ, D1, D2)
def
= ∃t1, t2. Di = λk. ti (i = 1, 2) ∧ ∀ω′,K1,K2. ω ⊆ ω′ ⇒

K
TJ[τ]c ,ℓKδθ⇝LJℓKδ

θ
(ω′, K1, K2) ⇒ LJℓKδ

θ
(ω′, t1 {cont K1/k}, t2 {cont K2/k})

Semantic Effects

JαKδ
θ

(

ω, t1, t2, φ, L1, L2

)

def
= ∃ψ . δ (α) = ψ ∧ ψ

(

ω, t1, t2, φ, L1, L2

)

JℓKδ
θ
(ω, t1, t2, φ, L1, L2)

def
= ∃L1, L2, s1, s2. θiℓ = Li ∧ ti = νννLi λk. si (i = 1, 2) ∧

∀ω′,K1,K2. ω ⊆ ω′ ⇒ ▷K
φ⇝LJℓKδ

θ
(ω′, K1, K2) ⇒

▷LJℓKδ
θ
(ω′, s1 {cont K1/k}, s2 {cont K2/k})

JcKδ
θ

(

ω, t1, t2, φ, L1, L2

)

def
= ∃e ∈ c . JeKδ

θ

(

ω, t1, t2, φ, L1, L2

)

Auxiliary Relations

Kφ1⇝φ2 (ω, K1, K2)
def
= ∀ω′, t1, t2. ω ⊆ ω′ ⇒ φ1 (ω

′, t1, t2) ⇒ φ2 (ω
′, K1[t1], K2[t2])

K
q
[τ1]c1⇝ [τ2]c2

y
δ
θ
(ω, K1, K2)

def
= K

TJ[τ1]c1Kδθ⇝TJ[τ2]c2Kδθ (ω, K1, K2)

LJζ Kδ
θ
(ω, t1, t2)

def
= ∃φ. θ (ζ) = φ ∧ φ (ω, t1, t2)

LJLKδ
θ
(ω, t1, t2)

def
= ∃τ , c . Ξ(L) = [τ]c ∧ T J[τ]c Kδθ (ω, t1, t2)

ψ ⊆ ω
def
= ∀ω′, t1, t2,φ, L1, L2. ψ

(

ω′, t1, t2, φ, L1, L2

)

⇒ Li ⊆ ωi (i = 1, 2)

Figure 14. Relational interpretations of types, operation signatures, and effects. (The definitions are implicitly

indexed by ∆, Θ, and Ξ.)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

Handling Bidirectional Control Flow 139:23

6.1 A Logical-Relations Model for Olaf

Technical devices used in the definition include step indexing [Ahmed 2006; Appel and McAllester
2001], possible worlds, and biorthogonality [Pitts and Stark 1998] to deal with challenges such as
Turing-completeness, freshly generated lifetimes, and delimited continuations. Figure 14 presents
the semantic interpretation of various type-level entities. Other definitionsÐincluding observa-

tional refinement, the relation on closed terms T J[τ]c Kδθ (ω, t1, t2), and its lifting to open terms

∆ |Θ | Γ | Ξ ⊨ t1 ≈log t2 : [τ]cÐare largely standard and for space are deferred to the technical report.
A logical-relations model for a typed language interprets types as relations. As is standard, the

relational interpretations in Figure 14 are indexed by substitutions δ and θ that providesÐin addition
to syntactic substitution functions (denoted by δi and θi where i = 1, 2) for free effect variables and
lifetime variables in the type-level entity being interpretedÐsemantic interpretation of the free
variables. The logical relations are also indexed by a world ω of freshly created lifetime constants;
ω ⊆ ω′ means world ω′ is a future world of (i.e., extends) ω.

