
176

Sound Garbage Collection for C using Pointer Provenance

SUBARNO BANERJEE, University of Michigan, USA

DAVID DEVECSERY, Georgia Institute of Technology, USA

PETER M. CHEN, University of Michigan, USA

SATISH NARAYANASAMY, University of Michigan, USA

Garbage collection (GC) support for unmanaged languages can reduce programming burden in reasoning
about liveness of dynamic objects. It also avoids temporal memory safety violations and memory leaks. Sound
GC for weakly-typed languages such as C/C++, however, remains an unsolved problem. Current value-based
GC solutions examine values of memory locations to discover the pointers, and the objects they point to. The
approach is inherently unsound in the presence of arbitrary type casts and pointer manipulations, which are
legal in C/C++. Such language features are regularly used, especially in low-level systems code.

In this paper, we propose Dynamic Pointer Provenance Tracking to realize sound GC. We observe that
pointers cannot be created out-of-thin-air, and they must have provenance to at least one valid allocation.
Therefore, by tracking pointer provenance from the source (e.g., malloc) through both explicit data-flow and
implicit control-flow, our GC has sound and precise information to compute the set of all reachable objects at
any program state. We discuss several static analysis optimizations, that can be employed during compilation
aided with profiling, to significantly reduce the overhead of dynamic provenance tracking from nearly 8× to
16% for well-behaved programs that adhere to the C standards. Pointer provenance based sound GC invocation
is also 13% faster and reclaims 6% more memory on average, compared to an unsound value-based GC.

CCS Concepts: · Software and its engineering→ Garbage collection; Automated static analysis.

Additional Key Words and Phrases: Garbage Collector Safety, Pointer Provenance, Optimistic Hybrid Analysis

ACM Reference Format:

Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy. 2020. Sound Garbage Collection
for C using Pointer Provenance. Proc. ACM Program. Lang. 4, OOPSLA, Article 176 (November 2020), 28 pages.
https://doi.org/10.1145/3428244

1 INTRODUCTION

Unmanaged languages such as C/C++ are the languages of choice for a vast set of large, complex,
ubiquitous, and critical software bases, such as Linux, openssl, MySQL, and these languages
continue to be popular among many developers. Unmanaged languages require programmers
to explicitly allocate and free memory space. This requirement not only increases programming
burden, but is also a source of common classes of bugs: use-after-free and memory leaks. Use-
after-free bugs are not just a reliability issue, but a significant source of security vulnerabilities in
modern systems [Caballero et al. 2012], as they compromise temporal memory safety [Nagarakatte
et al. 2010]. In spite of significant advancements, prior solutions for temporal memory safety incur
prohibitive performance overheads (∼ 60% [Nagarakatte et al. 2010; Simpson and Barua 2013;

Authors’ addresses: Subarno Banerjee, University of Michigan, USA, subarno@umich.edu; David Devecsery, Georgia

Institute of Technology, USA, ddevec@gatech.edu; Peter M. Chen, University of Michigan, USA, pmchen@umich.edu;

Satish Narayanasamy, University of Michigan, USA, nsatish@umich.edu.

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART176

https://doi.org/10.1145/3428244

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3428244
https://doi.org/10.1145/3428244
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3428244&domain=pdf&date_stamp=2020-11-13

176:2 Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy

Zhang et al. 2019]). Memory leaks also compromise system reliability and can cause unpredictable
performance [Vilk and Berger 2018]. Prior solutions have tried to address memory leaks through a
combination of offline bug detectors [Caballero et al. 2012; Hastings and Joyce 1991], and runtime
systems that probabilistically repair these bugs [Berger and Zorn 2006; Dhurjati and Adve 2006;
Dhurjati et al. 2003].

Replacing manual deallocation of memory in unmanaged languages with a sound and efficient
garbage collector (GC) would address all of the above problems by guaranteeing temporal memory
safety, avoiding memory leaks, and reducing programmer burden. Unfortunately, a sound GC for
weakly-typed languages like C/C++ has remained elusive.

A sound GC is one that guarantees to not free an object that is accessed later 1. Typically, a
sound mark-and-sweep GC [Cohen 1981] automatically reclaims memory at runtime by freeing a
set of objects that can be guaranteed to be unreachable from a set of łrootž pointers (pointers in
global variables, stack variables, and registers). To compute this set at runtime, given a pointer, a
GC should be able to (1) identify a pointer’s dynamic points-to object, that is, the object reached by
dereferencing the pointer, and (2) locate all the pointers contained in that reachable object. We refer
to the latter set as the pointers-within set for an object. In strongly-typed, memory-safe languages
like Java, both of these operations are straightforward [Bacon et al. 2001]. A pointer’s value can be
used to identify its dynamic points-to object due to spatial memory safety [Nagarakatte et al. 2009],
and the pointers-within set of an object can be easily determined due to the strong type system.

C/C++, however, is weakly-typed. Pointer values can reside in, or be computed from, non-pointer
variables, making it difficult to locate them within a reachable object at runtime. Even if we can
locate all the locations with pointer values, they are not guaranteed to point within the referenced
objects. This is true even in spatially memory safe programs, as a pointer value may be arbitrarily
transformed to point away from the object, then manipulated back just before a dereference. Such
pointer manipulations are regularly used in low-level systems code [Memarian et al. 2019].

Prior works on GC for C/C++ [Boehm 1993, 2004] have tried to overcome some of these problems
using value-based heuristics, but these works do not guarantee soundness. They assume that only
memory locations with values within an allocated heap object’s address range are valid pointers,
and that the value points within the referent object. This assumption is unsound as they cannot
identify the referent object when a pointer value goes out-of-bounds due to arbitrary pointer
manipulations allowed in C/C++. They are also imprecise, and therefore, prone to memory leaks
when non-pointer locations hold values that happen to be within the heap address range. Finally,
they have to examine the value of every reachable memory location to determine if it is a pointer
or not, leading to higher performance overhead.

In this paper, we design the first sound GC for C/C++ called Provenance-based Garbage Collection
(Prov-GC). We observe that a C/C++ program cannot create a pointer out-of-thin-air; instead,
pointer values must be derived from a valid pointer source. Valid pointer sources are from allocation
functions (e.g. malloc) and the address-of (&) operator. These pointer values subsequently propagate
to other variables either through explicit data-flow or implicit control-flow. Thus, our key idea
is to use dynamic information-flow tracking to soundly and precisely determine the set of all
memory locations that hold values derived from pointers, and the object locations they point-to.
Our mark-and-sweep GC uses this information to soundly reclaim unreachable objects.

Conventional dynamic information-flow tracking (DIFT), however, is known to incur significant
performance overhead, slowing execution down by several times [Clause et al. 2007]. This is
due to the need to execute a łmonitorž typically for every instruction that could propagate a

1Ideally GCs would free objects that will not be accessed later, but real GCs settle for the cannot be accessed approximation.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

Sound Garbage Collection for C using Pointer Provenance 176:3

łtaintž. Furthermore, taint propagation through implicit control-flow (a necessity for us to ensure
soundness) is known to be not only expensive in terms of performance, but also can imprecisely
taint a significant fraction of memory locations [Clause et al. 2007].

We observe several optimization opportunities that we exploit using hybrid taint analysis [Baner-
jee et al. 2019] to realize a low-overhead DIFT for pointer provenance. A common property that our
static analysis exploits is that if an instruction destination operand’s taint meta-data is guaranteed
to not change, then the taint monitor for that instruction can be elided. This property holds true for
instructions that are non-pointer operations (e.g., inta = intb * 10;), which is the vast majority of
the instructions executed. We also show that if an instruction’s destination operand is a statically
declared pointer and its source operand is guaranteed to be a łsafež pointer (value points within
the object), then its taint value is known at compile time, and therefore a runtime monitor is
unnecessary (e.g., int* ptr = safe_ptr;). This category includes common pointer assignments,
where the pointer has not been manipulated arithmetically. Finally, if the source and destination
operands of an instruction are the same (e.g., ptr = ptr+4;), then there is no need to update the
destination’s taints.

Somewhat surprisingly, tracking implicit information flows, known to be intractable in general,
turns out to be practical for pointer provenance. Conditional branches dependent on pointer
variables can propagate taint implicitly to its control-dependent instructions. While we do not
expect reasonable programmers to use such programming constructs, to realize sound GC, we
must consider its possibility, as they are legal in C/C++. Fortunately, we are able to show that
when branch conditions are based on comparisons between in-bounds pointers or with NULL value,
there is insufficient implicit information flow to require dynamic tracking. While we need modest
dynamic checks to establish that pointer values are in-bounds, we never have to propagate implicit
flow for the programs we studied.

Finally, to prove the above properties statically to aggressively elide dynamic taint monitors, we
apply Optimistic Hybrid Analysis (OHA) [Banerjee et al. 2019; Devecsery et al. 2018]. OHA uses
profiled likely invariants to predicate the whole-program context-sensitive flow-sensitive static
taint analysis.

The C standard [ISO 2018] specifies several restrictions on using pointers and operations that
can be performed on pointer types. We show that assuming these properties benefits our pointer
provenance tracking significantly, and reduces the overall cost of GC for standard-compliant
programs. We provide solutions with and without this optimization, because, in practice, there are
many programs that regularly violate the standard [Memarian et al. 2016], and as such they require
provenance tracking without optimizations that depend on these C standard specifications.

We evaluate our Prov-GC tool on several long-running large applications as well as memory-
intensive benchmark programs. Unlike the Boehm-Demers-Weiser GC (BDW-GC) [Boehm 2004],
Prov-GC is sound. For well-behaved programs that are C standards-compliant, we pay only an
additional 16% average performance cost to dynamically track pointer provenance. Of which, 14%
is due to explicit data-flow tracking, and the remaining is to track implicit-flow. We find that our
optimistic optimizations that elide dynamic monitors are very effective with adequate profiling.
Without them, we see nearly 8× slowdown. In addition to soundness, compared to BDW-GC, the
performance of our GC invocation is about 13% faster, as we avoid scanning, and reclaim about 6%
more memory per GC invocation due to our GC’s improved precision.

16% performance overhead of our GC is especially appealing as it obviates the need for a slower
dynamic temporal safety solution (60% overhead [Zhang et al. 2019]), besides reducing programming
burden and avoiding memory leaks.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

176:4 Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy

We make the following contributions in this paper:

• We present Prov-GC, a GC that is sound for all legal C/C++ programs. Previous GC solutions
for C/C++ are unsound as they might free reachable objects.

• We present the idea of dynamic pointer provenance, and use it to realize a sound GC for C/C++.

• We show how we can elide taint monitors for a vast majority of instructions such as operations
on non-pointers, łsafež pointers, etc.

• We show tracking implicit information-flow in the context of pointer provenance is necessary
and practically feasible.

• We show how the C standard specifications induce a significantly improved provenance tracking
solution for standard-compliant programs.

• We apply optimistic hybrid analysis [Devecsery et al. 2018] to optimize dynamic pointer prove-
nance and realize an efficient GC that incurs 16% overhead. This overhead is much lower than
dynamic temporal safety checking, and it avoids memory leaks and reduces programmer burden.

2 BACKGROUND ANDMOTIVATION

This section discusses the motivation for using GC in weakly-typed languages like C/C++, and the
unsolved problems in realizing a sound GC for them.

2.1 Why GC for C/C++?

GC obviates the need for manual memory management and thereby eliminates two common classes
of bugs in unmanaged languages: memory leaks and use-after-free [Caballero et al. 2012; Vilk and
Berger 2018].

Memory leaks and use-after-free bugs are considered important classes of bugs and thus have
received significant attention from academia and industry, who have tried to address these bugs
through a variety of methods. For memory leaks, there exists a number of offline debugging tools
and runtime probabilistic methods to mitigate the ill effects of these bugs [Bond and McKinley
2006; Clause and Orso 2010; Hauswirth and Chilimbi 2004; Jump and McKinley 2007; Novark et al.
2009; Rudafshani and Ward 2017; Vilk and Berger 2018; Xu et al. 2011]. We argue that GC for C/C++
would address the memory leak problem more comprehensively than these methods.

Use-after-free bugs are particularly important because they compromise system security. These
bugs violate temporal memory safety [Nagarakatte et al. 2010], which along with spatial safety
is necessary to ensure full memory safety. Recognizing the importance of memory safety, even
commodity processors (e.g., Intel MPX) [Oleksenko et al. 2018] have started providing specialized
hardware support for efficiently implementing spatial memory safety checks. Spatial memory
safety, however, solves only part of the problem. Efficiently guaranteeing temporal safety remains
expensive, as state-of-the-art solutions incur ∼ 60% performance overheads [Zhang et al. 2019].

We argue that if we can realize a sound and efficient GC for C/C++, it would not only reduce the
burden on future software development, but also help improve reliability and security of both future
and legacy systems. If the execution time overhead of GC can be made lower than the overhead
of other temporal safety solutions, then it certainly would be a superior solution, as it not only
removes temporal errors, but also improves programmability.

2.2 GC and its Pointer Data Requirements

Identifying dead objects precisely at a given instant of a program’s execution is hard as it depends
on future execution. Therefore, current GCs conservatively identify live objects by assuming that
the set of all łreachablež objects from a łrootž set of pointers are live. The root-set consists of

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

Sound Garbage Collection for C using Pointer Provenance 176:5

all pointers in the registers, global and stack address space. A reachable object can still be dead
as it may never get referenced in future. Current GCs use either incremental mark-and-sweep
[Boehm 2004] or reference counting [Shahriyar et al. 2012, 2013] to compute reachability. In this
paper, we use mark-and-sweep, though our provenance-based approach could also be used by a
reference-counting GC.

