
184

Incremental Predicate Analysis for Regression Verification

QIANSHAN YU, Tsinghua University, China, Key Laboratory for Information System Security, MoE, China,

and Beijing National Research Center for Information Science and Technology, China

FEI HE∗, Tsinghua University, China, Key Laboratory for Information System Security, MoE, China, and Bei-

jing National Research Center for Information Science and Technology, China

BOW-YAW WANG, Academia Sinica, Taiwan

Software products are evolving during their life cycles. Ideally, every revision need be formally verified to

ensure software quality. Yet repeated formal verification requires significant computing resources. Verifying

each and every revision can be very challenging. It is desirable to ameliorate regression verification for

practical purposes. In this paper, we regard predicate analysis as a process of assertion annotation. Assertion

annotations can be used as a certificate for the verification results. It is thus a waste of resources to throw them

away after each verification. We propose to reuse the previously-yielded assertion annotation in regression

verification. A light-weight impact-analysis technique is proposed to analyze the reusability of assertions.

A novel assertion strengthening technique is furthermore developed to improve reusability of annotation.

With these techniques, we present an incremental predicate analysis technique for regression verification.

Correctness of our incremental technique is formally proved. We performed comprehensive experiments on

revisions of Linux kernel device drivers. Our technique outperforms the state-of-the-art program verification

tool CPAchecker by getting 2.8x speedup in total time and solving additional 393 tasks.

CCS Concepts: · Software and its engineering→ Formal software verification; · Theory of computa-

tion→ Logic and verification.

Additional Key Words and Phrases: Software verification, predicate analysis, change impact analysis, incre-

mental verification

ACM Reference Format:

Qianshan Yu, Fei He, and Bow-Yaw Wang. 2020. Incremental Predicate Analysis for Regression Verification.

Proc. ACM Program. Lang. 4, OOPSLA, Article 184 (November 2020), 25 pages. https://doi.org/10.1145/3428252

1 INTRODUCTION

Because of performance improvement, new features, or even bug fixes, software is constantly
evolving in its life cycles [He et al. 2016; Lehman and Belady 1985; Lehman et al. 1998, 1997;
Turski 1996]. Each software revision is enriched with new features or better performance; it
may also introduce unexpected behaviors. In order to ensure its quality, software ideally need be
formally verified for each revision [D’Silva et al. 2008]. Yet software verification requires significant
computing resources. Regression verification is, in the worst case (thinking of verifying from

∗Corresponding Author

Authors’ addresses: Qianshan Yu, yqs17@mails.tsinghua.edu.cn, School of Software, Tsinghua University, China, Key

Laboratory for Information System Security, MoE, China, Beijing National Research Center for Information Science and

Technology, China; Fei He, hefei@tsinghua.edu.cn, School of Software, Tsinghua University, China, Key Laboratory for

Information System Security, MoE, China, Beijing National Research Center for Information Science and Technology, China;

Bow-Yaw Wang, Academia Sinica, Taiwan, bywang@iis.sinaca.edu.tw.

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART184

https://doi.org/10.1145/3428252

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3428252
https://doi.org/10.1145/3428252
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3428252&domain=pdf&date_stamp=2020-11-13

184:2 Qianshan Yu, Fei He, and Bow-Yaw Wang

scratch), as complicated as the formal verification. Andronick et al. [2012] reported that the effort
of verifying each program revision is proportional (a factor of approximately 3-5) to the effort
of changing the program. Thus, astronomical resources will be needed to verify every software
revision during its life cycle.
It is, however, not hard to tell the difference of conventional software verification from those

in regression. Each revised software is based on a previous version. If the old version has been
verified, it does not appear to be economical to verify the revision from scratch again. Intuitively,
verification information about the old version can be reused if it is unchanged in the verification of
the new version. To exploit the resources invested in verifying prior versions of software, techniques
have been developed to utilize intermediate verification results [Beyer et al. 2013; Henzinger et al.
2003a; Sery et al. 2012; Yang et al. 2009]. Results of expensive constraint solving have also been
stored for regression verification [Aquino et al. 2015; Jia et al. 2015; Visser et al. 2012]. Although
these techniques reduce the efforts of regression verification effectively, they are specialized for
underlying verification algorithms. It is not entirely clear how the information of prior verification
can be reused more generally.

It is perhaps useful to view regression verification in the abstract interpretation framework [Cousot
and Cousot 1977]. In abstract interpretation, program behaviors are over-approximated by abstract
states in abstract domains. More concretely, an abstract state is computed at a program location of
the control flow graph to represent all possible program behaviors at the location. To verify safety
properties, it suffices to perform reachability analysis in proper abstract domains to demonstrate
that bad abstract states cannot be reached. Note that all program locations are annotated with
abstract states after verification.

During regression verification, the control flow graph of the revised program changes from the
original program. Abstract states computed for the old version may no longer be valid for the
revision. If the revision does not differ from the original significantly, not all abstract states need be
recomputed. It suffices to analyze the differences, identify invalid abstract states, and re-compute
such abstract states for regression verification. In other words, the annotated control flow graph
for the revision can be obtained by revising the annotated control flow graph for the original. One
need not perform reachability analysis from scratch in regression verification.

The view of regression verification in abstract interpretation is perhaps intuitive, but details can
vary from different abstract domains. In this work, we develop an efficient regression verification
technique for predicate analysis as an example. Predicate analysis is a well-established software
verification technique [Ball et al. 2001; Das et al. 1999; Graf and Saidi 1997]. It has been combined
with other techniques such as counterexample-guided abstraction refinement (CEGAR) [Clarke
et al. 2000], lazy abstraction [Henzinger et al. 2002] and interpolation [Christ et al. 2012; McMillan
2006] in industrial software verification tools SLAM [Ball and Rajamani 2001], BLAST [Henzinger
et al. 2003b] and CPAchecker [Beyer and Keremoglu 2011] among others.

In predicate analysis, abstract states are represented by assertions over a given set of predicates.
After verifying a program, every program location in its control flow graph is annotated with
assertions over the predicates. To demonstrate our ideas, we develop techniques to analyze program
text differences, identify invalid assertions syntactically, and recompute invalid assertions in the
abstract predicate domain for revised programs. Instead of computing assertions at each program
location from scratch, our technique simply keeps existing assertions and computes new ones
when necessary in regression verification. Observe that our new technique only requires difference
analysis and employs the classical reachability analysis algorithm. It differs from standard abstract
interpretation algorithms very slightly and is hence compatible with other techniques almost for
free.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

Incremental Predicate Analysis for Regression Verification 184:3

For evaluation, we implemented our regression verification technique on top of CPAchecker
and performed comprehensive experiments on real-world revisions of Linux kernel device drivers.
Compared to existing techniques, our new technique solves 393 more tasks and has the speedup of
2.8 among solved ones. To summarize, we have the following contributions:

• We reformulate predicate analysis as assertion annotation and use assertion annotations as
intermediate results for regression verification;
• We propose a light-weight impact analysis and strengthening techniques for reusing asser-
tions in predicate analysis;
• We propose an incremental predicate analysis technique for evolving programs and prove its
soundness;
• We implement our algorithms on top of CPAchecker and report extensive experiments on
revisions of Linux kernel drivers.