Language features like recursion make it difficult to define these relations inductively on the
structure of types. Fixpoint handlers and mutually recursive interfaces in Olaf pose a similar
challenge. The technique of step indexing [Ahmed 2006; Appel and McAllester 2001] addresses
this challenge. Our logical relation is step-indexed; the logical relation is defined using a double
induction, first on a step index, and second on the structure of types. The definition is given in
terms of a logic equipped with the łlaterž modality ▷, which offers a clean abstraction of step
indexing [Appel et al. 2007; Dreyer et al. 2009]. For example, the relational interpretation of an

interface type
q
ννν ℓ F[c]

y
δ
θ
is defined as that of an operation type

q
ννν ℓ T {c/α }

y
δ
θ
guarded by ▷. Although

T may recursively mention F, the use of ▷ ensures the definition remains well-founded.

The relational interpretation of continuation types
q
cont [τ1]c1⇝ [τ2]c2

y
δ
θ
is defined in terms

a relation on evaluation contexts K
q
[τ1]c1⇝ [τ2]c2

y
δ
θ
. The latter relation is a standard auxiliary

definition in logical-relations proofs. Two evaluation contexts K1 and K2 are in this relation if

applying them to terms t1 and t2 related by T
q
[τ1]c1

y
δ
θ
implies the resulting terms K1[t1] and K2[t2]

are related by T
q
[τ2]c2

y
δ
θ
.

The interpretation of an operation type
q
ννν ℓ T

y
δ
θ
is defined in terms of that of the operation

signature JT Kδ
θ
, indexed on the lifetime ℓ. Of particular interest is the interpretation J[τ]c Kδθ . It

relates two operation implementations λk. t1 and λk. t2 in which t1 and t2 are related when the free
variables k standing for resumptions are replaced by related continuations. The continuations are

allowed to be related by K
TJ[τ]c ,ℓKδθ⇝LJℓKδ

θ
, where the occurrence of ℓ in addition to c indicates

recursive handling by the fixpoint handler, corresponding to the premise of typing rule [t-klam].

The semantic interpretation of atomic or composite lifetime effects JeKδ
θ
or JcKδ

θ
follows techniques

developed in Biernacki et al. [2018] and Zhang and Myers [2019].

6.2 Results

Parametricity is a strong indicator that abstraction is preserved [Dreyer 2018; Reynolds 1983]. It
implies that effect-polymorphic functions behave uniformly, irrespective of the choice of effects
with which they are instantiated.

Theorem 1 (Parametricity, a.k.a. Abstraction Theorem, a.k.a. Fundamental Property). If Ξ and Γ

are well-formed, then ∆ |Θ | Γ | Ξ ⊢ t : [τ]c implies ∆ |Θ | Γ | Ξ ⊨ t ≈log t : [τ]c .

Type safety means that well-typed Olaf programs do not get stuckÐthey either reduce to values
or diverge. Type safety follows from parametricity.

Theorem 2 (Type Safety). If ∅ |∅ |∅ |∅ ⊢ t : [τ]
∅
and ∅ ; t −→∗ L′ ; t ′ , then either there exists v

such that t ′ = v or there exists L′′ and t ′′ such that L′ ; t ′−→L′′ ; t ′′ .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

139:24 Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers

Abstraction is preserved when no clients can distinguish between implementations of the same
abstraction. The gold standard of indistinguishability is contextual equivalence [Morris 1968], whose
definition in the context of Olaf can be found in the technical report. If the logical-relations model is
sound, in the sense that logically related terms are contextually equivalent, then indistinguishability
can be established through logical relatedness.

Theorem 3 (Soundness w.r.t. contextual equivalence).
∆ |Θ | Γ | Ξ ⊨ t1 ≈log t2 : [τ]c ⇒ ∆ |Θ | Γ | Ξ ⊢ t1 ≈ctx t2 : [τ]c .

These results prove our claim that the type system of Olaf upholds strong abstraction boundaries.

6.3 Formalization in Coq

The formal results above have been mechanized using the Coq proof assistant, in 17,800 lines of code
architected similarly to prior work [Biernacki et al. 2018; Zhang and Myers 2019]. We also wrote a
400-line extension of the IxFree library [Polesiuk 2017]Ða shallow embedding of a logic with the
▷ modality [Dreyer et al. 2009]Ðto implement the logical relations as dependently typed fixpoint
functions. Cofinite quantification [Aydemir et al. 2008] makes it easy to generate fresh lifetime
constants. This Coq implementation is available at https://github.com/yizhouzhang/olaf-coq.