When a mark-sweep GC is invoked, it performs two separate steps: marking computes the live
set of objects that are transitively reachable from a root set of pointers, and sweeping reclaims
memory from unreachable objects. To perform the reachability analysis, the mark step requires
two crucial pieces of information about pointers: a pointer’s points-to object (PT), and an object’s
pointers-within set (PW). The points-to object of a pointer is the dynamic object that can be
dereferenced using that pointer. The pointers-within set of an object is the set of all pointers that
are contained within that object.

Both points-to and pointers-within data are straightforward to determine soundly and precisely in
type and memory safe languages such as Java, Python, and C#. The points-to object of a pointer can
be determined from its value due to spatial memory safety. That is, a pointer’s value is guaranteed to
be within the address range of its points-to object. Furthermore, due to type safety, given an object,
it is possible to precisely and quickly determine its pointers-within set, because only variables
that are typed as pointers can hold pointer data; non-pointer variables cannot hold pointer data.
Determining points-to and pointers-within data in weakly-typed languages like C/C++, however, is a
significant challenge as we discuss next.

2.3 Value-Based GCs for C/C++ are Unsound

All prior attempts to provide GC for C/C++ use value-based heuristics to compute points-to and
pointers-within information. For example, the best-known such work [Boehm 2004] computes the
pointers-within set of an object by scanning every pointer-sized field in the object and checking if
its value falls within the address range of any allocated heap object. If the check succeeds, then
that field is assumed to be a pointer, and the points-to object for that field is assumed to be the
allocated heap object whose address range includes that field’s value.

Value-based GCs work by assuming that any allocated heap object that may be referenced in the
future has at least one live register or memory location pointing to it at all times. This assumption
may be violated, for instance, if the C program breaks any of the following three assumptions:
(A1) Pointers are only stored in variables that are declared to be pointers or in sufficiently large
integral type that can hold a pointer. (A2) If a memory location’s value falls within the bounds of an
allocated heap object then it is a valid pointer, or else it is a non-pointer. (A3) A pointer discovered
through its value is assumed to point within its points-to object. Value-based GCs are unsound
whenever any of the above invariants is violated.

In C/C++, even legal programs can violate these three assumptions because C/C++ has a weak
type system and allows programs to store pointer values in integers and manipulate them in
arbitrary ways. Figure 1 shows an example of a XOR linked list, a clever representation of a doubly
linked list used in memory constrained embedded systems [xor 2004]. Each node stores the XOR of
pointers in the two directions and recovers them using XOR operations during traversal. Note that
none of the inner nodes store literal values of pointers, but have information encoded to reconstruct
two valid pointers. A purely value-based GC approach can incorrectly reclaim objects pointed to
by such hidden pointers, e.g. node C’s address is not stored literally anywhere in the program state.
This is a legal C program which can break the correctness of a value-based GC. More extreme
examples are also possible via casting and other manipulations; for example, a program may split a

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

176:6 Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy

1 typedef struct { uintptr_t val, xptr; } xorlist;

2 xorlist *head = NULL, *tail = NULL;

3 void traverse(xorlist *start) {

4 xorlist *prev = NULL, *curr = start;

5 while (curr) {

6 printf("%ld\n", curr->val);

7 uintptr_t next = (uintptr_t) prev

^ curr->xptr;

8 prev = curr;

9 curr = next;

10 }

11 }

12 void main() {

13 insert(...);

...

14 traverse(head); // use xptr to traverse

15 traverse(tail); // in both directions

16 }

A B C D E

val 01 23 45 67 89

xptr head ⊥⊕B A⊕C B⊕D C⊕E D⊕⊥ tail

Fig. 1. Doubly Linked Lists can save space by storing the XOR of previous and next node pointers in a single

integer location; uintptr_t is sufficiently long to hold pointer values. The inner nodes never store literal

pointer values, but have sufficient information to reconstruct valid pointers to its two adjacent nodes.

pointer into several smaller integers then reconstruct the pointer later; this would violate all three
assumptions.

Value-based GCs can also be imprecise because they may think a non-pointer is a pointer when
its value happens to lie within the heap address range. If this non-pointer’s value points-to an
unreachable object, then GC would avoid reclaiming it. This can lead to memory leaks and lower
performance. There has been follow-up work [Henderson 2002; Rafkind et al. 2009] that addressed
this problem by adding another assumption that pointers only reside in declared pointer typed
variables. This approach achieves greater precision, but sacrifices even more soundness, as it would
ignore an integer value derived from a pointer through a cast.

Value-based GCs can also incur significant overhead while scanning the state space for pointers.
Given a reachable object, GC has to scan each of its fields, and check if it could be a valid pointer
or not. The check involves looking into a data-structure that maintains the address ranges of all
heap objects.

In this work, we improve upon pure value-based GCs by using dynamic pointer provenance to
soundly and precisely determine the set of all pointers and the objects they point-to. Also, this
can quickly identify pointers-within set of an object without scanning each field, improving GC
performance.

2.4 Need for Sound GCs

Guaranteeing correct GC behaviorś i.e. objects reachable from the root set of pointers will not
be freed, is important for all programs in the same way that it is important to have a sound
compiler or runtime. Value-based GCs impose additional restrictions, as seen in ğ2.3 earlier, making
them work correctly only on a subset of the language. These language properties might not be
followed by legacy programs, and can be generally difficult to verify for new programs and compiler
implementations that strive to conform to the standards but still may not. Moreover, new programs
also reuse existing library code. So, there is value in supporting sound GC behavior for all programs
without imposing additional restrictions on the language itself.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

Sound Garbage Collection for C using Pointer Provenance 176:7

3 PROVENANCE-BASED GARBAGE COLLECTION

In this section we discuss the design of a sound and efficient provenance-based garbage collector.
We will first motivate how a provenance-based garbage collector solves the soundness issues of
prior GCs. Then we outline a simple-but-sound strawman GC. Finally, we discuss optimizations
that reduce the overhead of our strawman GC, leading to a provenance-based GC that is both fast
and sound.

We assume that, aside from temporal safety errors, the given program is a valid C/C++ program,
and that it obeys the properties necessary for the compiler and hardware to guarantee a well-defined
behavior. This includes spatial memory safety [Nagarakatte et al. 2009] and data-race-freedom [Adve
and Hill 1990], which many prior works have addressed.

3.1 The Soundness of Provenance-Based GC

In this work, we argue that instead of using the value of a pointer to identify its points-to set, a GC
can use the provenance of the pointer to soundly derive its dynamic points-to.

The soundness of our provenance-based solution is based on the assumption that allocated heap
memory addresses cannot appear out-of-thin-air. That is, without knowing the return value of a
call to an allocation function (e.g. malloc in C), it is impossible for the programmer to compute
the address of any given dynamically allocated heap object. This assumption is true of most real
type-unsafe languages, such as C. Given this assumption, any well-behaved program must ensure
that any heap addresses dereferenced by a load or store operation are derived from the return of
heap allocation functions. Consequently, an object allocated within the heap is only reachable in
the future if it has one or more live register or memory values (henceforth values) which draw
provenance from its allocation function’s return value.

Throughout the remainder of this paper, we will use the term pointer to refer to a register or
memory location whose value is directly or indirectly derived from one or more allocation return
values. We use the term points-to set of a location to refer to the set of object allocation function
return values from which the pointer is derived. The points-to set may be thought of as the set
of objects that this pointer may be used to access in the future. A memory location with empty
points-to set is not a pointer.

Since a heap pointer value cannot appear out-of-thin-air, and all pointers must have a provenance
to at least one valid allocation, it is therefore sufficient to track all points-to sets for all pointers to
reconstruct all currently reachable objects.

3.2 A Simple Provenance-Based GC

To show how pointer provenance can construct a sound GC, we present a simple, strawman design
of a provenance-based GC.

Our strawman GC will naively track the points-to set for every register or memory location
(henceforth location) in an execution by constructing a map from each location to the set of heap
object allocations its value is derived from.

To dynamically track the points-to sets of all pointers, we apply a standard dynamic information
flow (DIFT) policy, treating all heap object allocations as sources and using both data-flow and
implicit-flow taint tracking. More specifically, the program begins with each location’s points-to
set empty. Whenever an allocation function returns, we add that allocation to the destination
location’s points-to set. Thereafter, whenever the program modifies a location, the points-to set of
that location will be updated to contain the union of the points-to sets of any pointers it depends
on. We note that for this analysis to be sound, when a location is modified, it must consider not

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

176:8 Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy

only data-flow dependencies, but also any implicit control-flow dependencies as well (e.g., when
branch conditions depend on pointers).

A properly constructed DIFT analysis [Austin and Flanagan 2009; Schwartz et al. 2010] will, by
construction, ensure that the points-to set of each pointer is conservative. That is, if the pointer
could be used to dereference an object in the future, that object will be within that pointer’s
points-to set.

In order to avoid scanning memory to locate pointers, we also maintain a pointers-within set
mapping for each allocated heap object. The pointers-within set will logically contain the memory
location of every pointer within the allocated heap object. The pointers-within set for an object can
be trivially maintained by initializing the set to empty when the object is allocated, then adding a
pointer to the set whenever such a pointer is stored to a location within the object.

Once the collection phase of the GC actually begins, our GC only needs to iterate through the
root set of the program (any locations statically reachable - globals, or reachable from any stack
frames and registers), add these locations to a temporary set called the working set. Then, the GC
will iterate through the working set and for each object in the working set identify all pointers
with the object’s pointers-within set. The GC then adds any objects in the points-to sets of those
pointers to both the working set, and a set of live objects. This process iterates until the live set
does not change. Any object not in the set of live objects at the conclusion of the algorithm may
then be reclaimed.

While this straw-man solution provides a sound GC, tracking provenance metadata through
all operations and through implicit flows will typically be very expensive. Fortunately, most
instructions operate on non-pointers. Also, in the common case, pointers stay within object bounds,
and do not propagate pointer data to other locations through control flow. We leverage these
properties to significantly reduce the amount of provenance tracking required to construct a sound
GC.

3.3 Optimizing Explicit Provenance

The strawman system described earlier requires dynamically inserting a monitor (to propagate
points-to set) on nearly every instruction within the program. This would result in very high
overheads [Clause et al. 2007]. However, we observe that for a significant fraction of instructions,
its runtime monitors do not change their destination operands’ points-to (taint). We use static
analysis to elide these dynamic monitors without losing soundness. This section discusses three
optimizations that elide such redundant monitors: 1) eliding non-pointer tracking, 2) eliding łsafe-
pointerž tracking, and 3) eliding monitors for pointers with the same operands.

3.3.1 Non-Pointer Tracking Elision. Within C programs, the vast majority of computation operates
on data which is not logically derived from pointer values. If we can statically prove that a location
within the program has an empty points-to set, then that location is a non-pointer, and the dynamic
run-time system need not dynamically track the points-to set of that location. This detection can be
accomplished by using static information flow analysis [Banerjee et al. 2019; Sabelfeld and Myers
2003] to compute a sound may points-to set, then eliding dynamic points-to set operations on
locations with an empty may points-to set. For the example in Figure 2, we can trivially elide any
provenance tracking for line 5 since neither of its operands have data-flow from any pointers, in
fact they are constants.

3.3.2 Safe Pointer Tracking Elision. Next, we observe that the vast majority of pointers in C
programs (1) have exactly one object in their points-to sets (singleton set) and (2) have a value
within the allocated memory range of that object (in-bounds). We call these safe pointers.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

Sound Garbage Collection for C using Pointer Provenance 176:9

1 void explicit_flow() {

2 unsigned int n = 10, o = 1000;

3 obj* A = malloc1(n*sizeof(obj)); // PT (A) = {malloc1 }

4 char** B = malloc2(n*sizeof(obj));// PT (B) = {malloc2 }

5 long z = o / n; // elided by E1

6 char* p = A; // elided by E2

7 long d = B - A; // PT (d) = {malloc2,malloc1 }

...

8 for (unsigned int i = 0; i < n * sizeof(obj); i++) {

9 char* q = p + d; // PT (q) = {malloc1,malloc2 }, elided by E2 and line 10

10 *q = p;

11 p = p + 1; // PT (p) = {malloc1 }, elided by E3

12 }

13 }

Fig. 2. Explicit pointer provenance propagation

Safe pointers are handled correctly by value-based GC. Because the pointer value can be used
to dereference only one object, and since the pointer value is in-bounds, we can use its value to
determine its object. For the same reasons, we do not need to track the points-to set of any location
in the program we know is a safe pointer, as we can identify its points-to set from its value at
collection time.

To perform this optimization, we perform a static data-flow analysis to identify which instructions
in a program must define safe pointers. While statically identifying safe pointers precisely in a
program is hard, we construct a sound but imprecise data-flow analysis as follows. A pointer defined
by the assignment from an allocation function is clearly safe. Assignment from a safe pointer is also
safe. The result of any operation is safe, provided it satisfies two conditions: (1) the operation has
only one pointer operand, and that operand is a safe pointer, and (2) the operation is guaranteed to
not modify the pointer to point outside the bounds of the object it references (provably in-bounds).