The remainder of this paper is organized as follows. Section 2 introduces necessary preliminar-
ies. Section 3 explains the relation between assertion annotation and predicate analysis. Section 4
presents our incremental predicate analysis technique. Section 5 reports evaluation results on our
approach. Section 6 discusses related work and Section 7 concludes this paper.

2 PRELIMINARIES

2.1 Program and Control-Flow Automata

We will represent programs by control-flow automata (CFA) [Beyer et al. 2007; Henzinger et al.
2002]. Given a program 𝑃 with a set of operations 𝑂𝑝𝑠 , the CFA of 𝑃 is a triple (𝐿, 𝑙0,𝐺) where 𝐿 is
the set of locations, 𝑙0 ∈ 𝐿 is the initial location, and 𝐺 ⊆ 𝐿 ×𝑂𝑝𝑠 × 𝐿 is the set of edges. Moreover,

𝑙𝑒𝑟𝑟 ∈ 𝐿 designates the error location. A path on 𝑃 is a sequence 𝑙0
𝑜𝑝0
−−→ 𝑙1

𝑜𝑝1
−−→ · · ·

𝑜𝑝𝑛−1
−−−−→ 𝑙𝑛 such

that (𝑙𝑖 , 𝑜𝑝𝑖 , 𝑙𝑖+1) ∈ 𝐺 for every 0 ≤ 𝑖 ≤ 𝑛 − 1.
Let 𝑉 be the set of program variables. A concrete state consists of a program location 𝑙 and a

valuation 𝑐 of 𝑉 . The valuation 𝑐 is also called a concrete data state. A computation from an initial
state (𝑙0, 𝑐0) of the program is an alternating sequence of concrete states and operations

(𝑙0, 𝑐0)
𝑜𝑝0
−−→ (𝑙1, 𝑐1)

𝑜𝑝1
−−→ · · ·

𝑜𝑝𝑛−1
−−−−→ (𝑙𝑛, 𝑐𝑛)

such that 𝑙0
𝑜𝑝0
−−→ 𝑙1

𝑜𝑝1
−−→ · · ·

𝑜𝑝𝑛−1
−−−−→ 𝑙𝑛 is a path on 𝑃 and 𝑐𝑖+1 is a concrete data state obtained by

executing 𝑜𝑝𝑖 from 𝑐𝑖 for every 0 ≤ 𝑖 ≤ 𝑛 − 1. An error computation is a computation ending
at a concrete state (𝑙𝑒𝑟𝑟 , 𝑐𝑒𝑟𝑟) for some concrete data state 𝑐𝑒𝑟𝑟 . Given a program 𝑃 , the program
verification problem is to check whether there is an error computation from an arbitrary initial
state. If there is no error computation, the program 𝑃 is safe.

2.2 Predicate Analysis

Predicate analysis [Das et al. 1999; Graf and Saidi 1997] is a practical approach for program verifica-
tion. It uses a set of predicates to abstract concrete data states and performs exhaustive search in
the abstract state space. Predicate abstraction is a conservative abstraction. If the error location
is unreachable in the abstract model, it is also unreachable in the concrete model. One can safely
conclude that the program is safe when the error location cannot be reached in predicate analysis.
A predicate is a quantifier-free first-order formula over the program variables 𝑉 . We use ⊤ to

denote 𝑡𝑟𝑢𝑒 and ⊥ to denote false. Let 𝜑 be a predicate. A pair (𝑙, 𝜑) represents a set of concrete
states: {(𝑙, 𝑐) | 𝑐 |= 𝜑}. One can lift computation over sets of concrete states as follows. For any
predicate 𝜑 , let SP𝑜𝑝 (𝜑) represent the set of concrete data states reached from a concrete data state
satisfying 𝜑 after executing 𝑜𝑝 . For instance, suppose (𝑙0, 𝑜𝑝, 𝑙1) ∈ 𝐺 , 𝑐0 an arbitrary concrete data

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

184:4 Qianshan Yu, Fei He, and Bow-Yaw Wang

state and 𝑐1 ∈ SP𝑜𝑝 (⊤). Then 𝑐0
𝑜𝑝
−−→ 𝑐1 is a computation along the path 𝑙0

𝑜𝑝
−−→ 𝑙1 for 𝑐0 |= ⊤. If

SP𝑜𝑝 (⊤) could be represented by a predicate, one would be able to solve the program verification
problem by computing SP𝑜𝑝𝑖 (•) for every 𝑜𝑝𝑖 iteratively.

However, SP𝑜𝑝𝑖 (•) is not a predicate and can be hard to compute in general. To improve efficiency,
predicate analysis only allows predicates derived from a fixed predicate precision. A (predicate)
precision 𝜆 is a set of atomic predicates [Beyer et al. 2013]. A cube (over 𝜆) is a conjunction of atomic
predicates in 𝜆. A formula is in disjunctive normal form (over 𝜆) if it is a disjunction of cubes over 𝜆.
An abstract state is a pair (𝑙, 𝜙) where 𝑙 is a location and 𝜙 is a cube of predicates in 𝜆. 𝜙 is called
an abstract data state.

The predicate abstraction (𝜑)𝜆 of a formula 𝜑 is the strongest conjunction of predicates in 𝜆 that
are entailed by 𝜑

(𝜑)𝜆 :=
∧
{𝑝 ∈ 𝜆 | 𝜑 ⇒ 𝑝}.

Let (𝑙, 𝑜𝑝, 𝑙 ′) ∈ 𝐺 and 𝜙 be an abstract data state. We hence define the abstract successor of (𝑙, 𝜙)
with respect to 𝑜𝑝 to be (𝑙 ′, (SP𝑜𝑝 (𝜙))

𝜆). Since (SP𝑜𝑝 (𝜙))
𝜆 is itself a predicate, one can compute

abstract successors iteratively. Note that (SP𝑜𝑝 (𝜙))
𝜆 is but an over-approximation to SP𝑜𝑝 (𝜙).

A typical predicate analysis algorithm is depicted in Algorithm 1. The algorithm keeps updating
two sets of abstract states, that is, a set reached of reachable abstract states found so far and a
set waitlist of abstract states that are going to be processed. Initially, only (𝑙0,⊤) is in the waitlist
(step 1). In step 2, the algorithm explores all reachable abstract states in a breadth-first fashion. At
each iteration, the algorithm fetches an abstract state from waitlist (line 3, in a FIFO order), say
(𝑙, 𝜙), and then computes all its successors. A successor (𝑙 ′, 𝜙 ′) is skipped if it is covered by the
set reached, that is, there exists an abstract state (𝑙 ′′, 𝜙 ′′) ∈ 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 such that 𝑙 ′ = 𝑙 ′′ and 𝜙 ′⇒ 𝜙 ′′.
Otherwise, it is added to reached and waitlist (lines 6ś7). The above process repeats until waitlist
is empty. If the error location 𝑙𝑒𝑟𝑟 is not in the set reached returned by the algorithm, we conclude
that the program is safe.