7 IMPLEMENTATION ISSUES

While we leave a full-featured compiler to future work, we discuss two key compilation issues.

7.1 Tail-Resumption Optimization

Being able to apply the tail-resumption optimization is important because calling resumptions at
the tail position is probably the most common way handler resumptions are used in practiceÐin the
preceding examples, all handlers except those for exn or await are tail-resumptive. The optimization
avoids having to capture the handler resumption as a first-class value, which would otherwise
involve copying stack frames, a rather expensive operation.

Bidirectional handlers can benefit from this optimization too. Per rule [downup], a tail-resumptive
handler in Olaf is reduced as follows:

L ;
L0 K

[

νννL0 λk. throw k t
]

−→ L ; throw
(

cont
L0K

)

t −→ L ;
L0 K[t]

There is no need to reify the delimited continuation cont
L0K . It remains as the surrounding

evaluation context after two steps of reduction.

7.2 Translation into Unidirectional Effect Handlers

An obvious compilation target for bidirectional handlers is a language with deep, ordinary effect
handlers, and an obvious approach to this compilation is as follows: effect operations are translated
to return callbacks, and invocations of operations are translated to call the callbacks. For example,
effects Ping and Pong from Figure 8a are translated into these signatures:

effect Ping { def ping() : () → void raises Pong | Ping }

effect Pong { def pong() : () → void raises Ping | Pong }

The type of the returned callback additionally includes the effect being translated, so that the
callback computation can raise effects that are to be handled by the (deep) handler being defined.
Whether such a type-preserving translation is feasible in general should be examined per target
languageÐmacro expressivity [Felleisen 1991] in the context of control-flow mechanisms is sensitive
to the precise set of cross-cutting features under consideration [Forster et al. 2017].

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

https://github.com/yizhouzhang/olaf-coq

Handling Bidirectional Control Flow 139:25

Importantly, the translation outlined above bears unpleasant performance implications: in a
tail-resumptive setting, the cost of communicating through callbacks could be avoided if a handler
computation were allowed to directly raise effects to the surrounding evaluation context.
To understand this cost empirically, we use a modified implementation of µC++ [Buhr 2019].

The µC++ language extends C++ [Stroustrup 1987] with effect handlers that are either abortive or
tail-resumptive. The modified version allows tail-resumptive effect handlers to directly raise effects
to their resumptions.

Historically, in the absence of a static effect system, bidirectional control flow has been banned
because it is considered too complex to reason about or use. For example, Mesa [Mitchell et al. 1979],
one of the few languages with resumable exceptions, forbids recursive handling. Similarly, µC++
does not check effects statically, and the original implementation uses an extra run-time check
to prevent effects raised by a handler from being handled by the handler resumption [Buhr 2019,
ğ5.5]. Our type system addresses this concern by offering reasoning principles for bidirectional,
recursive effect handling.
We performed two hand translations of the ping-pong communication example (Section 3.3,

with ponger implemented as in Section 3.3.2) into µC++, with one of the two using callbacks. This
program was chosen because it exercises high-frequency bidirectional control transfer. We ran
the hand-translated code using the modified µC++ implementation with the extra run-time check
disabled, and measured the running time on a 3.2GHz Intel Xeon Gold processor, averaging 500
runs. The translation relying on callbacks incurred a 2.1× slowdown: 42.6 ms vs. 19.8 ms. This
result argues for bidirectional handlers as a first-class language feature: obtaining bidirectionality
via a desugaring into callbacks is less efficient. (In the other way around, compiling callbacks away
into efficient bidirectionality would involve a complex interprocedural analysis.)