Leveraging Dereferences. Our static safe-pointer identification methodology is conservative, and
consequently will falsely identify many safe-pointers as non-safe. It is sound, but potentially
introduces unnecessary dynamic checks. To help identify additional sources of safe pointers, we
observe that any time an address is dereferenced, it must be an in-bounds pointer, otherwise the
program would have undefined behavior (violating spatial memory safety). If we can additionally
prove that the dereferenced pointer’s points-to set is a singleton set, then we know the pointer
is a safe pointer. To accomplish this, we construct another static taint analysis, with the goal
of identifying singleton taint sets. To construct such an analysis, we observe that a points-to
set can only propagate from a singleton-set to a non-singleton-set when it depends on multiple
pointers. Therefore, a static analysis can determine pointers that must have singleton points-to
sets by checking if its transitive dependency set contains no operations with multiple pointer
dependencies. We leverage this must-have singleton-points-to sets analysis with our observation
about dereferenced pointers being in-bounds to identify an additional source of safe-pointers:
dereferenced pointers with singleton points-to sets.

3.3.3 Equivalent Points-to Propagation. Our third optimization exploits the fact that many pointer
redefinitions do not change the points-to metadata, and therefore they can be elided. This is trivially
true when the source and destination pointer operands are the same. For the example in Figure 2,
the provenance (points-to) of p on line 11 cannot change. It is possible for arithmetic operation on a
pointer to result in an out-of-bounds value. But in a well-defined (spatially memory safe) program,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

176:10 Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy

it cannot be dereferenced before it is reverted back to be within bounds. We use a static data-flow
analysis that elides the monitor for an instruction when it can be proven that the provenance of its
destination operand is same as its source either directly or transitively through data-flow.

A related optimization is that, if the provenance of a location remains constant within a loop,
our analysis hoists it out of the loop through a loop invariant code motion [Aho et al. 2006].

In summary, we can elide provenance tracking operations when ś
E1 All source operands have empty provenance.
E2 The resultant pointer is safe.
E3 The resultant pointer is assigned to the same identifier as the source operand, directly or via

temporaries.

3.4 Optimizing Implicit Provenance

Although rare, it is both possible and legal for weakly-typed programs to deconstruct and reconstruct
pointers through implicit flow operations, as shown in Figure 3. Traditionally, implicit information
flow DIFT is known to have severe limitations as the majority of locations can get tainted, and doing
so, as proposed in our strawman solution would result in very poor heap object collection rates and
slow provenance tracking performance. However, recall that the goal of a sound provenance-based
GC is not to ensure that no taint is lost, as a security analysis would, but rather to ensure that a
pointer cannot be reconstructed from any provenance data. In order for an address range to be
reconstructed, there must be enough data about the pointer propagated implicitly to definitely
reconstruct it. We observe that for many comparisons, the binary outcome of that comparison
doesn’t propagate enough information to reconstruct the pointer, even if the comparison were
made many times.

We consider two specific comparison cases for a valid in-bounds pointer ptr1:
I1 == or != NULL

I2 == or != another valid in-bounds pointer ptr2

The outcome of the comparison determines the value of ptr1 from two possible partitions ś
S1 = {NULL} or {ptr2} and S2 = the set of all other valid pointers. When in S1 = {NULL}, ptr1 is
an invalid pointer. When in S1 = {ptr2}, ptr1’s (or ptr2’s) value cannot be deduced from their
equality alone but must be explicitly carried in ptr1 (or ptr2). When in S2, we have eliminated
only one possible value and still need sufficient information to determine ptr1’s value. Sufficient
information to recover the pointer must then propagate either via at least one explicit data flow, or
via a series of 264 − 1 equality comparisons, which are unreasonable to do in any practical amount
of time. So, we can safely elide tracking implicit provenance propagation via these constrained
comparisons. For all other comparisons, our sound GC propagates the provenance set through
implicit operations.

1 long implicit_copy(long ptr) {

2 long hidden_ptr = 0;

3 for (int i = 0; i < sizeof(ptr) * 8; i++ {

4 long mask = 1 << i;

5 if (ptr & mask) {

6 hidden_ptr |= mask; // set bit in hidden_ptr

7 }

8 }

9 return(hidden_ptr);

10 }
Fig. 3. Copying a pointer via implicit flow

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

Sound Garbage Collection for C using Pointer Provenance 176:11

The above condition for in-bounds pointers can be guaranteed statically for safe pointers but
must be checked dynamically for unsafe pointers. Prior work onmemory safety has enabled efficient
spatial bounds checking [Nagarakatte et al. 2009; Simpson and Barua 2013], and checks required for
pointer comparisons only incur a fraction of those costs. Note, we cannot assume that the pointers
used in comparison are guaranteed to be in-bounds. They may be out-of-bounds, and later become
in-bounds before being dereferenced.

1 obj* A = malloc1(n*sizeof(obj)); // PT (A) = {malloc1 }

2 char** B = malloc2(n*sizeof(obj));//PT (B) = {malloc2 }

3 unsigned int o = 1000;

4 bool flag = false;

5 long x = A + o; // PT (x) = {malloc1 }

6 long y = B - o; // PT (y) = {malloc2 }

7 char* p = A;

8 if (B != NULL) flag = true; // elided by I1

...

9 if (A == p) flag = true; // elided by I2

...

10 if (x == y) {

11 p = A + 2*o; // PT (p) = PT (A) ∪ PT (x) ∪ PT (y) = {malloc1,malloc2 }

12 }

Fig. 4. Implicit pointer provenance propagation

Consider the example code in Figure 4. After the comparison on line 8, the flag being true

simply indicates that the pointer B is non-NULL which cannot be used to recover a valid pointer
within object B. Similarly after line 9, if flag is true (or false), you still need either (or both) of
A and p to access the object(s). However, line 10 propagates sufficient information to recover a
pointer value. When x == y succeeds, it encodes the distance between objectsA and B, so that even
if all pointers to B are discarded, a pointer to B can still be recovered as in line 11. To handle this
information flow, we add the pointer provenance of line 10’s comparison operands, x and y, to the
control-dependent line 11’s result p.

3.5 Other Points-To Set Propagation Channels

Pointer information can escape the managed address space and leak through external channels,
such as by writing them to the file-system and reading them back. Safely handling such channels
would require elaborate mechanisms to preserve the pointer provenance of such escaping values,
and treat them as always live to exclude from being collected. Such pointer propagation channels
being practically rare, we conservatively disable GC when any value escaping the program’s
address-space has non-empty pointer provenance.

3.6 C Standard for Pointers

The C standard [ISO 2018] places certain restrictions on the possible values of pointers, limiting
acceptable pointer behaviors in correct programs with well defined behaviors on all platforms. The
standard disallows arbitrary manipulations on pointers [ğ6.5.6], but allows arbitrary, implementa-
tion defined, conversions between integer and pointer types [ğ6.3.2.3]. As a result, pointer-typed val-
ues may be in one of three states: (1) in-bounds: well defined in-bounds values, (2) one-past-end:
pointing to a location just past the end of an array, and (3) imp-def: an implementation-defined
value converted from an integer, which is unknown in the general case. We will now show that
Prov-GC can leverage these restrictions to expand the set of safe pointers (ğ3.3.2) to significantly
reduce pointer provenance tracking.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

176:12 Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy

If we ignore the imp-def case for now, then these properties are clearly highly advantageous to
our garbage collector. Because, if all pointer typed values are in-bounds or one past the end of an
array, then all pointer typed values are safe-pointers by definition. Thus, our GC can apply our
optimization discussed in ğ3.3.2 for all pointer type values.

The imp-def case does not present an instance of an in-bounds pointer, as it allows an arbitrary
value to be present in a pointer. Fortunately, however, the lack of definition between conversion
from an integral to pointer-typed value disallows the program from reasoning about any value
stored in that pointer, except under very specific conditions covered shortly. As any pointer in
imp-def instance is not defined by the standard, a program cannot portably rely on it to reconstruct
a pointer later, and thus it cannot be used to legally dereference or construct a pointer in the future,
allowing Prov-GC to conservatively treat it as a safe-pointer.

The one exception we referred to is a defined conversion from a pointer value to an integral
value and back as defined in [ğ7.20.1.4] of the C standard. This conversion applies to intptr_t values.
For these values a void pointer may be converted to an intptr_t type and back. The conversion is
not defined, except when the value stored in intptr_t variable is unchanged. Thus, any manipulated
value of the integer would not have a standard-defined mapping when converted back to a pointer,
and therefore our earlier conclusion for imp-def applies. If the value is unchanged when it is
stored as intptr_t, then when it is converted back to a pointer type, it has to be either in-bounds
or one-past-end.

Note that our example of XOR linked list in Figure 1 complies with the above restrictions because
it only uses intptr_t type to convert pointers into integers, and it recovers the exact value of the
original pointer using XOR operation before converting it back to a valid pointer.

We note that this optimization relies on the programmer writing strictly standard compliant
portable C code. Many implementations of C compilers do define mappings when performing
pointer to integer conversions, and many code-bases do legally (but not portably) rely on these
facets of the compiler [Chisnall et al. 2015; Memarian et al. 2016]. As a result, we provide solutions
with and without this optimization. Programs that strictly adhere to the C standard can take
advantage of this optimization.

3.7 Optimistic Hybrid Analysis

Provenance-based GC relies heavily on dynamic taint tracking [Schwartz et al. 2010], and conse-
quently can incur significant overheads. Fortunately, recent work has shown that dynamic taint
tracking can significantly benefit from a technique known as optimistic hybrid analysis [Banerjee
et al. 2019; Devecsery et al. 2018]. Optimistic hybrid analysis (OHA) is a method of dynamic analysis
optimization based on the insight that optimization should be done for the common case. Traditional
hybrid analyses use a sound static analysis to reason about all possible future executions (and many
impossible ones, due to over-approximation). However, when optimizing a dynamic analysis, the
optimization need only care about the execution that will actually happen. To help approximate this,
OHA uses a predicated static analysis, which takes in a set of assumptions (called likely invariants),
and only guarantees that the static analysis is sound for executions in which these likely invariants
actually remain invariant. Assuming these invariants allows the static analysis to reason much
more effectively about the analyzed program, dramatically improving its ability to reduce dynamic
checks. In this case, it allows the dynamic taint analysis to be aggressively optimized by eliding
taint tracking monitors along paths that do not propagate taints in the predicated static analysis.
A runtime system then checks the likely invariants at runtime, and falls back to a conservative
analysis if the invariants ever fail.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

Sound Garbage Collection for C using Pointer Provenance 176:13

We leverage OHA to improve our provenance-based GC in two ways: (1) we use it to improve our
static empty points-to analysis in ğ3.3, (2) we assume pointers used in comparisons are in-bounds,
reducing the amount of implicit flow tracking done in ğ3.4. For our first use of OHA, we simply apply
the same optimizations found in the Iodine tool [Banerjee et al. 2019] to improve our common-case
identification of empty may-points-to sets. Our second use is slightly more subtle. A conservative
analysis would require that we propagate implicit flow information for any pointer which may
be out-of-bounds during the I1 and I2 implicit flow checks. However, it is very rare for a pointer
used within a comparison to be out-of-bounds, so we assume the invariant that any pointer used in
a comparison is in-bounds. Using this invariant, we can remove any implicit flow taint tracking
that may occur in the common case, so long as we first dynamically verify that all pointers used
in comparisons for branches are in-bounds. If the check fails before the comparison, we soundly
switch to the conservatively optimized analysis that propagates taint through the implicit flow.

4 IMPLEMENTATION

In this section we discuss the implementation of Prov-GC, an instance of Provenance-based Garbage
Collection for C programs. Prov-GC relies on three primary components: (1) a Static Pointer
Provenance Analysis (PPA), (2) a Dynamic Pointer Provenance Tracking (PPT) instrumented on
the target program, and (3) a Provenance-based GC library for use by the target program. Our
static analysis, and dynamic analysis instrumentation is implemented in the LLVM 7.0 compiler
infrastructure [Lattner and Adve 2004], and the Provenance-based GC library is a modification of
the Boehm-Demers-Weiser GC [Boehm 2004] to use provenance metadata for GC. We discuss the
implementation details below.

4.1 Static Pointer Provenance Analyses

The goal of our static analyses is to classify all LLVM static single assignment form [Alpern et al.
1988] values in a program into three partitionsś non-pointers, safe-pointers, and unsafe pointers.
Once this partition is computed, Prov-GC instruments instructions that define safe-pointers and
unsafe-pointers with necessary PPT operations (only pointers-within set tracking for safe pointers,
and both pointers-within and points-to tracking for unsafe), and no tracking is needed for non-
pointers.