Algorithm 1: PA(𝑃, 𝜆)

Input: A program 𝑃 , an abstract precision 𝜆

Output: A set reached of reachable abstract states
1 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 ← {(𝑙0,⊤)}, 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ← {(𝑙0,⊤)} ; /* initialization */

2 while𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 ≠ ∅ do /* compute the reached set */

3 pop (𝑙, 𝜙) from waitlist;

4 foreach 𝑙 ′ with (𝑙, 𝑜𝑝, 𝑙 ′) ∈ 𝐺 do

5 𝜙 ′← (SP𝑜𝑝 (𝜙))
𝜆 ; /* abstract successor computation */

6 if (𝑙 ′, 𝜙 ′) is not covered by reached then

7 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 ← 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 ∪ {(𝑙 ′, 𝜙 ′)};

8 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ← 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ∪ {(𝑙 ′, 𝜙 ′)};

9 end

10 end

11 end

12 return reached;

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

Incremental Predicate Analysis for Regression Verification 184:5

2.3 Counterexample-Guided Abstraction Refinement

In predicate analysis, the precision 𝜆 defines the level of abstraction. The precision must be at a
proper level. A too-coarse precision may induce spurious counterexamples; a too-fine precision,
however, may lead to state space explosion. Finding a proper precision appears to require ingenuity.
Counterexample-guided abstraction refinement [Clarke et al. 2000] provides a framework for

automatically finding a proper precision. Consider a path 𝑙0
𝑜𝑝0
−−→ 𝑙1

𝑜𝑝1
−−→ · · ·

𝑜𝑝𝑛−1
−−−−→ 𝑙𝑛

𝑜𝑝𝑛
−−−→ 𝑙𝑒𝑟𝑟 . After

predicate analysis, we obtain 𝜙𝑖 ’s and 𝜙𝑒𝑟𝑟 such that 𝜙0 = ⊤, (SP𝑜𝑝𝑖 (𝜙𝑖))
𝜆 ⇒ 𝜙𝑖+1 for 0 ≤ 𝑖 ≤ 𝑛 − 1

and (SP𝑜𝑝𝑛 (𝜙𝑛))
𝜆 ⇒ 𝜙𝑒𝑟𝑟 . Then the sequence

𝜎 = (𝑙0, 𝜙0)
𝑜𝑝0
−−→ (𝑙1, 𝜙1)

𝑜𝑝1
−−→ · · ·

𝑜𝑝𝑛−1
−−−−→ (𝑙𝑛, 𝜙𝑛)

𝑜𝑝𝑛
−−−→ (𝑙𝑒𝑟𝑟 , 𝜙𝑒𝑟𝑟)

is called an abstract counterexample. Since each 𝜙𝑖+1 only approximates SP𝑜𝑝𝑖 (𝜙𝑖) by definition, an
abstract counterexample does not necessarily contain a computation. If there is a computation

𝜋 = (𝑙0, 𝑐0)
𝑜𝑝0
−−→ (𝑙1, 𝑐1)

𝑜𝑝1
−−→ · · ·

𝑜𝑝𝑛−1
−−−−→ (𝑙𝑛, 𝑐𝑛)

𝑜𝑝𝑛
−−−→ (𝑙𝑒𝑟𝑟 , 𝑐𝑒𝑟𝑟) with 𝑐𝑖 |= 𝜙𝑖 for 0 ≤ 𝑖 ≤ 𝑛 and

𝑐𝑒𝑟𝑟 |= 𝜙𝑒𝑟𝑟 , then the abstract counterexample𝜎 is feasible and the computation 𝜋 is a counterexample
witnessing the error. Otherwise, 𝜎 is spurious.

When an abstract counterexample is spurious, it means the abstract precision is too coarse.
Techniques are available to refine abstraction by adding more predicates to the abstract precision.
After refining the abstract precision, more assertions are available for annotation. Predicate analysis
is more likely to find a certified annotation or a feasible abstract counterexample.
Starting from an initial precision (usually, the empty set), the CEGAR framework iteratively

checks if the program is safe or not using the abstract semantics with the current precision. If it is
safe, the program is also safe. The underlying verification algorithm thus terminates and reports
łsafež. Otherwise, the analyzer returns an abstract counterexample. The algorithm then checks
if the abstract counterexample is feasible or not. If it is, the framework terminates and reports
łunsafež. Otherwise, the precision is too coarse and needs to be refined to remove the spurious
abstract counterexample. The above process repeats until either łsafež or łunsafež is reported.

The precision is not necessarily unchanged throughout the program [Henzinger et al. 2002]. In
general, a precision is a mapping that associates a predicate set on each location of the program. In
this paper, we assume a single predicate set for a precision to simplify the discussion.

3 ASSERTION ANNOTATION

After predicate analysis, each location is associated with a set of abstract states. These abstract
states contain information to be reused in regression verification. We will characterize them by
Hoare triples.

3.1 Hoare Triples and Annotation

Let 𝜑 and𝜓 be predicates and 𝑜𝑝 an operation. A Hoare triple is of the form {𝜑}𝑜𝑝{𝜓 }. The triple
{𝜑}𝑜𝑝{𝜓 } is valid if the program always arrives at a state satisfying 𝜓 after executing 𝑜𝑝 from
a state satisfying 𝜑 . By definition, {𝜑}𝑜𝑝;𝑜𝑝 ′{𝜓 } is valid if there is a predicate 𝜌 such that both
{𝜑}𝑜𝑝{𝜌} and {𝜌}𝑜𝑝 ′{𝜓 } are valid. Let 𝑜𝑝1;𝑜𝑝2; · · ·𝑜𝑝𝑛 be a sequence of operations. The validity
of {𝜑}𝑜𝑝1;𝑜𝑝2; · · ·𝑜𝑝𝑛{𝜓 } is defined inductively.
Let an assertion be a disjunction of abstract states. Define annotations over CFAs as follows.

Definition 3.1. An annotation I of 𝑃 is a mapping from locations of 𝑃 to assertions.

Moreover, an annotation of a CFA is valid if the initial location is mapped to true and every edge
of the CFA forms a valid Hoare triple.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

184:6 Qianshan Yu, Fei He, and Bow-Yaw Wang

Definition 3.2. An annotation I of 𝑃 is valid if: 1) I(𝑙0) = ⊤, and 2) for every edge (𝑙, 𝑜𝑝, 𝑙 ′) of 𝑃 ,
{I(𝑙)}𝑜𝑝{I(𝑙 ′)} is valid.

Intuitively, a valid annotation I of a CFA 𝑃 is an over-approximation of program behaviors.

Let (𝑙0, 𝑐0)
𝑜𝑝0
−−→ (𝑙1, 𝑐1)

𝑜𝑝1
−−→ · · ·

𝑜𝑝𝑛−1
−−−−→ (𝑙𝑛, 𝑐𝑛) be a computation of the program 𝑃 . For any valid

annotation I of 𝑃 , we have 𝑐𝑖 |= I(𝑙𝑖) for every 0 ≤ 𝑖 ≤ 𝑛. Note that the annotation maps every
location to ⊤ is trivially valid. We are interested in certified annotations.

Definition 3.3. An annotation I of 𝑃 is certified if it is valid and I(𝑙𝑒𝑟𝑟) = ⊥.