8 RELATED WORK

Control effects. Effect handlers [Bauer and Pretnar 2015; Plotkin and Pretnar 2013] offer a form
of delimited control [Danvy and Filinski 1990; Felleisen 1988] (or coroutining [Haynes et al. 1986]),
together with a nice separation between the syntax of effects and their semantics. Whereas Forster
et al. [2017] show effect handlers and (a particular variant of) delimited-control operators fail to
macro-express [Felleisen 1991] one another while preserving typing, Piróg et al. [2019] show they
are equally expressive when their type systems support polymorphic operations and answer-type
polymorphism [Asai and Kameyama 2007], respectively. The core language Olaf further blurs the
boundaries: key elements of algebraic effects (i.e., effect signatures and handlers) and those of
delimited control (i.e., a pair of control operators) coexist and play complementary roles in Olaf.

Bidirectionality is possible with effect handlers or delimited-control operators using, for example,
callbacks (Section 7.2)Ðhowever, as we discuss later, Olaf is likely not macro-expressible by recent
formalisms that also lexically scope effect handlers [Biernacki et al. 2020; Zhang and Myers 2019].
Bidirectional handlers inherit the appeal of algebraic effects, and address bidirectional control
flow with a straightforward programming style, an economy of language constructs, efficient
compilation, and strong reasoning principles.

Applications of bidirectional handlers. Interruptible iterators [Liu et al. 2006] generalize the
expressive power of generators to allow concurrent updates to the underlying collection being
iterated over. The example in Section 3.1 shows that bidirectional algebraic effects capture the
expressive power of interruptible iterators but as part of a single unified effect mechanism with
formally defined semantics, rather than by introducing interrupts as a separate mechanism.

A key motivation for promises and asyncśawait as language features was to enable better excep-
tion handling; the state of a promise indicates if an exception occurred asynchronously. However,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

139:26 Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers

the lack of static checking on asynchronous exceptions makes software error-prone [Alimadadi
et al. 2018]. Previous encodings of asyncśawait as algebraic effects are unsatisfactory: as discussed
in Section 3.2, they either do not express asynchronous exceptions as an algebraic effect [Leijen
2017a], or require ad hoc constructs and do not track exceptions statically [Dolan et al. 2017].
Session types [Honda et al. 1999] are a behavioral-typing discipline for communication pro-

tocols. The possibility of encoding session types using algebraic effects has been hypothesized
before [Fowler et al. 2019], and bidirectional effects make this connection more substantial. The
encoding does not yet offer the full power of session types, though; it enforces weaker session
fidelity and does not prevent deadlocks. Linear effect handlers are a promising future direction.

Preventing accidental handling. Accidental handling of algebraic effects in the presence of
effect polymorphism is a known problem. Tunneling (lexically scoped, lifetime-bounded handlers)
as a way to avoid accidental handling of exceptions was introduced by Zhang et al. [2016]; follow-on
work adapted it to explicit effect polymorphism and proved parametricity [Zhang and Myers 2019].
Brachthäuser et al. [2018, 2020] implement tunneled algebraic effects in a Scala library, called Effekt,
that encodes lifetime effects through Scala’s intersection types and path-dependent types.

Biernacki et al. [2020] distinguish between an open and a generative semantics of lexically scoped
handlers; generativity is critical to ensuring parametricity when effect operations can be effect-
polymorphic. Olaf uses the generative semanticsÐits operational semantics creates fresh lifetimes.
Generativity is occasionally found in prior work on control effects (e.g., [Bauer and Pretnar 2015;
Gunter et al. 1995]), but without effects being statically tracked by a type-and-effect system.

We conjecture that Olaf cannot be macro-expressed by prior calculi of lexically scoped, generative
handlers (an inexpressivity proof like that of Forster et al. [2017] is beyond the scope of this
paper): the calculus of Zhang and Myers [2019] does not support effect-parameterized signatures
(Section 4.1) or effect-polymorphic operations [Biernacki et al. 2020], either of which could help
cause accidental handling; and Biernacki et al. [2020] do not support recursively defined signatures,
needed to mimic fixpoint handlers (Section 7.2). Previous parametricity results do not carry over.