The first static PPA analysis we use is an information flow analysis that identifies values that
may be influenced by pointer sources in two waysś a whole-program context-sensitive data-flow
analysis, and a control-flow dependence analysis. To perform this, we construct a whole-program
definition-use graph (DUG) [Aho et al. 2006]. We add a node to the DUG for an instruction that
defines a value and edges to connect definitions to their uses. Our DUG is context-sensitive so
that each function local DUG is replicated per call site, except for recursive calls, and expanded to
create the inter-procedural DUG. This makes the information-flow analysis much more precise
by distinguishing between distinct invocations of the same function. This DUG creation in turn
requires a pointer-analysis to identify indirect information-flows via aliasing memory accesses,
so as to add data-flow edges in the DUG from pointer definitions to its aliasing uses. To this
end, we use Andersen’s-based whole-program context-sensitive flow-insensitive inclusion-based
pointer-analysis [oha]. Once the DUG is created, we assign an empty static points-to set to every
value and initialize the set for values defined by pointer sources, i.e. a heap allocation function (e.g.
malloc). It then traverses the whole-program DUG iteratively, accumulating the union of points-to
sets of values that are used in a definition, until all points-to sets reach a fixed point. At the end of
this data-flow analysis, all values with empty points-to sets are definitely non-pointers, and the
rest are may-be pointers.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

176:14 Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy

Optimistic Hybrid Analysis: Static data-flow analysis is traditionally imprecise (has many
false positives), particularly inter-procedural pointer-analysis with indirect function calls becomes
imprecise as well as unscalable. As a result many non-pointer values will be incorrectly identified
as may-be pointers in a traditional version of our PPA static analysis. We tackle this imprecision
problem using OHA [Devecsery et al. 2018], which assumes likely program invariantsś such as
unreachable code, indirect function callees, and unrealized call contexts, to predicate the DUG
construction. As a result, the analysis becomes more scalable as well as precise, allowing us to
discard many non-pointers and computing more precise points-to sets. We use Iodine [Banerjee
et al. 2019], an OHA optimized taint analysis tool, with minimal changes to track the points-to sets
as taint metadata.

[ğ3.3E1] : OHA optimized data-flow analysis identifies non-pointers much precisely for which
we can elide dynamic tracking.

Safe Pointer Optimizations [ğ3.3E2] : So far, we’ve identified non-pointers; we further classify
pointers into safe and unsafe sets as defined in ğ3.3.2. To do so, we construct a conservative data-flow
analysis, identifying must-be safe-pointer operations as operations which may not pass through
unsafe operations (where safe operations are those defined in ğ3.3.2). We find the following LLVM
instructions to be safe: (1) assignments from values of equivalent size, (2) loads from addresses
which have only had safe pointers stored to them, (3) LLVM GEP (pointer arithmetic) instructions
in which the result is in-bounds of the allocation pointed to by the manipulated pointer, (4) passing
as arguments in function calls, (5) returning pointers from function calls. We consider all other
operations to be unsafe. Once we compute this analysis, we use it to elide points-to set tracking for
any safe pointers.

Equivalent Points-toOptimizations [ğ3.3E3] : The property reasons equivalence of a pointer’s
points-to set when a pointer value is assigned back to same source-level identifier as its source
operand. To map SSA values to their source identifiers, we use LLVM’s source-level debugging
information, and check if values are assigned transitively to the same identifier. Then, we can
elide dynamic tracking operations for all the definitions along the define-use chain. The metadata
creation operation must still be performed for the first definition. When this first definition is inside
a loop, we use the reaching definition from outside the loop that is used by this value to perform
the points-to set tracking instrumentation, so that a later loop invariant code motion optimization
can hoist this one-time metadata creation operation outside the loop. This optimization can benefit
for example when traversing an array inside of a loop.

Implicit Flow Optimizations [ğ3.4 I1,I2] : Finally, the static analysis optimizes implicit prove-
nance tracking. Since statically proving pointer values derived using arbitrary arithmetic must-be
in-bounds is challenging, we assume this property as an OHA invariant and check for it dynamically
as discussed in ğ3.7. When any branch conditional on an equality or non-equality comparison has
any pointers in the comparison, we instrument the spatial safety invariant check for the pointer
operands and then optimistically elide the implicit PPT operations. For any other logical comparison
used in conditional branches, we always instrument all control-dependent value definitions.

4.2 Dynamic Pointer Provenance Tracking

After the static provenance analysis, we instrument the target program for dynamic Pointer
Provenance Tracking (PPT) operations. This entails three types of pointer metadata operations,
and OHA invariant checks.

Root-set Pointers: In an ideal world, Prov-GC would be able to identify all dynamic data in the
root-set, statically, based on the state of the program at GC time, and finding the root set would
require no instrumentation. However, as LLVM operates on an intermediate state, and doesn’t

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

Sound Garbage Collection for C using Pointer Provenance 176:15

expose the mapping of this state to actual dynamic runtime state, Prov-GC requires some runtime
instrumentation to identify the root set. To accomplish this, we instrument the main entry function
to record the locations of all global values which may hold pointers. Every function, at entry, adds
to this record the locations of all local pointer values and removes them before returning. This
ensures that the GC can always locate statically identified safe pointer locations, and we only need
to track the rest.

PointerMetadata Creation: Any location that could not be statically identified as a non-pointer
has two pieces of metadata associated with it- A pointer flag indicating that it has a safe pointer
value, or its dynamic points-to set when it’s unsafe. Themetadata is split into two separate structures-
a shadow memory with two bit taints (00:non-pointer, 01:safe-pointer, 11:unsafe-pointer) and the
points-to set in a splay-tree [Sleator and Tarjan 1985] indexed by the pointer value location. The
shadow memory taints are set when a safe pointer is assigned to a non-pointer or is loaded/stored
from/to memory. When a safe pointer becomes unsafe, the original safe pointer’s dynamic value
is used to retrieve the object id from the GC Allocator Table (discussed later in ğ4.3). When the
resultant unsafe pointer value is not in-bounds this object, the points-to set is created on-demand
in the splay-tree and the shadow memory taint is set to 11.

Pointer Metadata Tracking: The shadow memory taint creations, lookups and transfers are
efficiently handled using LLVM DFSan [dfs] instrumentation. For explicit propagation of unsafe
pointers, the points-to set metadata is computed as union of the sources. Since, most dynamic
points-to sets are likely singleton, the set is represented as a tuple, and the first boolean item
indicates if the second value is the singleton points-to value or a pointer to the points-to set.
For implicit propagation, we use Iodine’s recovery mechanism to create two paths, with and
without the implicit tracking, based on the spatial safety invariant. In the instrumented path, all
control dependent instruction values become unsafe and their points-to set accumulates that of the
comparison operands.

OHA Invariant Checks: In addition to Iodine’s [Banerjee et al. 2019] likely invariants used
for information-flow analysis, our implicit provenance optimizations in ğ3.4 add additional spatial
bounds checks for pointer comparison operands. These checks use the pointer’s dynamic value to
query the lower bound allocation base address and then check if it’s within that allocation’s bound
address.

4.3 Garbage Collection

Prov-GC keeps an allocation table of active allocations with their base and bound addresses, indexed
by their base address. This is exposed to the provenance tracking mechanism for computing the
dynamic points-to and enforcing the spatial safety invariant checks.

Prov-GC uses the dynamic points-to and taint metadata maintained by PPT to compute the
pointers-within set for a given object bounds efficiently. First, the splay tree representation of
the Points-to set facilitates fast range queries, so that given an objects’ bounds, locations within
its bounds with non-empty points-to sets can be efficiently computed. This yields all the unsafe
pointers within an object. Next, the one-to-one mapping of heap locations to their taint bits in
shadow memory enables efficiently searching for and computing offsets of the safe pointers within
the objects’ bounds using bitwise arithmetic.

Garbage collection begins by pushing the root-set of pointers maintained by our root-set tracking
into a set known as the GC root-set. Then it queries the allocation table to locate remaining pointers
within the bounds of the global data segment and the current stack to include in the GC root-set.
Then marking continues by transitively performing the range-queries into the bounds of the objects
in their points-to set. The range-based query techniques quickly locate all pointer values within

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

176:16 Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy

an object’s bounds, much faster than value-based scanning for large objects. This significantly
improves the performance of Prov-GC.

Finally, when Prov-GC collects objects, it needs to additionally remove the metadata associated
with them. The PPT module provides callbacks to Prov-GC to remove the Points-to metadata
through a range-deletion operation, and also resets the shadow memory taints for the objects’
bounds.

4.4 Source Transformations for GC

Running target programs with GC require some source-level changes to communicate between
the collector and the client program. To convey applications’ allocation requests, we replace all
allocation calls e.g. malloc() with corresponding GC_malloc()’s, and remove all free()’s. Some
applications like redis, need to be notified by the GC for special handling of deallocated objects,
for which we use BDW-GC interface to register the application specific finalization code.

5 EVALUATION

Our evaluation shows the following:

• Dynamic Pointer Provenance Tracking incurs reasonably low overheads, even for memory-
intensive benchmarks.

• Prov-GC reduces scanning overheads so that individual GC invocations run faster compared to
BDW-GC.

• Prov-GC is the only sound garbage collector, and yet improves memory reclamation rates over
value-based GC and yields benefits similar to other unsound GC solutions [Rafkind et al. 2009].

5.1 Experimental Setup

We evaluate Prov-GC over several real-world applications and benchmark programs including:

• SPECint 2006 C benchmarks: perlbench, bzip2, gcc, mcf, gobmk, hmmer, sjeng, libquantum,
h264ref [Henning 2006].

• nginx web server [ngi] serving static webpages.

• redis database server [red] performing key-value store, list operations, and geographic search
[til].

• postfix mail server [pos] running performance test generators.

• vim running pattern search and text processing [vim].

We run nginx serving pydoc3 documentation and loading several webpages; redis benchmark-
ing application and performing geo-search [til]; the postfix stress tests; vim challenge solutions
from [vim]; SPEC benchmarks with their reference inputs. Our static analysis is optimized using
optimistic hybrid analysis [Devecsery et al. 2018]. So first, we profile a program over a set of
profiling executions to gather likely invariants which we then use in a predicated static analysis to
construct our final optimized dynamic provenance tracking analysis. Our profiling methodology is
adopted from that used in Iodine [Banerjee et al. 2019], an optimistically optimized taint tracking
tool, where we generate a diverse set of inputs per program by sweeping the programs’ parameter
space. We gather invariants by running on a profile set consisting 400 executions and also on
regression test suites for nginx, redis and vim. All provenance tracking and GC experiments run
on a separate test set of 100 executions. The one-time costs of profiling are far outweighed by the
benefits of optimistic analysis.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

Sound Garbage Collection for C using Pointer Provenance 176:17

Table 1. Benchmark configurations

Program
base bdw-gc

Peak Memory Heap Limit # Collections

perlbench 580 MB 1024 MB 2

bzip2 856 MB 1024 MB 3

gcc† 940 MB 1024 MB ×

mcf 832 MB 1024 MB 3

gobmk 32 MB 32 MB 2

hmmer 60 MB 48 MB 1

sjeng 180 MB 256 MB 2

libquantum 108 MB 128 MB 2

h264ref 68 MB 48 MB 2

nginx∗ 26 MB 16 MB 2

redis∗ 316 MB 512 MB 3

postfix 588 MB 1024 MB 4

vim 244 MB 512 MB 3
†we’re unable to run gcc with bdw-gc, ∗nginx and redis employ their own custom GC allocators

For each target program, we create 3 versions: (1) base without GC, (2) bdw-gc with value-
based BDW-GC and (3) prov-gc with our sound Prov-GC. The base versions use glibc 2.26

allocator, except for nginx and redis which use their own custom allocator wrappers that use
jemalloc 5.1.0. All programs are compiled with clang 7.0 at the -O3 optimization level. For
the bdw-gc versions, we replace calls to allocator functions (e.g. malloc()) with corresponding
GC allocator functions (e.g. GC_malloc()) and omit all deallocations (i.e. free()) and use BDW-GC
version 7.4.16 built without thread support, and with the parallel and incremental collection being
disabled (GC_MARKERS=1 GC_DISABLE_INCREMENTAL). We use different heap limits as listed in Table 1
to trigger sufficient number of GC invocations as the programs exhibit widely varying memory
footprints and programs like nginx are designed for low memory overhead. We were unable to
run gcc using BDW-GC, so we exclude this program from the GC results ğ5.3 onward. Finally,
the prov-gc versions compile with our static analysis that instruments them with the provenance
tracking mechanism, and run with the Prov-GC allocator using the same configurations as above.

All experiments are run on a single core of an Intel Xeon E5-2620 processor with 64GB RAM
running Linux 4.18.