Let I be a certified annotation. Suppose there is a computation (𝑙0, 𝑐0)
𝑜𝑝0
−−→ (𝑙1, 𝑐1)

𝑜𝑝1
−−→ · · ·

𝑜𝑝𝑛−1
−−−−→

(𝑙𝑛, 𝑐𝑛)
𝑜𝑝𝑛
−−−→ (𝑙𝑒𝑟𝑟 , 𝑐𝑒𝑟𝑟) from the initial location to the error location. SinceI is certified,I(𝑙𝑒𝑟𝑟) = ⊥

and hence 𝑐𝑒𝑟𝑟 |= ⊥. This is absurd. Subsequently, if there is a certified annotation I, then there is
no computation from the initial location 𝑙0 to the error location 𝑙𝑒𝑟𝑟 .

Lemma 3.4. A program 𝑃 is safe if there exists a certified annotation.

3.2 Assertion Annotation from Predicate Analysis

Recall that abstract states are computed at each location after predicate analysis. Let 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 be the
set of reached abstract states computed by predicate analysis (Algorithm 1). It is easy to construct
an annotation. For each location 𝑙 , let I(𝑙) be the disjunction of all reached abstract data states at 𝑙
(Algorithm 2).

Algorithm 2: Annotation(𝑃, 𝑟𝑒𝑎𝑐ℎ𝑒𝑑)

Input: A CFA 𝑃 and a set reached of abstract states of 𝑃
Output: An annotation I of 𝑃

1 foreach 𝑙 of 𝑃 do I(𝑙) ← ⊥ ;

2 foreach (𝑙, 𝜙) ∈ 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 do

3 I(𝑙) ← I(𝑙) ∨ 𝜙

4 end

5 return I;

Lemma 3.5. The annotation constructed by Algorithm 2 is valid. Particularly, if the program is safe,
the constructed annotation is certified.

Proof. First, I(𝑙0) = ⊤ holds (Algorithm 1). Second, let 𝑔 = (𝑙, 𝑜𝑝, 𝑙 ′) be an arbitrary edge.
Recall that 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 is a fixed point of the data-flow equation system of the program [Nielson et al.
2015]. I(𝑙) and I(𝑙 ′) encode the set of abstract data states at 𝑙 and 𝑙 ′ in 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 , respectively. Thus
{I(𝑙)}𝑜𝑝{I(𝑙 ′)} is valid. The annotation I is valid (Definition 3.2).
If the program is safe, I(𝑙𝑒𝑟𝑟) must be ⊥. The constructed annotation is thus certified. □

The annotation I(𝑙) represents the set of all reachable abstract states at 𝑙 . If the assertion at 𝑙𝑒𝑟𝑟
is ⊥, we conclude that the program is safe and return the annotation as a proof. The constructed
annotation is essentially a set of assertions {I(𝑙) | 𝑙 ∈ 𝐿}. The number of assertions is limited by
the number of locations (or, the number of blocks) in the program. It is quite compact for storing,
efficient for processing, and also relatively easy for reading. Naturally, the assertion annotation is a
suitable intermediate result for reuse in incremental predicate analysis.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

Incremental Predicate Analysis for Regression Verification 184:7

3.3 Assertion Annotation for CEGAR

The concept of assertion annotation can also be adapted to the framework of counterexample-
guided abstraction refinement (CEGAR) [Clarke et al. 2000]. LetU be the set of all assertions that
can be used for annotations in predicate analysis. Each assertion 𝜑 ∈ U is in the disjunctive normal
form with all atomic predicates from the precision 𝜆. At the beginning of CEGAR, 𝜆 is empty and
U = {⊤,⊥}. The error location is very likely to be annotated with ⊤ and gives a non-certified
annotation.

Let I be a valid annotation of 𝑃 with I(𝑙𝑒𝑟𝑟) ≠ ⊥. For any path 𝑙0
𝑜𝑝0
−−→ 𝑙1

𝑜𝑝1
−−→ · · ·

𝑜𝑝𝑛−1
−−−−→ 𝑙𝑛

𝑜𝑝𝑛
−−−→

𝑙𝑒𝑟𝑟 on 𝑃 , we have {I(𝑙𝑖)}𝑜𝑝𝑖 {I(𝑙𝑖+1)} is valid for every 0 ≤ 𝑖 ≤ 𝑛 − 1 and {I(𝑙𝑛)}𝑜𝑝𝑛{I(𝑙𝑒𝑟𝑟)}.
Hence

𝜎 = (𝑙0,I(𝑙0))
𝑜𝑝0
−−→ (𝑙1,I(𝑙1))

𝑜𝑝1
−−→ · · ·

𝑜𝑝𝑛−1
−−−−→ (𝑙𝑛,I(𝑙𝑛))

𝑜𝑝𝑛
−−−→ (𝑙𝑒𝑟𝑟 ,I(𝑙𝑒𝑟𝑟))

is an abstract counterexample. If 𝜎 is feasible, there is a counterexample witnessing the error.
Otherwise, new predicates can be found and added to the precision 𝜆. The set U of assertions
and hence the abstraction are refined. One then computes another valid annotation. The process
continues until a certified annotation or a counterexample is found.
CEGAR may involve a number of iterations. Only when the program is safe, and at the last

CEGAR iteration, can the constructed annotation be certified. We thus choose to only construct
the annotation at the end of the last iteration of CEGAR. The benefits are two-folds: (1) the whole
technique is efficient with only one construction of annotation, and (2) the implementation cost is
relatively low.

4 INCREMENTAL PREDICATE ANALYSIS

4.1 Overview

Given two program versions 𝑃 and𝑄 , the individual verification of 𝑃 or𝑄 can both be considered as
the process of constructing annotations. Assume 𝑃 has already been verified, the goal of incremental
predicate analysis is to construct an annotation I𝑄 for 𝑄 by reusing the previously-generated I𝑃
for 𝑃 . The main tasks include a pre-processing procedure which reuses an annotation, and a
post-processing procedure which constructs an annotation.

More precisely, for each location 𝑙 of𝑄 , we find the corresponding location of ℓ in 𝑃 (Section 4.2),
and utilize the assertion I𝑃 (ℓ) to construct I𝑄 (𝑙). Note that we cannot directly set I𝑄 (𝑙) = I𝑃 (ℓ)
due to program changes. The following research question need be addressed: How does the revision
𝑄 change the previously-generated assertions I𝑃 ? To this end, we propose the technique of change
impact analysis (Section 4.3) to find the set of all impacted variables at each location. If all variables
of an assertion are not impacted by the program changes, we can safely reuse it. Otherwise, we
employ a strengthen algorithm to reuse part of that assertion (Section 4.4). Finally, the IPA algorithm
(Section 4.5) performs incremental predicate analysis. It constructs an annotation I𝑄 for further
reuse, and then reports the verification result.
The following design rules are observed in the development of our technique:

• The reuse procedure must be sound. The reused assertions must semantically hold for 𝑄 ;
• The reuse procedure need not be complete. Not all reusable assertions (or all reusable parts of
the assertions) need be precisely identified; and
• The reuse procedure should be as efficient as possible.

In the following, we use subscripts 𝑃 , 𝑄 to distinguish elements such as locations, edges, annota-
tions of these two versions.