Another way to avoid accidental handlingÐin languages where composite effects are rows [Wand
1991] rather than setsÐis directives to signal that effects should bypass the dynamically closest
enclosing handler. These directives include the inject function of Leijen [2014], lift and coercions of
Biernacki et al. [2018, 2019], and adaptors of Convent et al. [2020]. For example, the semantics of
applying the lift construct [·]A to a computation whose effect is a polymorphic row α is as follows:
statically, the lifted computation has effects A|α ; dynamically, an A effect raised by the original
computation is handled by the dynamically second closest enclosing A handler. An enclosing handler
for A thus cannot intercept A effects raised by the computation, because its effect α is not considered
as a subeffect of the row A|α ; an explicit lift is needed to please the type checker.

Generalizing algebraic effects. Lindley et al. [2017] treat Frank’s handling construct as a higher-
order function that pattern-matches on the effects of its computation-typed arguments. This design
decision is orthogonal to ours: while we generalize effect signatures and handlers, Frank generalizes
the tryświth construct. It is plausible that either idea can be adapted to the other’s setting, though
Frank’s shallow-handling semantics is incompatible with handlers being fixpoints.

9 CONCLUSION

This paper proposes a new design for effect handlers, in which a handler can raise effects and have
its resumptionÐincluding the handler itselfÐhandle the effects. As our examples show, these ideas
address a need common to assorted programming challenges for better bidirectional communication
between software components. The expressive power falls out naturally when effect operations

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

Handling Bidirectional Control Flow 139:27

and handlers are unified with methods and objects; however, the ideas also generalize to non-
object-oriented languages. We captured the essence of the new mechanism in a core language with
some distinctive features such as fixpoint handlers and the ability to treat handler resumptions as
evaluation contexts. Bidirectionality exposes previously unidentified ways to accidentally handle
effects that propagate per the usual, signature-based semantics; hence, we make bidirectional
handlers lexically scoped and focused on a convincing proof that they are compatible with strong
abstraction boundaries. While a complete implementation is left to future work, experiments
suggest bidirectional handlers can be compiled efficiently.
The recent flurry of language designs for advanced control-flow features show that modern

software needs language-based support for complex control flow. Bidirectional algebraic effects
address this challenge in two important ways. First, they unify various previously separately
proposed language features (interruptible iterators, exceptional async/await, etc.) via a natural
generalization of effect handlers. This unification should help increase confidence in language
metatheories and lower the hurdle for use of powerful control-flow features. Second, the guarantees
that no effects are unhandled or accidentally handled are critical to writing safer code. They help the
programmer manage the control-flow complexity via a type system; static typing offers guidance
on where to apply effect handling, and the parametricity guarantee enables truly compositional
reasoning. While these consequences are entirely anticipated, future software-engineering studies
could assess the empirical effectiveness of bidirectional algebraic effects in achieving these goals.
Together, these contributions offer an appealing way to support complex control flow in main-

stream programming languages.

ACKNOWLEDGMENTS

We thank Jonathan Brachthäuser, Peter Buhr, Filip Sieczkowski, and the anonymous reviewers for
their valuable feedback. We also thank Peter Buhr for patching µC++.

This work was supported by NASA grant NNX16AB09G. The views and opinions expressed are
those of the authors and do not necessarily reflect the position of any government agency.

A ADT EXAMPLE

// The algebraic data type
data YieldResult[X] =

| ToContinue

| ToReplace(X)

| ToBehead

effect Yield[X] {

def yield(X) : YieldResult[X]

}

// The need for a Behead effect cannot be
// easily dismissed: the itercode has to raise
// it to the caller and wait for control to
// come back.
effect Behead {

def behead() : void

}

(a) ADT definition and effect signatures

class Node[X] {

var head : X

var tail : Node[X]

...
def iter() : void raises Yield[X] | Behead {

match yield(head) {

| ToContinue ⇒ skip

| ToReplace(x) ⇒ head = x

| ToBehead ⇒ behead() // convert ADT value to algebraic effect
}

if (tail != null)

try { tail.iter() }

with behead() {

tail = tail.tail

resume()

}

}

}

(b) Iterator pattern-matches the result of yield (cf. Figure 4b)

Figure 15. Using an ADT to encode iterator interrupts. By comparison, bidirectional algebraic effects allow for

more concise code.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

139:28 Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers

REFERENCES

A. Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In 15th European Symposium on

Programming, 2006. Extended/corrected version available as Harvard University TR-01-06.