5.2 Provenance Tracking Overheads

To understand how static analysis can significantly reduce the overhead of provenance tracking,
we run Prov-GC configured only to track provenance (i.e. collection disabled), and then selectively
enable optimizations within Prov-GC. Our results can be found in Figure 5: each benchmark shows
4 different overheads normalized to baseś ‘Cons’ uses the sound static analyses described in ğ3.3
and ğ3.4 to optimize provenance tracking; ‘Opt’ further optimizes using optimistic hybrid analysis
as described in ğ3.7; the two ‘+C’ versions then use the specific optimization in ğ3.6 leveraging the
C Standard. We find that the overhead of provenance tracking, including implicit flow tracking,
for our benchmarks is actually quite reasonable, with an average overhead of 16% (11% excluding
gcc). This result is actually quite surprising, as this number includes the cost of implicit flow
tracking, which is known for dramatically increasing taint tracking overhead due to over-tainting.
However, with our combination of static analyses, and optimistic hybrid analyses, we are able to
dramatically reduce this result to only 16%. Note that this solution requires strict adherence to the
C standard, which is stronger than spatial memory safety. While spatial memory safety only checks
that pointers are in-bounds when dereferenced, the standard requires that pointers be in-bounds
always for well-defined behavior. Therefore, the design point that does not assume the C Standard

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

176:18 Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy

7
.7

2
1

.5
9

1
.4

1
1

.1
6

1

2

4

8

16
C

o
n

s
O

p
t

+
C

 C
o

n
s

+
C

 O

p
t

C
o

n
s

O
p

t

+
C

 C
o

n
s

+
C

 O

p
t

C
o

n
s

O
p

t

+
C

 C
o

n
s

+
C

 O

p
t

C
o

n
s

O
p

t

+
C

 C
o

n
s

+
C

 O

p
t

C
o

n
s

O
p

t

+
C

 C
o

n
s

+
C

 O

p
t

C
o

n
s

O
p

t

+
C

 C
o

n
s

+
C

 O

p
t

C
o

n
s

O
p

t

+
C

 C
o

n
s

+
C

 O

p
t

C
o

n
s

O
p

t

+
C

 C
o

n
s

+
C

 O

p
t

C
o

n
s

O
p

t

+
C

 C
o

n
s

+
C

 O

p
t

C
o

n
s

O
p

t

+
C

 C
o

n
s

+
C

 O

p
t

C
o

n
s

O
p

t

+
C

 C
o

n
s

+
C

 O

p
t

C
o

n
s

O
p

t

+
C

 C
o

n
s

+
C

 O

p
t

C
o

n
s

O
p

t

+
C

 C
o

n
s

+
C

 O

p
t

C
o

n
s

O
p

t

+
C

 C
o

n
s

+
C

 O

p
t

perlbench bzip2 gcc mcf gobmk hmmer sjeng libquantum h264ref nginx redis postfix vim MEAN

D
y

n
a

m
ic

P

o
in

te
r

 P
ro

v
e

n
a

n
ce

T
ra

ck
in

g

O

v
e

rh
e

a
d

(l
o

g
 s

ca
le

)

Explicit Implicit

Fig. 5. prov-gc dynamic pointer provenance tracking overheads

Cons: optimizes dynamic provenance tracking using sound static analyses, Opt: uses optimistic hybrid analysis.

+C: optimizes for C Standard-compliant programs as discussed in ğ3.6.

The solid portions of bars represent the overheads of tracking provenance via explicit flows, and the striped portions

represent that for implicit flows. Execution times are normalized to base, i.e. without GC.

is also quite useful in supporting sound GC for legacy non-portable C programs that do not follow
this strict standard. Programs that violate the standard [Chisnall et al. 2015; Memarian et al. 2016]
can still employ sound GC, although incurring a higher overhead of ∼ 60% (37% excluding gcc).
Note that this cost is still comparable to that of Temporal Memory Safety checking solutions (60%
overhead [Zhang et al. 2019]).

gcc is a very large program for which whole program context-sensitive pointer analysis does
not scale, even when predicated using optimistic hybrid analysis. The context-insensitive pointer
analysis for this program results in much less precise may-alias relations. Consequently, non-
pointers can be imprecisely classified as may-be pointers, and safe pointers to be unsafe. This
induces much weaker static optimizations resulting in severe dynamic overheads. The average
overhead of provenance tracking excluding gcc is 11%.

We further study the various sources of our provenance tracking overheads in detail. For explicit
provenance tracking, ∼ 21% of its overhead attributes to the provenance metadata creationś i.e.
when a safe pointer becomes unsafe, we compute the provenance metadata from the value of
the source safe pointer. This substantiates that very few pointer values become tainted as unsafe
and the remainder of the overhead is in tracking their provenance propagation. On the contrary,
for implicit provenance tracking, the overhead is entirely in validating the invariant of spatial
bounds checking for pointer comparisons, as we discussed in ğ3.4, and none of our tested programs
ever violate these checks. The framework overheads of checking the other optimistic invariant
assumptions are negligibly low.

Summary. : Optimistic hybrid analysis combined with our optimizations in ğ3.3 significantly
elides tracking operations for most non-pointers and safe pointers, and tracks only few unsafe
pointers. Pointer provenances do not propagate implicitly via common pointer comparisons as we
reasoned in ğ3.4, and checking for that involves a subset of spatial memory safety check overheads.
The cost of soundness for GC in our Pointer Provenance Tracking is ∼ 16%. This is significantly
lower than the cost of providing Temporal Memory Safety (∼ 60% [Zhang et al. 2019]).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

Sound Garbage Collection for C using Pointer Provenance 176:19

Note that, to the best of our knowledge, these benchmarks do not exercise unsafe pointer
propagations and BDW-GC also works correctly for them. For the programs that exercise unsafe
pointer manipulations, BDW-GCmight break, but Prov-GC still works correctly. However, programs
with pathological pointer manipulations may incur higher overheads with Prov-GC. So, Prov-GC
provides soundness in all cases without hurting performance significantly in the common case.

5.3 GC Overheads

Next, we show how the presence of dynamic pointer provenance information can be used to
achieve an efficient GC solution. To study this effect, we compare the collection times of a single
GC invocation with prov-gc against that of bdw-gc. Since our pointer provenance metadata is
maintained separately outside the GCmanaged heap, the first GC invocation of a programhappens at
the same execution point under consistent configurations. But, since bdw-gc can reclaim unsoundly
and retain imprecisely, the subsequent GC invocations can happen at different program states. So
for equivalent comparison, we only measure collection statistics upon the first GC invocation and
then terminate the program.

0
.8

7
0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
o

ll
e

c
t
io

n
 O

v
e

r
h

e
a

d

Fig. 6. prov-gc reduces overhead of a single GC invocation; collection time is normalized to that of bdw-gc

Figure 6 plots the overhead of a GC invocation with prov-gc normalized to that with bdw-gc.
prov-gc generally improves the GC collection times compared to bdw-gc and completes collecting
∼ 13% faster. While bdw-gc performs expensive value-based scanning over large allocations to
locate potential pointers for marking, prov-gc can locate values with pointer provenance using the
fast range queries over its metadata. This benefit can compound while marking large allocations
with sparsely located pointers.

5.4 GC Effectiveness

We study the effectiveness of provenance-based GC in terms of its memory retention rate, i.e.
the fraction of heap size after and before a GC invocation, once again in our previous single GC
invocation setup. Figure 7 plots the mean memory retention for each program. prov-gc is strictly
more precise than bdw-gc and reclaims as much as 21%more memory in the case of vim, and ∼ 6%

more on average. This benefit varies with the programs’ memory usage patterns, and is low for
programs with a stable working set like mcf, hmmer and sjeng. Prior works on Precise GC [Rafkind
et al. 2009] for C report better reclamation (up to ∼ 70%) benefits on a different set of applications,
although they do not guarantee that the reclaimed objects will not be used in the future.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

176:20 Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy

0
.5

7
0

.5
3

0.0

0.2

0.4

0.6

0.8

1.0

M
e

m
o

ry
 R

e
te

n
ti

o
n

 R
a

te

bdw-gc prov-gc

Fig. 7. prov-gc reclaims more memory per GC invocation

5.5 GC Heap Size Sensitivity

Finally, we look at the end-to-end performance of prov-gc and its space-time trade-off with varying
heap sizes. Figure 8 shows the execution times of prov-gc and bdw-gc normalized to that of base
for four benchmark programs with varying heap size limits on the x-axes; the labeled numbers on
the plots indicate the number of GC invocations per benchmark configuration. Overall, prov-gc
runs slower than bdw-gc and the difference between their execution time plots is attributed to the
dynamic Pointer Provenance Tracking overheads. We observe that more frequent GC invocations
at lower heap size limits lead to higher execution time overheads. This behavior is consistent for
both bdw-gc and prov-gc although interestingly prov-gc’s improved reclamation rate results in
fewer GC invocations for vim at lower heap limits.

Heap Limit (MB)

7
3 2

7
3 2

1

1.1

1.2

1.3

1.4

1.5

16 24 32

nginx

8
5 4

8
5 4

1

1.1

1.2

1.3

1.4

1.5

512 768 1024

postfix

12

5
3

12

5 3

1

1.1

1.2

1.3

1.4

1.5

256 384 512

redis

5 4 3

6
4 3

1.0

1.1

1.2

1.3

1.4

1.5

256 384 512

vim prov-gc

bdw-gc

N
o

rm
a

li
ze

d
 R

u
n

ti
m

e

Fig. 8. prov-gc performance with varying heap limits

5.6 Memory Overheads

To evaluate the additional memory overheads of maintaining the pointer metadata, we measure the
sizes of the two metadata structures- shadow memory, and splay tree, at collection time. Programs
running with Prov-GC have 30.8% more memory footprint on average, with perlbench seeing
the highest overhead of 35.1%. Of this memory overhead, ∼ 27.1% is due to the shadow memory
structure, and ∼ 3.6% is occupied by the splay tree structure.

Tracking pointer provenance metadata incurs some additional memory overheads, and hencemay
not be suitable for applications with large memory footprints in memory constrained environments.
However, the advantages of sound garbage collection are much prominent in contrast.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

Sound Garbage Collection for C using Pointer Provenance 176:21

6 LIMITATIONS

Possible leaks: All GCs are imprecise and can lead to memory leaks. Prov-GC too may suffer
from memory leaks in pathological cases where it finds benign data-flows from pointer values, e.g.
when certain bits of malloc return addresses are checked for bookkeeping purposes. In practice
we do not observe such behavior.

Thread safety: Prov-GC’s implementation currently supports single-threaded programs. Future
work can address this limitation by combining prior work on data-flow analysis for concurrent
programs [Chugh et al. 2008] with our optimistic hybrid analysis techniques to construct a static
pointer provenance analysis for concurrent programs. The C11 standard, by requiring data-race
freedom, allows extending the sequential reasoning of many program analyses to concurrent
programs [Effinger-Dean et al. 2011]. Note that the provenance metadata accesses do not introduce
any new races, and the per-word taint metadata is already covered by the program’s existing
synchronization for shared objects.

7 RELATED WORK

In ğ2, we discussed the limitations of well-known value-based GC for C w.r.t soundness, precision,
and GC performance. Below we relate relevant GC work that address each of these problems to
our work. We also discuss work that relates to the techniques (provenance) we use and the added
benefits of GC (temporal safety).

GC Soundness: Prior work has developed compiler checks to reject C/C++ programs that may
violate soundness of value-based GC. Precise GC solutions check that programs do not store pointer
values into integral types [Henderson 2002; Rafkind et al. 2009] during compilation. Conservative
GC [Boehm 2004] checks its assumptions (e.g., that integers are not converted to heap pointers),
and preserve original pointer values around compiler optimizations of pointer arithmetic [Boehm
1996; Boehm and Chase 1992]. However, these solutions can reject legal C/C++ programs, because
they essentially make pointer manipulations and casting illegal.

GC Efficiency: Traditional mark-sweep collection [Boehm 2004] has been optimized using parallel
marking algorithms [Boehm et al. 1991; Endo et al. 1997], by collecting incrementally [Baker and
Hewitt 1977; Deutsch and Bobrow 1976], by treating generations of objects separately [Ungar 1984;
Yip 1991], or by organizing the heap into regions and performing mark-region GC [Blackburn
and McKinley 2008; Endo et al. 1997]. The fragmentation problem when dealing with ambiguous
pointers in uncooperative environments like C has been addressed by mostly-copying collectors
that move heap objects with no direct references from the root set [Bartlett 1988, 1989; Hosking
2006; Smith and Morrisett 1998; Yip 1991]. These optimizations are orthogonal to our goal to realize
sound GC for C, but they can be integrated into our GC.

GC Precision: Precise GC techniques disambiguate pointers from non-pointers to some degree,
relying on programmer annotations to register live pointers in a shadow stack to be managed by
GC libraries [Edelson 1990; Edelson and Pohl 1991; Schreiner 1996], or with cooperation from the
compilers [Jones et al. 1999]. When compiling high-level languages to C [Henderson et al. 1995;
Peyton Jones et al. 1993; Tarditi et al. 1992], a virtual machine with its own stack and registers
convey necessary type information to the GC, but this complicates code generation and makes
systems fragile and non-portable. As inefficiencies of conservative collection arise mostly due to
their conservative treatment of the root pointers [Hirzel et al. 2002], type-accurate GC [Henderson
2002] accurately locate pointers in a shadow stack through extensive source transformations. Later
systems [Baker et al. 2007; Jung et al. 2006; Rafkind et al. 2009] improve upon this by optimizing
metadata storage, and using static liveness analysis assuming the programs obey several constraints.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

176:22 Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy

Such techniques are primarily motivated to solve the leakage and fragmentation issues by enabling
copying collection, although they incur significant additional framework overheads [Henderson
2002; Rafkind et al. 2009] and their reduced retention and compaction benefits are marginal
[Shahriyar et al. 2014]. But importantly, these systems are more unsound than conservative GC in
assuming that pointer values are only stored into pointer types.

Reference Counting: In contrast to above reachability-based tracing collectors, Reference Count-
ing keeps count of incoming references to each object [Collins 1960] and reclaims an object when
its reference count falls to zero. This is natively supported in many languages like- Objective-C,
Perl, PHP, and Swift, and also in C++ via ‘smart pointers’. This requires the compiler to identify
all pointer updates and account reference counts which can become expensive; so it is deferred
and performed periodically and incrementally [Deutsch and Bobrow 1976]. Reference counting
is inefficient compared to precise GC [Shahriyar et al. 2012, 2013], and moreover cannot collect
cyclic garbage requiring separate cycle collectors [Bacon and Rajan 2001; Lins 1992] or forbidding
cycles altogether [Apple 2013]. Importantly, they inherently rely on type safety and cannot handle
pointer information flowing into non-pointers. Our dynamic pointer provenance could be used to
maintain reference counts to objects, and thereby realize a sound reference-count based GC for C.