Example 4.1. We use a simple program to explain our technique. This program is shown in the
left side of Fig. 2(a) and its CFA is shown in the left side of Fig. 3. In the program, we declare an

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

184:8 Qianshan Yu, Fei He, and Bow-Yaw Wang

CFA Diff CIA IPA
Reuse

Annotation

P Q

changed

edges 𝚫

impacted variable

set 𝝃𝑰𝑽𝒂𝒓

location mapping 𝝃𝑳𝒐𝒄

𝓘𝑸
𝓘𝑷

𝓘𝑸
#

Fig. 1. Overview of incremental predicate analysis

0:int q[N];

main(){

int i=0;

1: do {

old=new;

2: if(*) {

3: new++;

4: q[i++]=old;

}

5: } while(new != old);

6: if(i >= N)

7: printf(“WARNING”);

8: assert(new == old);

}

…

3.1: if(i == N-1)

3.2: i--;

3.3: new++;

4: q[i++]=new;

…

(a) Old version (b) New version

Fig. 2. An example program

array of length 𝑁 . The do-while loop in the main procedure repeatedly updates the variable old
as new. The branch condition at ℓ2 denotes a nondeterministic condition. When exiting the loop,
the array index i is checked. A warning is raised if the index is out of bound. Finally, the program
checks if the assertion new==old holds or not at ℓ8. Two special nodes ℓ𝑒𝑟𝑟 and ℓ𝑟𝑒𝑡 are used to
represent the error and return locations, respectively.
After predicate analysis with the precision 𝜆 = {𝑖 < 𝑁,𝑛𝑒𝑤 = 𝑜𝑙𝑑}, a possible annotation is

shown in the right side of Fig. 3. The annotation on the error location is ⊥. The annotation is
certified. The program is therefore safe.

4.2 Program Differences

In order to analyze impacts of program changes between control flow automata of 𝑃 and of 𝑄 ,
we need syntactic differences between the two automata. Their differences are recorded in the
following two structures:

• Δ ⊆ 𝐺𝑄 is the set of (syntactically) changed edges of 𝑄 against 𝑃 , and
• 𝜉𝐿𝑜𝑐 : 𝐿𝑄 → 𝐿𝑃 ∪ {♣} is a mapping from𝑄 ’s locations to 𝑃 ’s locations or ♣ where 𝜉𝐿𝑜𝑐 (𝑙) = ♣
indicates that 𝑙 has no matched location in 𝑃 .

To compute program differences, we implemented a CFADiff procedure based on the similarity
flooding algorithm [Melnik et al. 2002]. Given two control flow automata 𝑃 and 𝑄 , we build a
pairwise connectivity graph (PCG) by creating a node for each pair of locations (𝑙, ℓ) ∈ 𝐿𝑄 × 𝐿𝑃 , and

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

Incremental Predicate Analysis for Regression Verification 184:9

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ𝒓𝒆𝒕

i=0

ℓ𝒆𝒓𝒓
ℓ

ℓ

old=new

[*]

[*]

[new!=old]

[new==old]
[i>=N]

[i<N]

printf

[new==old] [new!=old]

ℓ

𝐼 ℓ = {⊤}

𝐼 ℓ = {⊤}
𝐼 ℓ = {new=old}

𝐼 ℓ = {new=old}

𝐼 ℓ = {⊤}

𝐼 ℓ = {¬𝑖 < 𝑁 ∧ new=old} 𝐼 ℓ = {new=old}

𝐼 ℓ = {new=old}

𝐼 ℓ𝑟𝑒𝑡 = {new=old} 𝐼 ℓ𝑒𝑟𝑟 = {⊥}

𝑰𝑷

new++

q[i++]=old

ℓ 𝐼 ℓ = {¬new=old}

Fig. 3. CFA of program in Fig. 2(a)

connecting an edge from (𝑙, ℓ) to (𝑙 ′, ℓ ′) iff (𝑙, 𝑜𝑝, 𝑙 ′) ∈ 𝐺𝑄 and (ℓ, 𝑜𝑝, ℓ ′) ∈ 𝐺𝑃 . We use the PCG to
compute the similarity between each pair of locations in 𝐿𝑄 ×𝐿𝑃 . For each location 𝑙 , let str (𝑙) be the
concatenation of operations (as strings) on all edges entering or emitting 𝑙 , called the representative
string of 𝑙 . The similarity of (𝑙, ℓ) is initialized as the string similarity of str (𝑙) and str (ℓ). Then we
follow the PCG edges to propagate the similarity values of each node to other nodes [Melnik et al.
2002]. Finally, we compute 𝜉𝐿𝑜𝑐 as the set of pairs of locations whose similarity values exceed a
pre-defined threshold. The set Δ can be easily obtained with the assist of the mapping 𝜉𝐿𝑜𝑐 .

Example 4.2. Recall the program in Fig. 2(a). If the do-while loop is executed more than 𝑁 times,
the program may raise a warning. To rule out this warning, we revise the program such that the
original blocks 𝑜𝑝3 and 𝑜𝑝4 are replaced by 𝑜𝑝3.1 𝑜𝑝3.2, 𝑜𝑝3.3 and 𝑜𝑝4 (Fig. 2(b)). Fig. 4 shows the
control flow automaton of the revised program.
Comparing control flow automata of Fig. 3 and Fig. 4, we obtain the set of changed edges

Δ = {(𝑙3.1, "[i==N-1]", 𝑙3.2), (𝑙3.1, "[i!=N-1]", 𝑙3.3), (𝑙3.2, "𝑖 − −", 𝑙3.3), (𝑙4, "q[i++]=new", 𝑙5)}, and
the location mapping

𝜉𝐿𝑜𝑐 (𝑙𝑖) =

ℓ3 if 𝑖 = 3.1

♣ if 𝑖 ∈ {3.2, 3.3}

ℓ𝑖 otherwise.

Note that locations in 𝑃 and 𝑄 are denoted using ℓ and 𝑙 , respectively. The changed edges Δ are
red in Fig. 4.

4.3 Change Impact Analysis

Denote Δ the set of changed edges. Change impact analysis (Algorithm 3) computes the set of
impacted variables at each location of 𝑄 . We first compute the impacted edges by Δ using the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

184:10 Qianshan Yu, Fei He, and Bow-Yaw Wang

𝒍𝟎

𝒍𝟏

𝒍𝟐

𝒍𝟓

𝒍𝟑.𝟏

𝒍𝟔

𝒍𝒓𝒆𝒕

i=0

𝒍𝒆𝒓𝒓

𝒍𝟖

𝒍𝟕

old=new

[*]

[*]

new++

[new!=old]

[new==old]
[i>=N]

[i<N]

printf

[new==old] [new!=old]

𝒍𝟑.𝟐

𝒍𝟑.𝟑

[i!=N-1]

[i==N-1]

i--

𝐼 𝑙- 		 = {⊤}

𝐼 𝑙. 		 = {⊤}

𝐼 𝑙/ 		= {new=old}

𝐼 𝑙0.. = {new=old}

𝐼 𝑙0./ = {⊥}

𝐼 𝑙0.0 = {⊥}

𝐼 𝑙1 		 = {⊤}

𝐼 𝑙2 		 = {⊥}

𝐼 𝑙3 		= {new=old}

𝐼 𝑙4 		= {new=old}

𝐼 𝑙567 = {new=old}

𝐼 𝑙655 = {⊥}

𝑰𝑸
+

𝒍𝟒

q[i++]=new

𝐼 𝑙9 		 = {⊥}

Fig. 4. CFA of program in Fig. 2(b)

forward slicing technique [Orso et al. 2003] (lines 1 ś 2). Specifically, for each edge 𝑔 ∈ Δ, we
analyze the set of impacted edges using CheckImpact algorithm and then compute their union set
as Δ∗.