S. Alimadadi, D. Zhong, M. Madsen, and F. Tip. Finding broken promises in asynchronous JavaScript programs. Proc. ACM

on Programming Languages, 2(OOPSLA), Oct. 2018.

A. W. Appel and D. McAllester. An indexed model of recursive types for foundational proof-carrying code. ACM Trans. on

Programming Languages and Systems, 23(5), Sept. 2001.

A. W. Appel, P.-A. Melliès, C. D. Richards, and J. Vouillon. A very modal model of a modern, major, general type system. In

34th ACM Symp. on Principles of Programming Languages (POPL), 2007.

K. Asai and Y. Kameyama. Polymorphic delimited continuations. In 5th Asian Symposium on Programming Languages and

Systems (APLAS), 2007.

B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich. Engineering formal metatheory. In 35th ACM Symp. on

Principles of Programming Languages (POPL), 2008.

A. Bauer and M. Pretnar. Programming with algebraic effects and handlers. Journal of Logical and Algebraic Methods in

Programming, 84(1), 2015.

G. Bierman, C. Russo, G. Mainland, E. Meijer, and M. Torgersen. Pause ‘n’ play: Formalizing asynchronous C#. In 26th

European Conf. on Object-Oriented Programming, 2012.

D. Biernacki, M. Piróg, P. Polesiuk, and F. Sieczkowski. Handle with care: Relational interpretation of algebraic effects and

handlers. Proc. ACM on Programming Languages, 2(POPL), Jan. 2018.

D. Biernacki, M. Piróg, P. Polesiuk, and F. Sieczkowski. Abstracting algebraic effects. Proc. ACM on Programming Languages,

3(POPL), Jan. 2019.

D. Biernacki, M. Piróg, P. Polesiuk, and F. Sieczkowski. Binders by day, labels by night: effect instances via lexically scoped

handlers. Proc. ACM on Programming Languages, 4(POPL), Jan. 2020.

J. I. Brachthäuser, P. Schuster, and K. Ostermann. Algebraic effects for the masses. Proc. ACM on Programming Languages, 2

(OOPSLA), Oct. 2018.

J. I. Brachthäuser, P. Schuster, and K. Ostermann. Effekt: Capability-passing style for type- and effect-safe, extensible effect

handlers in Scala. J. Functional Programming, 30, Mar. 2020.

O. Bračevac, N. Amin, G. Salvaneschi, S. Erdweg, P. Eugster, and M. Mezini. Versatile event correlation with algebraic effects.

Proc. ACM on Programming Languages, 2(ICFP), Aug. 2018.

P. A. Buhr. µC++ annotated reference manual, version 7.0.0. Technical report, School of Computer Science, University of

Waterloo, 2019.

B. Cabral and P. Marques. Hidden truth behind .NET’s exception handling today. IET Software, 1(6), 2007.

L. Convent, S. Lindley, C. McBride, and C. McLaughlin. Doo bee doo bee doo. J. Functional Programming, 30, Mar. 2020.

O. Danvy and A. Filinski. Abstracting control. In ACM Conf. on LISP and Functional Programming, pages 151ś160, 1990.

S. Dolan, S. Eliopoulos, D. Hillerström, A. Madhavapeddy, K. C. Sivaramakrishnan, and L. White. Concurrent system

programming with effect handlers. In Trends in Functional Programming, 2017.

D. Dreyer. Milner award lecture: The type soundness theorem that you really want to prove (and now you can). In 45th

ACM Symp. on Principles of Programming Languages (POPL), 2018.

D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical relations. In 24th Annual IEEE Symposium on Logic In

Computer Science (LICS), 2009.

ECMA International. ECMAScript 2018 language specification. Standard-ECMA 262, June 2018.

M. Felleisen. The theory and practice of first-class prompts. In 15th ACM Symp. on Principles of Programming Languages

(POPL), pages 180ś190, 1988.