Taint and Provenance Analysis. : There is a significant body of work on static and dynamic
information-flow analysis by tracking taints. They have been largely used to ensure that private
data do not leak through untrusted channels [Newsome and Song 2005]. Static analysis [Sabelfeld
and Myers 2003], including optimistic hybrid analysis [Banerjee et al. 2019; Devecsery et al. 2018],
has been used to reduce the overhead of dynamic-taint tracking. While we leverage this body of
work, our static analysis elides runtime monitors by taking advantage of special properties that
is true only in dynamic pointer provenance. Also, unlike classical taint solutions, we show how
implicit-flow tracking is necessary and feasible to track in our context.

Recent work has introduced static pointer provenance for C [Memarian et al. 2019] in order to
improve static alias analysis. This static analysis was used by C compilers to improve compiler
optimizations. In contrast, we discuss dynamic pointer provenance, and optimistic hybrid analysis
to optimize it. Recent work used dynamic pointer provenance for implementing capability checks
[Davis et al. 2019] to improve security. In contrast, we use dynamic pointer provenance to construct
sound GC for weakly typed languages, and optimize that using optimistic hybrid analysis.

Memory Safety. : Temporal memory safety ensures that programs access only allocated memory,
and Spatial memory safety ensure that all accesses are within allocated object bounds. Spatial MS
is ensured by dynamically checking that intermediate pointer arithmetic do not cross valid object
boundaries [Jones and Kelly 1997], and further tracking their intended objects for out-of-bounds
pointers [Ruwase and Lam 2004]. This approach has been improved by allocating memory in pools
and storing object bounds more efficiently [Dhurjati et al. 2003], by restricting memory allocation
sizes and layout to efficiently compute bounds checks [Akritidis et al. 2009], eliminating redundant
checks through static analysis [Bodík et al. 2000; Simpson and Barua 2013], and hybrid solutions
combining static analysis with hardware support [Nagarakatte et al. 2009]. Temporal MS requires
tracking liveness of objects and checking for erroneous uses of uninitialized objects and dangling
pointers (use-after-free, double-free), which has also been heavily optimized using static analysis
[Nagarakatte et al. 2010; Simpson and Barua 2013; Zhang et al. 2019].

Another approach to MS, adopted by Cyclone [Jim et al. 2002], CCured [Necula et al. 2002],
SafeCode [Dhurjati et al. 2003], Checked C [Elliott et al. 2018], and Managed C++ [Microsoft 2004],
is to enforce constraints through a strong type system and then perform sound analysis to check for
memory errors, but the language becomes much restricted than C, making porting programs hard.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

Sound Garbage Collection for C using Pointer Provenance 176:23

A contrasting approach is to combine heuristics, programmer annotations, and unsound analyses
in designing tools [Austin et al. 1994; Ding and Zhong 2002; Dor et al. 1998; Evans 1996; Heine and
Lam 2003; Sparud 1993] that detect most memory usage errors in practice.

Our sound GC guarantees temporal MS for legacy C/C++ code by automatically collecting safe
garbage that cannot be accessed later, and we show this can be done more efficiently.

Dynamic Type Inference. : Types can be inferred from binaries during execution [Caballero and
Lin 2016; Lee et al. 2011], optionally aided with static analysis [Elwazeer et al. 2013], for many
applications including- decompilation, binary rewriting, vulnerability detection, memory forensics,
etc. The typed binary can be executed with dynamic type-safety checks [Burrows et al. 2003]. Our
dynamic tracking infers more than pointer types, as it also tracks the pointer provenance when
type-safety is violated.

8 CONCLUSION

Traditionally, Garbage Collectors have relied only on values to identify pointers in uncooperative
environments like C. C being weakly typed, this is unsound for several legal pointer manipulations.
We show that tracking pointer provenances using Dynamic Information Flow Tracking can soundly
identify all pointer information, even those hidden by their values, and a Provenance-based GC
will therefore safely collect only objects which cannot be accessed later.

To realize a practical Pointer Provenance Tracking solution, we leverage Optimistic Hybrid Anal-
ysis, and identify properties that allow us to elide tracking for most common pointer operations.
Our tool Prov-GC tracks pointer information propagations with only ∼ 16% overhead, even via
implicit control-flows, and also improves the overhead and effectiveness of collection.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their thoughtful comments. This work was supported by
the National Science Foundation under grant SHF-1703931. The views and conclusions contained
in this paper are solely those of the authors.

REFERENCES

. DFSan. Clang DataFlowSanitizer. http://clang.llvm.org/docs/DataFlowSanitizer.html.

. The NGINX web server. https://www.nginx.com.

. Optimistc Hybrid Analysis ś LLVM tools. https://github.com/ddevec/OhaLLVM.

. The Postfix mail server. http://www.postfix.org.

. The Redis database server. https://redis.io.

. The Tile38 geolocation information systems. http://tile38.com.

. VimGolf. https://vimgolf.com.

2004. A Memory-Efficient Doubly Linked List. https://www.linuxjournal.com/article/6828.

Sarita V. Adve and Mark D. Hill. 1990. Weak Ordering - A New Definition. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, Seattle, WA, USA, June 1990, Jean-Loup Baer, Larry Snyder, and James R. Goodman

(Eds.). ACM, 2ś14. https://doi.org/10.1145/325164.325100

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Principles, Techniques, and Tools (2Nd
Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009. Baggy Bounds Checking: An Efficient and

Backwards-Compatible Defense against Out-of-Bounds Errors. In 18th USENIX Security Symposium, Montreal, Canada,
August 10-14, 2009, Proceedings, Fabian Monrose (Ed.). USENIX Association, 51ś66. http://www.usenix.org/events/sec09/

tech/full_papers/akritidis.pdf

Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. 1988. Detecting Equality of Variables in Programs. In Conference
Record of the Fifteenth Annual ACM Symposium on Principles of Programming Languages, San Diego, California, USA,
January 10-13, 1988, Jeanne Ferrante and P. Mager (Eds.). ACM Press, 1ś11. https://doi.org/10.1145/73560.73561

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

http://clang.llvm.org/docs/DataFlowSanitizer.html
https://www.nginx.com
https://github.com/ddevec/OhaLLVM
http://www.postfix.org
https://redis.io
http://tile38.com
https://vimgolf.com
https://www.linuxjournal.com/article/6828
https://doi.org/10.1145/325164.325100
http://www.usenix.org/events/sec09/tech/full_papers/akritidis.pdf
http://www.usenix.org/events/sec09/tech/full_papers/akritidis.pdf
https://doi.org/10.1145/73560.73561

176:24 Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy

Apple. 2013. Transitioning to ARC release notes. https://developer.apple.com/library/archive/releasenotes/ObjectiveC/RN-

TransitioningToARC.

Thomas H. Austin and Cormac Flanagan. 2009. Efficient purely-dynamic information flow analysis. In Proceedings of the
2009 Workshop on Programming Languages and Analysis for Security, PLAS 2009, Dublin, Ireland, 15-21 June, 2009, Stephen
Chong and David A. Naumann (Eds.). ACM, 113ś124. https://doi.org/10.1145/1554339.1554353

Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. 1994. Efficient Detection of All Pointer and Array Access Errors. In

Proceedings of the ACM SIGPLAN’94 Conference on Programming Language Design and Implementation (PLDI), Orlando,
Florida, USA, June 20-24, 1994, Vivek Sarkar, Barbara G. Ryder, and Mary Lou Soffa (Eds.). ACM, 290ś301. https:

//doi.org/10.1145/178243.178446

David F. Bacon, C. Richard Attanasio, Han Bok Lee, V. T. Rajan, and Stephen E. Smith. 2001. Java without the Coffee Breaks:

A Nonintrusive Multiprocessor Garbage Collector. In Proceedings of the 2001 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Snowbird, Utah, USA, June 20-22, 2001, Michael Burke and Mary Lou Soffa

(Eds.). ACM, 92ś103. https://doi.org/10.1145/378795.378819

David F. Bacon and V. T. Rajan. 2001. Concurrent Cycle Collection in Reference Counted Systems. In ECOOP 2001 - Object-
Oriented Programming, 15th European Conference, Budapest, Hungary, June 18-22, 2001, Proceedings (Lecture Notes in
Computer Science, Vol. 2072), Jùrgen Lindskov Knudsen (Ed.). Springer, 207ś235. https://doi.org/10.1007/3-540-45337-7_12

Henry G. Baker and Carl Hewitt. 1977. The incremental garbage collection of processes. SIGART Newsl. 64 (1977), 55ś59.
https://doi.org/10.1145/872736.806932

Jason Baker, Antonio Cunei, Filip Pizlo, and Jan Vitek. 2007. Accurate Garbage Collection in Uncooperative Environments

with Lazy Pointer Stacks. In Compiler Construction, 16th International Conference, CC 2007, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2007, Braga, Portugal, March 26-30, 2007, Proceedings
(Lecture Notes in Computer Science, Vol. 4420), Shriram Krishnamurthi and Martin Odersky (Eds.). Springer, 64ś79.

https://doi.org/10.1007/978-3-540-71229-9_5

Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy. 2019. Iodine: Fast Dynamic Taint Tracking

Using Rollback-free Optimistic Hybrid Analysis. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco,
CA, USA, May 19-23, 2019. IEEE, 490ś504. https://doi.org/10.1109/SP.2019.00043

Joel F. Bartlett. 1988. Compacting Garbage Collection with Ambiguous Roots. 1, 6 (April 1988), 3ś12. https://doi.org/10.

1145/1317224.1317225

Joel F. Bartlett. 1989. Mostly-copying garbage collection picks up generations and C++. Technical Report TN. 12. Western

Research Laboratory, Digital Equipment Corporation, Palo Alto, CA.

Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: probabilistic memory safety for unsafe languages. In Proceedings of
the ACM SIGPLAN 2006 Conference on Programming Language Design and Implementation, Ottawa, Ontario, Canada, June
11-14, 2006, Michael I. Schwartzbach and Thomas Ball (Eds.). ACM, 158ś168. https://doi.org/10.1145/1133981.1134000

Stephen M. Blackburn and Kathryn S. McKinley. 2008. Immix: a mark-region garbage collector with space efficiency, fast

collection, and mutator performance. In Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, Rajiv Gupta and Saman P. Amarasinghe (Eds.). ACM, 22ś32.

https://doi.org/10.1145/1375581.1375586

Rastislav Bodík, Rajiv Gupta, and Vivek Sarkar. 2000. ABCD: eliminating array bounds checks on demand. In Proceedings
of the 2000 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Vancouver, Britith
Columbia, Canada, June 18-21, 2000, Monica S. Lam (Ed.). ACM, 321ś333. https://doi.org/10.1145/349299.349342

Hans-Juergen Boehm. 1993. Space Efficient Conservative Garbage Collection. In Proceedings of the ACM SIGPLAN’93
Conference on Programming Language Design and Implementation (PLDI), Albuquerque, New Mexico, USA, June 23-25,
1993, Robert Cartwright (Ed.). ACM, 197ś206. https://doi.org/10.1145/155090.155109

Hans-Juergen Boehm. 1996. Simple Garbage-Collector-Safety. In Proceedings of the ACM SIGPLAN’96 Conference on
Programming Language Design and Implementation (PLDI), Philadephia, Pennsylvania, USA, May 21-24, 1996, Charles N.
Fischer (Ed.). ACM, 89ś98. https://doi.org/10.1145/231379.231394

Hans-Juergen Boehm and David Chase. 1992. A Proposal for Garbage-Collector-Safe C Compilation. The Journal of C
Language Translation 4, 2 (December 1992), 126ś141. https://www.hboehm.info/gc/papers/boecha.ps.gz

Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. 1991. Mostly Parallel Garbage Collection. In Proceedings of the
ACM SIGPLAN’91 Conference on Programming Language Design and Implementation (PLDI), Toronto, Ontario, Canada,
June 26-28, 1991, David S. Wise (Ed.). ACM, 157ś164. https://doi.org/10.1145/113445.113459

Hans J. Boehm. 2004. Space Efficient Conservative Garbage Collection. SIGPLAN Notices 39, 4 (April 2004), 490ś501.

https://doi.org/10.1145/989393.989442

Michael D. Bond and Kathryn S. McKinley. 2006. Bell: bit-encoding online memory leak detection. In Proceedings of the
12th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS
2006, San Jose, CA, USA, October 21-25, 2006, John Paul Shen and Margaret Martonosi (Eds.). ACM, 61ś72. https:

//doi.org/10.1145/1168857.1168866

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

https://developer.apple.com/library/archive/releasenotes/ObjectiveC/RN-TransitioningToARC
https://developer.apple.com/library/archive/releasenotes/ObjectiveC/RN-TransitioningToARC
https://doi.org/10.1145/1554339.1554353
https://doi.org/10.1145/178243.178446
https://doi.org/10.1145/178243.178446
https://doi.org/10.1145/378795.378819
https://doi.org/10.1007/3-540-45337-7_12
https://doi.org/10.1145/872736.806932
https://doi.org/10.1007/978-3-540-71229-9_5
https://doi.org/10.1109/SP.2019.00043
https://doi.org/10.1145/1317224.1317225
https://doi.org/10.1145/1317224.1317225
https://doi.org/10.1145/1133981.1134000
https://doi.org/10.1145/1375581.1375586
https://doi.org/10.1145/349299.349342
https://doi.org/10.1145/155090.155109
https://doi.org/10.1145/231379.231394
https://www.hboehm.info/gc/papers/boecha.ps.gz
https://doi.org/10.1145/113445.113459
https://doi.org/10.1145/989393.989442
https://doi.org/10.1145/1168857.1168866
https://doi.org/10.1145/1168857.1168866