We then set Δ∗ as the criterion and analyze the set of impacted variables at each location 𝑙 ∈ 𝐿𝑄 .

The impact analysis algorithm computes iteratively (lines 5 ś 22). Let 𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝐿 and𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡𝐿 be
the set of locations that have been reached and that are to be processed, respectively. Let 𝑙 be the
current location. Note that 𝑙 is fetched from𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡𝐿 in the FIFO order. For any successor location
𝑙 ′ of 𝑙 , the impacted variables 𝜉𝐼𝑉𝑎𝑟 (𝑙) at 𝑙 are propagated to 𝑙 ′ (line 9). If the edge (𝑙, 𝑜𝑝, 𝑙 ′) is in Δ

∗,
the impacted variables by 𝑜𝑝 are also added. Specifically, if the operation 𝑜𝑝 is an assume statement,
all variables in 𝑜𝑝 (Vars(𝑜𝑝)) are added to 𝜉𝐼𝑉𝑎𝑟 (𝑙

′) due to control impact; if 𝑜𝑝 is an assignment

statement, the variable written by 𝑜𝑝 (LVar(𝑜𝑝)) are added to 𝜉𝐼𝑉𝑎𝑟 (𝑙
′) due to data impact. Finally,

if 𝑙 ′ is not previously visited or 𝜉𝐼𝑉𝑎𝑟 (𝑙
′) is updated in this iteration, we add 𝑙 ′ to𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡𝐿 .

The CheckImpact algorithm is listed in Algorithm 4. Given an edge 𝑔 as input, the algorithm
computes the set of all edges that are (directly or indirectly) impacted by 𝑔. Let 𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝐺 and
𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡𝐺 be the sets of edges that have been explored and that are to be processed, respectively.
Let 𝑔 = (𝑙, 𝑜𝑝, 𝑙 ′) be the edge taken from𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡𝐺 (in the FIFO order). If 𝑜𝑝 is an assume statement,
the edge 𝑔 is a conditional jump edge. All statements dominated by 𝑔 compose the forward slice
Δ
∗
𝑓 𝑤

(line 5). If 𝑜𝑝 is an assignment statement with the left-hand-side variable 𝑣 , the forward slice

Δ
∗
𝑓 𝑤

is the set of statements that read 𝑣 after 𝑜𝑝 (line 7). At the end of the iteration, edges in Δ
∗
𝑓 𝑤

are all added to𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡𝐺 except those that have been processed (line 11). The resulting Δ
∗
𝑔 is the

union of forward slices computed in all iterations.
Note that the above analysis does not require any semantic computation. It uses the light-

weight location analysis only and is computationally efficient. Moreover, Δ∗ is always an over-
approximation of the semantically impacted set of edges by forward slicing. The mapping 𝜉𝐼𝑉𝑎𝑟 is

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

Incremental Predicate Analysis for Regression Verification 184:11

Algorithm 3: CIA(𝑄 , Δ)

Input: 𝑄 , Δ
Output: The impacted variable set 𝜉𝐼𝑉𝑎𝑟 : 𝐿 → 2𝑉

/* compute the impacted edges */

1 Δ
∗ ← ∅ ;

2 foreach 𝑔 ∈ Δ do Δ
∗ ← Δ

∗ ∪ CheckImpact(𝑔) ;

/* compute the impacted variables at each location */

3 foreach 𝑙 ∈ 𝐿𝑄 do 𝜉𝐼𝑉𝑎𝑟 (𝑙) ← ∅ ;

4 𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝐿 ← {𝑙0},𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡𝐿 ← {𝑙0};

5 while𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡𝐿 ≠ ∅ do

6 pop 𝑙 from waitlist𝐿 ;

7 foreach 𝑙 ′ such that 𝑔 = (𝑙, 𝑜𝑝, 𝑙 ′) ∈ 𝐺𝑄 do

8 old ← 𝜉𝐼𝑉𝑎𝑟 (𝑙
′);

9 𝜉𝐼𝑉𝑎𝑟 (𝑙
′) ← 𝜉𝐼𝑉𝑎𝑟 (𝑙

′) ∪ 𝜉𝐼𝑉𝑎𝑟 (𝑙) ; /* propagation */

10 if 𝑔 ∈ Δ∗ then
11 if 𝑜𝑝 is an assume statement then
12 𝜉𝐼𝑉𝑎𝑟 (𝑙

′) ← 𝜉𝐼𝑉𝑎𝑟 (𝑙
′) ∪ Vars(𝑜𝑝) ; /* control impact */

13 else if 𝑜𝑝 is an assignment statement then
14 𝜉𝐼𝑉𝑎𝑟 (𝑙

′) ← 𝜉𝐼𝑉𝑎𝑟 (𝑙
′) ∪ LVar(𝑜𝑝) ; /* data impact */

15 end

16 end

17 if 𝑙 ′ ∉ 𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝐿 or 𝜉𝐼𝑉𝑎𝑟 (𝑙
′) ≠ old then

18 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡𝐿 ← 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡𝐿 ∪ {𝑙 ′};

19 end

20 𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝐿 ← 𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝐿 ∪ {𝑙 ′};

21 end

22 end

23 return 𝜉𝐼𝑉𝑎𝑟 ;

also computed conservatively such that 𝜉𝐼𝑉𝑎𝑟 (𝑙) is a superset of semantically impacted variables at
𝑙 . We thus can safely use 𝜉𝐼𝑉𝑎𝑟 (𝑙) to find the non-impacted variables at each location 𝑙 .

Example 4.3. By change impact analysis on the changed edges Δ of Fig. 4, the set of impacted
edges is Δ∪ {(𝑙6, "[i>=N]", 𝑙7), (𝑙6, "[i<N]", 𝑙8), (𝑙7, "printf", 𝑙8)}, the resulting affected variable
mapping is represented as follows:

𝜉𝐼𝑉𝑎𝑟 (𝑙𝑖) =

{
∅ if 𝑖 = 0

{i,q} otherwise.