M. Felleisen. On the expressive power of programming languages. Science of Computer Programming, 17(1), 1991.

Y. Forster, O. Kammar, S. Lindley, and M. Pretnar. On the expressive power of user-defined effects: Effect handlers, monadic

reflection, delimited control. Proc. ACM on Programming Languages, 1(ICFP), Aug. 2017.

S. Fowler, S. Lindley, J. G. Morris, and S. Decova. Exceptional asynchronous session types. In 46th ACM Symp. on Principles

of Programming Languages (POPL), Jan. 2019.

J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, and D. Smith. The Java Language Specification. Oracle America, se 11

edition, Aug 2018.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

Handling Bidirectional Control Flow 139:29

R. E. Griswold, D. R. Hanson, and J. T. Korb. Generators in Icon. ACM Trans. on Programming Languages and Systems, 3(2):

144ś161, Apr. 1981.

D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based memory management in Cyclone. In

ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI), pages 282ś293. ACM Press, 2002.

C. A. Gunter, D. Rémy, and J. G. Riecke. A generalization of exceptions and control in ML-like languages. In 7th Conf. on

Functional Programming Languages and Computer Architecture (FPCA), 1995.

C. T. Haynes, D. P. Friedman, and M. Wand. Obtaining coroutines from continuations. Journal of Computer Languages, 11

(3ś4):143ś153, 1986.

A. Hejlsberg, S. Wiltamuth, and P. Golde. The C# Programming Language. Addison-Wesley, 1st edition, Oct. 2003. ISBN

0321154916.

D. Hillerström and S. Lindley. Shallow effect handlers. In Asian Symp. on Programming Languages and Systems, 2018.

K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for structured communication-based

programming. In European Symposium on Programming, 1999.

O. Kammar, S. Lindley, and N. Oury. Handlers in action. In 18th ACM SIGPLAN Int’l Conf. on Functional Programming, 2013.

S. Klabnik and C. Nichols. The Rust Programming Language (Covers Rust 2018). No Starch Press, 2019.

C. Lattner and J. Groff. Async/await for Swift. https://gist.github.com/lattner/429b9070918248274f25b714dcfc7619, 2019.

D. Leijen. Koka: Programming with row polymorphic effect types. In 5th Workshop on Mathematically Structured Functional

Programming. EPTCS, 2014.

D. Leijen. Structured asynchrony with algebraic effects. In Proceedings of the 2nd ACM SIGPLAN International Workshop on

Type-Driven Development, TyDe 2017, 2017a.

D. Leijen. Type directed compilation of row-typed algebraic effects. In 44th ACM Symp. on Principles of Programming

Languages (POPL), 2017b.

D. Leijen. Implementing algebraic effects in C. In 15th Asian Symposium on Programming Languages and Systems (APLAS),

2017c.

S. Lindley, C. McBride, and C. McLaughlin. Do be do be do. In 44th ACM Symp. on Principles of Programming Languages

(POPL), 2017.

B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous procedure calls in distributed systems. In

ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI), June 1988.

B. Liskov, A. Snyder, R. Atkinson, and J. C. Schaffert. Abstraction mechanisms in CLU. Comm. of the ACM, 20(8):564ś576,

Aug. 1977. Also in S. Zdonik and D. Maier, eds., Readings in Object-Oriented Database Systems.

J. Liu, A. Kimball, and A. C. Myers. Interruptible iterators. In 33rd ACM Symp. on Principles of Programming Languages

(POPL), POPL ’06, pages 283ś294, Jan. 2006.

J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In 15th ACM Symp. on Principles of Programming Languages

(POPL), POPL ’88, pages 47ś57, 1988.

E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses, envelopes and barbed wire. In 5th

Conf. on Functional Programming Languages and Computer Architecture (FPCA), 1991.

J. G. Mitchell, W. Maybury, and R. Sweet. Mesa language manual version 5.0. Technical Report CSL-79-3, Xerox Research

Center, Palo Alto, Ca., 1979.

J. H. Morris, Jr. Lambda-Calculus Models of Programming Languages. PhD thesis, Massachusetts Institute of Technology,

1968.