Sound Garbage Collection for C using Pointer Provenance 176:25

Michael Burrows, Stephen N. Freund, and Janet L. Wiener. 2003. Run-Time Type Checking for Binary Programs. In Compiler
Construction, 12th International Conference, CC 2003, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings (Lecture Notes in Computer Science, Vol. 2622), Görel
Hedin (Ed.). Springer, 90ś105. https://doi.org/10.1007/3-540-36579-6_7

Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. 2012. Undangle: early detection of dangling pointers

in use-after-free and double-free vulnerabilities. In International Symposium on Software Testing and Analysis, ISSTA
2012, Minneapolis, MN, USA, July 15-20, 2012, Mats Per Erik Heimdahl and Zhendong Su (Eds.). ACM, 133ś143. https:

//doi.org/10.1145/2338965.2336769

Juan Caballero and Zhiqiang Lin. 2016. Type Inference on Executables. ACM Comput. Surv. 48, 4 (2016), 65:1ś65:35.

https://doi.org/10.1145/2896499

David Chisnall, Colin Rothwell, Robert N. M. Watson, Jonathan Woodruff, Munraj Vadera, Simon W. Moore, Michael Roe,

Brooks Davis, and Peter G. Neumann. 2015. Beyond the PDP-11: Architectural Support for a Memory-Safe C Abstract

Machine. In Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’15, Istanbul, Turkey, March 14-18, 2015, Özcan Özturk, Kemal Ebcioglu, and Sandhya

Dwarkadas (Eds.). ACM, 117ś130. https://doi.org/10.1145/2694344.2694367

Ravi Chugh, Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2008. Dataflow analysis for concurrent programs using datarace

detection. In Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation,
Tucson, AZ, USA, June 7-13, 2008, Rajiv Gupta and Saman P. Amarasinghe (Eds.). ACM, 316ś326. https://doi.org/10.1145/

1375581.1375620

James A. Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic dynamic taint analysis framework. In Proceedings
of the ACM/SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2007, London, UK, July 9-12, 2007,
David S. Rosenblum and Sebastian G. Elbaum (Eds.). ACM, 196ś206. https://doi.org/10.1145/1273463.1273490

James A. Clause and Alessandro Orso. 2010. LEAKPOINT: pinpointing the causes of memory leaks. In Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8
May 2010, Jeff Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastián Uchitel (Eds.). ACM, 515ś524. https:

//doi.org/10.1145/1806799.1806874

Jacques Cohen. 1981. Garbage Collection of Linked Data Structures. Comput. Surveys 13, 3 (1981), 341ś367. https:

//doi.org/10.1145/356850.356854

George E. Collins. 1960. A method for overlapping and erasure of lists. Commun. ACM 3, 12 (1960), 655ś657. https:

//doi.org/10.1145/367487.367501

Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G. Neumann, Simon W. Moore, John Baldwin, David

Chisnall, James Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joannou, Ben Laurie, A. Theodore Markettos,

J. Edward Maste, Alfredo Mazzinghi, Edward Tomasz Napierala, Robert M. Norton, Michael Roe, Peter Sewell, Stacey D.

Son, and Jonathan Woodruff. 2019. CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege

in the POSIX C Run-time Environment. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, Iris Bahar,
Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck (Eds.). ACM, 379ś393. https://doi.org/10.1145/3297858.3304042

L. Peter Deutsch and Daniel G. Bobrow. 1976. An Efficient, Incremental, Automatic Garbage Collector. Commun. ACM 19, 9

(1976), 522ś526. https://doi.org/10.1145/360336.360345

David Devecsery, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. 2018. Optimistic Hybrid Analysis: Accelerating

Dynamic Analysis through Predicated Static Analysis. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2018, Williamsburg, VA, USA,
March 24-28, 2018, Xipeng Shen, James Tuck, Ricardo Bianchini, and Vivek Sarkar (Eds.). ACM, 348ś362. https:

//doi.org/10.1145/3173162.3177153

Dinakar Dhurjati and Vikram S. Adve. 2006. Efficiently Detecting All Dangling Pointer Uses in Production Servers. In 2006
International Conference on Dependable Systems and Networks (DSN 2006), 25-28 June 2006, Philadelphia, Pennsylvania,
USA, Proceedings. IEEE Computer Society, 269ś280. https://doi.org/10.1109/DSN.2006.31

Dinakar Dhurjati, Sumant Kowshik, Vikram S. Adve, and Chris Lattner. 2003. Memory safety without runtime checks

or garbage collection. In Proceedings of the 2003 Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES’03). San Diego, California, USA, June 11-13, 2003, Frank Mueller and Ulrich Kremer (Eds.). ACM, 69ś80. https:

//doi.org/10.1145/780732.780743

Chen Ding and Yutao Zhong. 2002. Compiler-directed run-time monitoring of program data access. In Proceedings of
The Workshop on Memory Systems Performance (MSP 2002), June 16, 2002 and The International Symposium on Memory
Management (ISMM 2002), June 20-21, 2002, Berlin, Germany, Hans-Juergen Boehm and David Detlefs (Eds.). ACM, 1ś12.

https://doi.org/10.1145/773039.773040

Nurit Dor, Michael Rodeh, and Shmuel Sagiv. 1998. Detecting Memory Errors via Static Pointer Analysis (Preliminary

Experience). In Proceedings of the SIGPLAN/SIGSOFT Workshop on Program Analysis For Software Tools and Engineering,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

https://doi.org/10.1007/3-540-36579-6_7
https://doi.org/10.1145/2338965.2336769
https://doi.org/10.1145/2338965.2336769
https://doi.org/10.1145/2896499
https://doi.org/10.1145/2694344.2694367
https://doi.org/10.1145 / 1375581.1375620
https://doi.org/10.1145 / 1375581.1375620
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1145/1806799.1806874
https://doi.org/10.1145/1806799.1806874
https://doi.org/10.1145/356850.356854
https://doi.org/10.1145/356850.356854
https://doi.org/10.1145/367487.367501
https://doi.org/10.1145/367487.367501
https://doi.org/10.1145/3297858.3304042
https://doi.org/10.1145/360336.360345
https://doi.org/10.1145/3173162.3177153
https://doi.org/10.1145/3173162.3177153
https://doi.org/10.1109/DSN.2006.31
https://doi.org/10.1145/780732.780743
https://doi.org/10.1145/780732.780743
https://doi.org/10.1145/773039.773040

176:26 Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy

PASTE ’98, Montreal, Canada, June 16, 1998, Thomas Ball, Frank Tip, and A. Michael Berman (Eds.). ACM, 27ś34.

https://doi.org/10.1145/277631.277637

Daniel Ross Edelson. 1990. Dynamic storage reclamation in C++. Technical Report UCSC-CRL-90-19. University of California
at Santa Cruz.

Daniel R. Edelson and Ira Pohl. 1991. A Copying Collector for C++. In Proceedings of the C++ Conference. Washington, D.C.,
USA, April 1991. USENIX Association, 85ś102.

Laura Effinger-Dean, Hans-Juergen Boehm, Dhruva R. Chakrabarti, and Pramod G. Joisha. 2011. Extended sequential

reasoning for data-race-free programs. In Proceedings of the 2011 ACM SIGPLAN workshop on Memory Systems Performance
and Correctness: held in conjunction with PLDI ’11, San Jose, CA, USA, June 5, 2011, Jeffrey S. Vetter, Madanlal Musuvathi,

and Xipeng Shen (Eds.). ACM, 22ś29. https://doi.org/10.1145/1988915.1988922

Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David Tarditi. 2018. Checked C: Making C Safe by Extension. In

2018 IEEE Cybersecurity Development, SecDev 2018, Cambridge, MA, USA, September 30 - October 2, 2018. IEEE Computer

Society, 53ś60. https://doi.org/10.1109/SecDev.2018.00015

Khaled Elwazeer, Kapil Anand, Aparna Kotha, Matthew Smithson, and Rajeev Barua. 2013. Scalable variable and data

type detection in a binary rewriter. In ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan (Eds.). ACM, 51ś60. https:

//doi.org/10.1145/2491956.2462165

Toshio Endo, Kenjiro Taura, and Akinori Yonezawa. 1997. A Scalable Mark-Sweep Garbage Collector on Large-Scale

Shared-Memory Machines. In Proceedings of the ACM/IEEE Conference on Supercomputing, SC 1997, November 15-21, 1997,
San Jose, CA, USA. ACM, 48. https://doi.org/10.1145/509593.509641

David E. Evans. 1996. Static Detection of Dynamic Memory Errors. In Proceedings of the ACM SIGPLAN’96 Conference on
Programming Language Design and Implementation (PLDI), Philadephia, Pennsylvania, USA, May 21-24, 1996, Charles N.
Fischer (Ed.). ACM, 44ś53. https://doi.org/10.1145/231379.231389

Reed Hastings and Bob Joyce. 1991. Purify: Fast detection of memory leaks and access errors. In In Proc. of the Winter 1992
USENIX Conference. 125ś138.

Matthias Hauswirth and Trishul M. Chilimbi. 2004. Low-overhead memory leak detection using adaptive statistical profiling.

In Proceedings of the 11th International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2004, Boston, MA, USA, October 7-13, 2004, Shubu Mukherjee and Kathryn S. McKinley (Eds.). ACM,

156ś164. https://doi.org/10.1145/1024393.1024412

David L. Heine and Monica S. Lam. 2003. A practical flow-sensitive and context-sensitive C and C++ memory leak detector.

In Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation 2003, San Diego,
California, USA, June 9-11, 2003, Ron Cytron and Rajiv Gupta (Eds.). ACM, 168ś181. https://doi.org/10.1145/781131.781150

Fergus Henderson. 2002. Accurate garbage collection in an uncooperative environment. In Proceedings of The Workshop
on Memory Systems Performance (MSP 2002), June 16, 2002 and The International Symposium on Memory Management
(ISMM 2002), June 20-21, 2002, Berlin, Germany, Hans-Juergen Boehm and David Detlefs (Eds.). ACM, 256ś263. https:

//doi.org/10.1145/773039.512449

Fergus Henderson, Zoltan Somogyi, and Thomas Conway. 1995. Compiling logic programs to C using GNU C as a portable

assembler. In Proceedings of The ILPSâĂŹ95 Postconference Workshop on Sequential Implementation Technologies for Logic
Programming Languages, Portland, Oregon.

John L. Henning. 2006. SPEC CPU2006 benchmark descriptions. SIGARCH Comput. Archit. News 34, 4 (2006), 1ś17.

https://doi.org/10.1145/1186736.1186737

Martin Hirzel, Amer Diwan, and Johannes Henkel. 2002. On the usefulness of type and liveness accuracy for garbage

collection and leak detection. ACMTrans. Program. Lang. Syst. 24, 6 (2002), 593ś624. https://doi.org/10.1145/586088.586089
Antony L. Hosking. 2006. Portable, mostly-concurrent, mostly-copying garbage collection formulti-processors. In Proceedings

of the 5th International Symposium on Memory Management, ISMM 2006, Ottawa, Ontario, Canada, June 10-11, 2006, Erez
Petrank and J. Eliot B. Moss (Eds.). ACM, 40ś51. https://doi.org/10.1145/1133956.1133963

ISO. 2018. Programming languages Ð C (ISO/IEC 9899:201x). Technical Report N2310. International Organization for

Standardization, Geneva, Switzerland. http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2310.pdf

Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James Cheney, and Yanling Wang. 2002. Cyclone: A Safe

Dialect of C. In Proceedings of the General Track: 2002 USENIX Annual Technical Conference, June 10-15, 2002, Monterey,
California, USA, Carla Schlatter Ellis (Ed.). USENIX, 275ś288. http://www.usenix.org/publications/library/proceedings/

usenix02/jim.html

Richard W. M. Jones and Paul H. J. Kelly. 1997. Backwards-Compatible Bounds Checking for Arrays and Pointers in C

Programs. In Proceedings of the Third International Workshop on Automated Debugging, AADEBUG 1997, Linköping,
Sweden, May 26-27, 1997 (Linköping Electronic Articles in Computer and Information Science, Vol. 2), Mariam Kamkar (Ed.).