4.4 Annotation Reuse

The basic idea of our incremental predicate analysis is to construct an initial annotation for 𝑄 by
reusing the previously generated annotation for 𝑃 . Due to program changes, not all assertions of 𝑃
apply to 𝑄 . We rely on 𝜉𝐿𝑜𝑐 and 𝜉𝐼𝑉𝑎𝑟 to determine if an assertion of 𝑃 can be reused in 𝑄 or not. If
not, we furthermore develop a technique for strengthening the original assertion for reusing.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

184:12 Qianshan Yu, Fei He, and Bow-Yaw Wang

Algorithm 4: CheckImpact(𝑔)

Input: An edge 𝑔
Output: The set Δ∗𝑔 of edges impacted by 𝑔

1 Δ
∗
𝑔 ← {𝑔}, 𝑟𝑒𝑎𝑐ℎ𝑒𝑑

𝐺 ← {𝑔},𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡𝐺 ← {𝑔};

2 while𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡𝐺 ≠ ∅ do

3 pop 𝑔 = (𝑙, 𝑜𝑝, 𝑙 ′) from waitlist𝐺 ;

4 if 𝑜𝑝 is an assume statement then
5 Δ

∗
𝑓 𝑤
← ControlImpact(𝑔) ; /* control impact */

6 else if 𝑜𝑝 is an assignment statement then
7 Δ

∗
𝑓 𝑤
← RAW(𝑔) ; /* Read After Write – data impact */

8 end

9 Δ
∗
𝑔 ← Δ

∗
𝑔 ∪ Δ

∗
𝑓 𝑤

;

10 𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝐺 ← 𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝐺 ∪ {𝑔};

11 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡𝐺 ← 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡𝐺 ∪ Δ
∗
𝑓 𝑤
\ 𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝐺 ;

12 end

13 return Δ
∗
𝑔;

Algorithm 5 depicts our ReuseAnnotation procedure. It starts from (𝑙0,⊤) and traverses all
reachable abstract states of 𝑄 . Specifically, denote 𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝐿 to be the set of visited locations and
𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 the set of abstract states to be processed. Let (𝑙, 𝜙) be the current abstract state taken from
𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 and 𝑙 ′ be a successor location of 𝑙 . If 𝜉𝐿𝑜𝑐 (𝑙

′) = ♣ (line 5), then nothing can be reused. We set
I−𝑄 (𝑙

′) to ⊥ and continue the traversal. Otherwise, we utilize its previous annotation I𝑃 (𝜉𝐿𝑜𝑐 (𝑙
′)) to

construct I−𝑄 (𝑙
′). More precisely, if 𝑙 ′ is not previously visited, we apply the Strengthen algorithm

on I𝑃 (𝜉𝐿𝑜𝑐 (𝑙
′)) to get a candidate assertion 𝜙 ′ (line 9). If 𝑙 ′ has been visited, we use its annotation

I−𝑄 (𝑙
′) as the candidate (line 11). If the candidate 𝜙 ′ is ⊥ or it falsifies the Hoare triple {𝜙}𝑜𝑝{𝜙 ′},

I−𝑄 (𝑙
′) is set to ⊥. Otherwise, I−𝑄 (𝑙

′) is set to 𝜙 ′. The sets 𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝐿 and 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 are updated

accordingly.
Algorithm 6 shows our Strengthen algorithm. It takes an assertion 𝜑 and a location 𝑙 as inputs

and returns a strengthened assertion 𝜓 . Let 𝜉𝐼𝑉𝑎𝑟 (𝑙) be the set of impacted variables at 𝑙 . If the
set of variables in 𝜑 (Vars(𝜑)) is disjoint from 𝜉𝐼𝑉𝑎𝑟 (𝑙), 𝜑 is irrelevant to program changes and
can be safely reused (line 2). Otherwise, 𝜑 cannot be reused directly. In the latter case, we wish to
find reusable parts of 𝜑 . Given that 𝜑 is in the disjunctive norm form (see Algorithm 2), we check
whether each cube of 𝜑 is impacted by the program changes or not (line 6). Cubes that are irrelevant
to program changes are added to 𝜙 (lines 6 ś 7). Since𝜓 is obtained by removing impacted cubes
from 𝜑 , we have𝜓 ⇒ 𝜑 .
Algorithm 5 is quite efficient. During the exploring procedure, all abstract data states in Algo-

rithm 5 are not computed semantically but strengthened from existing assertions syntactically.
Secondly, the algorithm need not explore all locations of 𝑄 . It stops exploring successors of the
location 𝑙 only if the constructed annotation at 𝑙 is ⊥.

Lemma 4.4. Let I−𝑄 be the annotation returned by Algorithm 5, for any edge (𝑙, 𝑜𝑝, 𝑙 ′) of 𝑄 with

I−𝑄 (𝑙
′) ≠ ⊥, {I−𝑄 (𝑙)}𝑜𝑝{I

−
𝑄 (𝑙

′)} is valid.

Example 4.5. Recall the motivating example. After applying ReuseAnnotation, we get the
annotation I−𝑄 as shown in the right side of Fig. 4, where the assertion I−𝑄 (𝑙3.2) is set to ⊥ since 𝑙3.2

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

Incremental Predicate Analysis for Regression Verification 184:13

Algorithm 5: ReuseAnnotation(𝑄 , I𝑃 , 𝜉𝐿𝑜𝑐 , 𝜉𝐼𝑉𝑎𝑟)

Input: A program 𝑄 , an annotation I𝑃 for 𝑃 , a location mapping 𝜉𝐿𝑜𝑐 , and an
impacted-variable mapping 𝜉𝐼𝑉𝑎𝑟

Output: An annotation I−𝑄 for 𝑄

1 𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝐿 ← {𝑙0},𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 ← {(𝑙0,⊤)} ;

2 while𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 ≠ ∅ do
3 pop (𝑙, 𝜙) from waitlist ;

4 foreach 𝑙 ′ such that (𝑙, 𝑜𝑝, 𝑙 ′) ∈ 𝐺𝑄 do

5 if 𝜉𝐿𝑜𝑐 (𝑙
′) = ♣ then /* new location */

6 I−𝑄 (𝑙
′) ← ⊥; Continue;

7 end

8 if 𝑙 ′ ∉ 𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝐿 then

9 𝜙 ′← Strengthen(I𝑃 (𝜉𝐿𝑜𝑐 (𝑙
′)), 𝑙 ′) /* candidate assertion */

10 else

11 𝜙 ′← I−𝑄 (𝑙
′);

12 end

13 if 𝜙 ′ = ⊥ or {𝜙}𝑜𝑝{𝜙 ′} is invalid then /* validate */

14 I−𝑄 (𝑙
′) ← ⊥ ;

15 else

16 I−𝑄 (𝑙
′) ← 𝜙 ′ ;

17 𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝐿 ← 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ∪ {𝑙 ′};

18 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 ← 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 ∪ {(𝑙 ′,I−𝑄 (𝑙
′))};

19 end

20 end

21 end

22 return I−𝑄 ;

Algorithm 6: Strengthen(𝜑, 𝑙)

Input: An assertion 𝜑 in DNF, and a location 𝑙 of 𝑄
Output: A strengthened assertion𝜓

1 if Vars(𝜑) ∩ 𝜉𝐼𝑉𝑎𝑟 (𝑙) = ∅ then
2 𝜓 ← 𝜑 ;

3 else

4 𝜓 ← ⊥ ;

5 foreach cube ∈ 𝜑 do

6 if Vars(cube) ∩ 𝜉𝐼𝑉𝑎𝑟 (𝑙) = ∅ then
7 𝜓 ← 𝜓 ∨ cube ;

8 end

9 end

10 end

11 return𝜓 ;

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

184:14 Qianshan Yu, Fei He, and Bow-Yaw Wang

is newly added location. The assertions I−𝑄 (𝑙3.3) and I
−
𝑄 (𝑙4) are also ⊥ because the exploration from

𝑙3.2 is stopped. I
−
𝑄 (𝑙7) is strengthened to ⊥ since the variables in I−𝑃 (𝜉𝐿𝑜𝑐 (𝑙7)) overlaps 𝜉𝐼𝑉𝑎𝑟 (𝑙7).