S. Murer, S. Omohundro, D. Stoutamire, and C. Szyperski. Iteration abstraction in Sather. ACM Trans. on Programming

Languages and Systems, 18(1):1ś15, Jan. 1996.

Node. Node.js. https://nodejs.org.

S. Okur, D. L. Hartveld, D. Dig, and A. v. Deursen. A study and toolkit for asynchronous programming in C#. In 36th Int’l

Conf. on Software Engineering (ICSE), 2014.

M. Piróg, P. Polesiuk, and F. Sieczkowski. Typed equivalence of effect handlers and delimited control. In 4th International

Conference on Formal Structures for Computation and Deduction (FSCD), 2019.

A. M. Pitts and I. Stark. Operational reasoning for functions with local state. Higher order operational techniques in semantics,

pages 227ś273, 1998.

G. Plotkin and J. Power. Algebraic operations and generic effects. Applied Categorical Structures, 11(1):69ś94, Feb 2003.

G. Plotkin and M. Pretnar. Handling algebraic effects. Logical Methods in Computer Science, Volume 9, Issue 4, Dec. 2013.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

https://gist.github.com/lattner/429b9070918248274f25b714dcfc7619
https://nodejs.org

139:30 Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers

P. Polesiuk. IxFree: Step-indexed logical relations in Coq. In 3rd International Workshop on Coq for Programming Languages

(CoqPL), 2017.

J. C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP Congress, pages 513ś523, 1983.

Rust language team. Async & await in Rust: a full proposal. https://boats.gitlab.io/blog/post/2018-04-06-async-await-final,

2018.

M. Shaw, W. Wulf, and R. London. Abstraction and verification in Alphard: Defining and specifying iteration and generators.

Comm. of the ACM, 20(8), Aug. 1977.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1987.

D. Thomas, C. Fowler, and A. Hunt. Programming Ruby: The Pragmatic Programmers’ Guide. The Pragmatic Programmers,

2nd edition, 2004. ISBN 0-974-51405-5.

M. Tofte and J.-P. Talpin. Region-based memory management. Information and Computation, 132(2):109ś176, 1997.

G. van Rossum. The Python Language Reference Manual. Network Theory, Ltd., Sept. 2003.

M. Wand. Type inference for record concatenation and multiple inheritance. Information and Computation, 93(1), 1991.

Y. Zhang and A. C. Myers. Abstraction-safe effect handlers via tunneling. Proc. ACM on Programming Languages, 3(POPL),

Jan. 2019.

Y. Zhang, G. Salvaneschi, Q. Beightol, B. Liskov, and A. C. Myers. Accepting blame for safe tunneled exceptions. In 37th

ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI), pages 281ś295, June 2016.

Y. Zhang, G. Salvaneschi, and A. C. Myers. Handling bidirectional control flow: Technical report. https://arxiv.org/abs/2010.

09073, 2020.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 139. Publication date: November 2020.

https://boats.gitlab.io/blog/post/2018-04-06-async-await-final
https://arxiv.org/abs/2010.09073
https://arxiv.org/abs/2010.09073

	Abstract
	1 Introduction
	2 Background: Async–Await, Generators, and Algebraic Effects
	3 Bidirectional Algebraic Effects, Informally
	3.1 Generators with Concurrent Modification
	3.2 Async–Await with Exceptions
	3.3 Communication Protocols

	4 Retaining Parametricity
	4.1 The Problem of Accidental Handling
	4.2 A Loss of Parametricity
	4.3 Tunneling via Lexically Scoped Handlers

	5 A Core Language
	5.1 Syntax
	5.2 Operational Semantics
	5.3 Static Semantics

	6 Establishing Parametricity for a Logical-Relations Model
	6.1 A Logical-Relations Model for Olaf
	6.2 Results
	6.3 Formalization in Coq

	7 Implementation Issues
	7.1 Tail-Resumption Optimization
	7.2 Translation into Unidirectional Effect Handlers

	8 Related Work
	9 Conclusion
	A ADT example
	References