Linköping University Electronic Press, 13ś26. http://www.ep.liu.se/ecp/article.asp?issue=001&article=002

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

https://doi.org/10.1145/277631.277637
https://doi.org/10.1145/1988915.1988922
https://doi.org/10.1109/SecDev.2018.00015
https://doi.org/10.1145/2491956.2462165
https://doi.org/10.1145/2491956.2462165
https://doi.org/10.1145/509593.509641
https://doi.org/10.1145/231379.231389
https://doi.org/10.1145/1024393.1024412
https://doi.org/10.1145/781131.781150
https://doi.org/10.1145/773039.512449
https://doi.org/10.1145/773039.512449
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/586088.586089
https://doi.org/10.1145/1133956.1133963
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2310.pdf
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
http://www.ep.liu.se/ecp/article.asp?issue=001&article=002

Sound Garbage Collection for C using Pointer Provenance 176:27

Simon L. Peyton Jones, Norman Ramsey, and Fermin Reig. 1999. Cś: A Portable Assembly Language that Supports Garbage

Collection. In Principles and Practice of Declarative Programming, International Conference PPDP’99, Paris, France, September
29 - October 1, 1999, Proceedings (Lecture Notes in Computer Science, Vol. 1702), Gopalan Nadathur (Ed.). Springer, 1ś28.

https://doi.org/10.1007/10704567_1

Maria Jump and Kathryn S. McKinley. 2007. Cork: dynamic memory leak detection for garbage-collected languages. In

Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2007, Nice, France,
January 17-19, 2007, Martin Hofmann and Matthias Felleisen (Eds.). ACM, 31ś38. https://doi.org/10.1145/1190216.1190224

Dong-Heon Jung, Sung-Hwan Bae, Jaemok Lee, Soo-Mook Moon, and Jong Kuk Park. 2006. Supporting precise garbage

collection in Java Bytecode-to-C ahead-of-time compiler for embedded systems. In Proceedings of the 2006 International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems, CASES 2006, Seoul, Korea, October 22-25, 2006,
Seongsoo Hong, Wayne H. Wolf, Krisztián Flautner, and Taewhan Kim (Eds.). ACM, 35ś42. https://doi.org/10.1145/

1176760.1176767

Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.

In 2nd IEEE / ACM International Symposium on Code Generation and Optimization (CGO 2004), 20-24 March 2004, San Jose,
CA, USA. IEEE Computer Society, 75ś88. https://doi.org/10.1109/CGO.2004.1281665

JongHyup Lee, Thanassis Avgerinos, and David Brumley. 2011. TIE: Principled Reverse Engineering of Types in Binary

Programs. In Proceedings of the Network and Distributed System Security Symposium, NDSS 2011, San Diego, California,
USA, 6th February - 9th February 2011. The Internet Society. https://www.ndss-symposium.org/ndss2011/tie-principled-

reverse-engineering-of-types-in-binary-programs

Rafael Dueire Lins. 1992. Cyclic Reference Counting with Lazy Mark-Scan. Inform. Process. Lett. 44, 4 (1992), 215ś220.
https://doi.org/10.1016/0020-0190(92)90088-D

Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson, Robert N. M. Watson, and Peter

Sewell. 2019. Exploring C semantics and pointer provenance. Proceedings of the ACM on Programming Languages 3,
POPL (2019), 67:1ś67:32. https://doi.org/10.1145/3290380

Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David Chisnall, Robert N. M. Watson, and Peter

Sewell. 2016. Into the depths of C: elaborating the de facto standards. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, Chandra
Krintz and Emery Berger (Eds.). ACM, 1ś15. https://doi.org/10.1145/2908080.2908081

Microsoft. 2004. Managed Extensions for C++. https://docs.microsoft.com/en-us/cpp/build/reference/microsoft-extensions-

to-c-and-cpp.

Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic. 2009. SoftBound: highly compatible and

complete spatial memory safety for c. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, Michael Hind and Amer Diwan (Eds.). ACM,

245ś258. https://doi.org/10.1145/1542476.1542504

Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic. 2010. CETS: compiler enforced temporal

safety for C. In Proceedings of the 9th International Symposium on Memory Management, ISMM 2010, Toronto, Ontario,
Canada, June 5-6, 2010, Jan Vitek and Doug Lea (Eds.). ACM, 31ś40. https://doi.org/10.1145/1806651.1806657

George C. Necula, Scott McPeak, and Westley Weimer. 2002. CCured: type-safe retrofitting of legacy code. In Conference
Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland, OR, USA,
January 16-18, 2002, John Launchbury and John C. Mitchell (Eds.). ACM, 128ś139. https://doi.org/10.1145/503272.503286

James Newsome and Dawn Xiaodong Song. 2005. Dynamic Taint Analysis for Automatic Detection, Analysis, and

SignatureGeneration of Exploits on Commodity Software. In Proceedings of the Network and Distributed System Security
Symposium, NDSS 2005, San Diego, California, USA. The Internet Society. https://www.ndss-symposium.org/ndss2005/

dynamic-taint-analysis-automatic-detection-analysis-and-signaturegeneration-exploits-commodity/

Gene Novark, Emery D. Berger, and Benjamin G. Zorn. 2009. Efficiently and precisely locating memory leaks and bloat. In

Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009, Dublin,
Ireland, June 15-21, 2009, Michael Hind and Amer Diwan (Eds.). ACM, 397ś407. https://doi.org/10.1145/1542476.1542521

Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof Fetzer. 2018. Intel MPX Explained: A

Cross-layer Analysis of the Intel MPX System Stack. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 2, 2 (2018), 28:1ś28:30. https://doi.org/10.1145/3224423

Simon L. Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and Phil Wadler. 1993. The Glasgow Haskell Compiler: a

technical overview. In Proceedings of UK Joint Framework for Information Technology (JFIT) Technical Conference, Keele.
249ś257.

Jon Rafkind, Adam Wick, John Regehr, and Matthew Flatt. 2009. Precise garbage collection for C. In Proceedings of the 8th
International Symposium on Memory Management, ISMM 2009, Dublin, Ireland, June 19-20, 2009, Hillel Kolodner and Guy

L. Steele Jr. (Eds.). ACM, 39ś48. https://doi.org/10.1145/1542431.1542438

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

https://doi.org/10.1007/10704567_1
https://doi.org/10.1145/1190216.1190224
https://doi.org/10.1145/1176760.1176767
https://doi.org/10.1145/1176760.1176767
https://doi.org/10.1109/CGO.2004.1281665
https://www.ndss-symposium.org/ndss2011/tie-principled-reverse-engineering-of-types-in-binary-programs
https://www.ndss-symposium.org/ndss2011/tie-principled-reverse-engineering-of-types-in-binary-programs
https://doi.org/10.1016/0020-0190(92)90088-D
https://doi.org/10.1145/3290380
https://doi.org/10.1145/2908080.2908081
https://docs.microsoft.com/en-us/cpp/build/reference/microsoft-extensions-to-c-and-cpp
https://docs.microsoft.com/en-us/cpp/build/reference/microsoft-extensions-to-c-and-cpp
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/503272.503286
https://www.ndss-symposium.org/ndss2005/dynamic-taint-analysis-automatic-detection-analysis-and-signaturegeneration-exploits-commodity/
https://www.ndss-symposium.org/ndss2005/dynamic-taint-analysis-automatic-detection-analysis-and-signaturegeneration-exploits-commodity/
https://doi.org/10.1145/1542476.1542521
https://doi.org/10.1145/3224423
https://doi.org/10.1145/1542431.1542438

176:28 Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy

Masoomeh Rudafshani and Paul A. S. Ward. 2017. LeakSpot: detection and diagnosis of memory leaks in JavaScript

applications. Software: Practice and Experience 47, 1 (2017), 97ś123. https://doi.org/10.1002/spe.2406

Olatunji Ruwase and Monica S. Lam. 2004. A Practical Dynamic Buffer Overflow Detector. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2004, San Diego, California, USA. The Internet Society. https://www.ndss-

symposium.org/ndss2004/practical-dynamic-buffer-overflow-detector/

Andrei Sabelfeld and Andrew C. Myers. 2003. Language-based information-flow security. IEEE Journal on Selected Areas in
Communications 21, 1 (2003), 5ś19. https://doi.org/10.1109/JSAC.2002.806121

Wolfgang Schreiner. 1996. RT++ - higher order threads for C++, tutorial and reference manual. Technical Report 96-9.

RISC-Linz. https://www3.risc.jku.at/software/rt++/

Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You Ever Wanted to Know about Dynamic

Taint Analysis and Forward Symbolic Execution (but Might Have Been Afraid to Ask). In 31st IEEE Symposium on
Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA. IEEE Computer Society, 317ś331.

https://doi.org/10.1109/SP.2010.26

Rifat Shahriyar, Stephen M. Blackburn, and Daniel Frampton. 2012. Down for the count? Getting reference counting back

in the ring. In International Symposium on Memory Management, ISMM ’12, Beijing, China, June 15-16, 2012, Martin T.

Vechev and Kathryn S. McKinley (Eds.). ACM, 73ś84. https://doi.org/10.1145/2258996.2259008

Rifat Shahriyar, Stephen M. Blackburn, and Kathryn S. McKinley. 2014. Fast conservative garbage collection. In Proceedings
of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA
2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014, Andrew P. Black and Todd D. Millstein (Eds.). ACM,

121ś139. https://doi.org/10.1145/2660193.2660198

Rifat Shahriyar, Stephen M. Blackburn, Xi Yang, and Kathryn S. McKinley. 2013. Taking off the gloves with reference

counting Immix. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, Antony L.
Hosking, Patrick Th. Eugster, and Cristina V. Lopes (Eds.). ACM, 93ś110. https://doi.org/10.1145/2509136.2509527

Matthew S. Simpson and Rajeev Barua. 2013. MemSafe: ensuring the spatial and temporal memory safety of C at runtime.

Software: Practice and Experience 43, 1 (2013), 93ś128. https://doi.org/10.1002/spe.2105

Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Self-Adjusting Binary Search Trees. J. ACM 32, 3 (1985), 652ś686.

https://doi.org/10.1145/3828.3835

Frederick Smith and J. Gregory Morrisett. 1998. Comparing Mostly-Copying and Mark-Sweep Conservative Collection. In

International Symposium on Memory Management, ISMM ’98, Vancouver, British Columbia, Canada, 17-19 October, 1998,
Conference Proceedings, Simon L. Peyton Jones and Richard E. Jones (Eds.). ACM, 68ś78. https://doi.org/10.1145/286860.

286868

Jan Sparud. 1993. Fixing Some Space Leaks without a Garbage Collector. In Proceedings of the conference on Functional
programming languages and computer architecture, FPCA 1993, Copenhagen, Denmark, June 9-11, 1993, John Williams

(Ed.). ACM, 117ś124. https://doi.org/10.1145/165180.165196

David Tarditi, Peter Lee, and Anurag Acharya. 1992. No Assembly Required: Compiling Standard ML to C. LOPLAS 1, 2
(1992), 161ś177. https://doi.org/10.1145/151333.151343

David M. Ungar. 1984. Generation Scavenging: A Non-Disruptive High Performance Storage Reclamation Algorithm.

In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments, Pittsburgh, Pennsylvania, USA, April 23-25, 1984, William E. Riddle and Peter B. Henderson (Eds.). ACM,

157ś167. https://doi.org/10.1145/800020.808261

John Vilk and Emery D. Berger. 2018. BLeak: automatically debugging memory leaks in web applications. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA,
USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 15ś29. https://doi.org/10.1145/3192366.3192376

Guoqing (Harry) Xu, Michael D. Bond, Feng Qin, and Atanas Rountev. 2011. LeakChaser: helping programmers narrow

down causes of memory leaks. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 270ś282.

https://doi.org/10.1145/1993498.1993530

G. May Yip. 1991. Incremental, generational mostly-copying garbage collection in uncooperative environment. Technical
Report 91/8. Western Research Laboratory, Digital Equipment Corporation, Palo Alto, CA. https://www.hpl.hp.com/

techreports/Compaq-DEC/WRL-91-8.pdf

Tong Zhang, Dongyoon Lee, and Changhee Jung. 2019. BOGO: Buy Spatial Memory Safety, Get Temporal Memory Safety

(Almost) Free. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, Iris Bahar, Maurice Herlihy,

Emmett Witchel, and Alvin R. Lebeck (Eds.). ACM, 631ś644. https://doi.org/10.1145/3297858.3304017

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 176. Publication date: November 2020.

https://doi.org/10.1002/spe.2406
https://www.ndss-symposium.org/ndss2004/practical-dynamic-buffer-overflow-detector/
https://www.ndss-symposium.org/ndss2004/practical-dynamic-buffer-overflow-detector/
https://doi.org/10.1109/JSAC.2002.806121
https://www3.risc.jku.at/software/rt++/
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1145/2258996.2259008
https://doi.org/10.1145/2660193.2660198
https://doi.org/10.1145/2509136.2509527
https://doi.org/10.1002/spe.2105
https://doi.org/10.1145/3828.3835
https://doi.org/10.1145/286860.286868
https://doi.org/10.1145/286860.286868
https://doi.org/10.1145/165180.165196
https://doi.org/10.1145/151333.151343
https://doi.org/10.1145/800020.808261
https://doi.org/10.1145/3192366.3192376
https://doi.org/10.1145/1993498.1993530
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-91-8.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-91-8.pdf
https://doi.org/10.1145/3297858.3304017

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Why GC for C/C++?
	2.2 GC and its Pointer Data Requirements
	2.3 Value-Based GCs for C/C++ are Unsound
	2.4 Need for Sound GCs

	3 Provenance-Based Garbage Collection
	3.1 The Soundness of Provenance-Based GC
	3.2 A Simple Provenance-Based GC
	3.3 Optimizing Explicit Provenance
	3.4 Optimizing Implicit Provenance
	3.5 Other Points-To Set Propagation Channels
	3.6 C Standard for Pointers
	3.7 Optimistic Hybrid Analysis

	4 Implementation
	4.1 Static Pointer Provenance Analyses
	4.2 Dynamic Pointer Provenance Tracking
	4.3 Garbage Collection
	4.4 Source Transformations for GC

	5 Evaluation
	5.1 Experimental Setup
	5.2 Provenance Tracking Overheads
	5.3 GC Overheads
	5.4 GC Effectiveness
	5.5 GC Heap Size Sensitivity
	5.6 Memory Overheads

	6 Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