4.5 Incremental Algorithm for Regression Verification

Our incremental predicate analysis algorithm takes a program 𝑄 and an initial annotation I−𝑄 as

inputs. It returns either łsafež with a certified annotation I𝑄 or łunsafež with a feasible abstract
counterexample 𝜎 . Standard predicate analysis can be seen as a special case of our algorithm by
setting the initial annotation on each location to ⊥.

Algorithm 7 presents our incremental predicate analysis algorithm integrated with the CEGAR
framework. The algorithm consists of three phases. In the first phase, the algorithm initializes
𝑟𝑒𝑎𝑐ℎ𝑒𝑑 and 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 by I−𝑄 (lines 1 ś 2). The initial abstract precision is initialized as the set of

atomic predicates occurred in I−𝑄 (line 3). The second phase (lines 4 ś 13) is exactly as same as

in classical predicate analysis (Algorithm 1). After a fixed point of reached is obtained, we check
if the error location is reached in the third phase. If it is not in 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 , the algorithm concludes
that the program is łsafež and returns the annotation as a proof (lines 15 ś 16). Otherwise, an

abstract counterexample (𝑙0,⊤)
𝑜𝑝0
−−→ · · ·

𝑜𝑝𝑛
−−−→ (𝑙𝑒𝑟𝑟 , 𝜙𝑒𝑟𝑟) is obtained. If this abstract counterexample

is spurious, the algorithm employs the Refine algorithm [Beyer et al. 2008; Cimatti et al. 2008;
McMillan 2006] for refining the current precision 𝜆 (line 22) and restarts the second phase.

Our incremental algorithm extends classical predicate analysis by allowing an initial annotation.
Note that the annotation I−𝑄 is constructed from I𝑃 . For each location 𝑙 , the annotation I−𝑄 (𝑙)

represents a set of abstract states that were explored in the verification of 𝑃 . By reusing I−𝑄 (𝑙), our

algorithm removes the redundancy of exploring same abstract states in I𝑃 (𝑙) during the verification
of 𝑄 . In other words, the exploring history in the verification of the original program is reused in
regression verification. If the program 𝑄 is safe, the returned I𝑄 can also be used for regression
verification of subsequent revisions.

Lemma 4.6. The annotation I𝑄 constructed at line 15 in Algorithm 7 is a certified annotation.

Proof. Let 𝑙0 be the initial location of𝑄 , we have I−𝑄 (𝑙0) = ⊤ (line 1, Algorithm 5) and I𝑄 (𝑙0) =

I−𝑄 (𝑙0) (line 2, Algorithm 7).

For any abstract state (𝑙 ′, 𝜙 ′) ∈ 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 with 𝑙 ′ different from 𝑙0, there are two cases:

• if the abstract data state 𝜙 ′ is set by I−𝑄 (line 1, Algorithm 7), there must be another abstract

state (𝑙, 𝜙) ∈ 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 such that 𝜙 = I−𝑄 (𝑙) and {𝜙}𝑜𝑝{𝜙
′} is valid (Lemma 4.4).

• if the abstract data state 𝜙 ′ is computed at at line 7 of Algorithm 7, there must be a predecessor
abstract state (𝑙, 𝜙) ∈ 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 such that 𝜙 ′ = (SP𝑜𝑝 (𝜙))

𝜆 . Hence {𝜙}𝑜𝑝{𝜙 ′} is valid.

To summarize, for any abstract state (𝑙 ′, 𝜙 ′) ∈ 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 , there must be an abstract state (𝑙, 𝜙) ∈
𝑟𝑒𝑎𝑐ℎ𝑒𝑑 such that {𝜙}𝑜𝑝{𝜙 ′} is valid. Given that I𝑄 (𝑙) and I𝑄 (𝑙

′) are both disjunctions of reached
abstract data states (line 3, Algorithm 2), we conclude that {I𝑄 (𝑙)}𝑜𝑝{I𝑄 (𝑙

′)} is valid.
Therefore, I𝑄 is valid (Definition 3.2). Moreover, since 𝑙𝑒𝑟𝑟 is not reached, its annotation is ⊥.

The constructed annotation is certified (Definition 3.3). □

Theorem 4.7. If Algorithm 7 returns (łSafež,I𝑄), the program is safe andI𝑄 is a certified annotation.
If Algorithm 7 returns (łUnsafež, 𝜎), the program is unsafe and 𝜎 is a feasible abstract counterexample.

4.6 Discussion

Our technique can be understood more easily through abstract interpretation [Cousot and Cousot
1977]. If one sees predicate analysis as an instance of abstract interpretation, annotations are
simply fixed points in the predicate abstract domain. The program verification problem is hence

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

Incremental Predicate Analysis for Regression Verification 184:15

Algorithm 7: IPA(𝑄,I−𝑄)

Input: A program 𝑄 and an initial annotation I−𝑄
Output: łSafež and a certificate I𝑄 , or łunsafež and a feasible abstract counterexample 𝜎

/* Phase 1: Initialization */

1 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ← {(𝑙,I−𝑄 (𝑙)) | I
−
𝑄 (𝑙) ≠ ⊥};

2 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 ← {(𝑙,I−𝑄 (𝑙)) | I
−
𝑄 (𝑙) ≠ ⊥};

3 𝜆 ← {𝑝 | 𝑝 occurs in I−𝑄 (𝑙) for some 𝑙};

/* Phase 2: Compute the reachable set w.r.t. 𝜆 */

4 while𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 ≠ ∅ do
5 pop (𝑙, 𝜙) from waitlist;

6 foreach 𝑙 ′ with (𝑙, 𝑜𝑝, 𝑙 ′) ∈ 𝐺 do

7 𝜙 ′← (SP𝑜𝑝 (𝜙))
𝜆 ;

8 if (𝑙 ′, 𝜙 ′) is not covered by reached then

9 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ← 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ∪ {(𝑙 ′, 𝜙 ′)};

10 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 ← 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 ∪ {(𝑙 ′, 𝜙 ′)};

11 end

12 end

13 end

/* Phase 3: Report or refine */

14 if �𝜙𝑛 .(𝑙𝑒𝑟𝑟 , 𝜙𝑛) ∈ 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 then

15 I𝑄 ← annotation(𝑄, 𝑟𝑒𝑎𝑐ℎ𝑒𝑑);

16 return (łSafež, I𝑄);

17 else

18 Let 𝜎 be an abstract counterexample (𝑙0,⊤)
𝑜𝑝0
−−→ · · ·

𝑜𝑝𝑛
−−−→ (𝑙𝑒𝑟𝑟 , 𝜙𝑒𝑟𝑟) in reached;

19 if 𝜎 is feasible then
20 return (łUnsafež, 𝜎);

21 else

22 𝜆 ← Refine(𝜆, 𝜎);

23 goto 4 ; // Phase 2

24 end

25 end

reduced to fix-point computation in abstract interpretation. In order to verify a revised program,
it suffices to compute a fixed point for the revision based on the fixed point for the original. To
do so, we first identify potential semantic changes through syntactic heuristics in change impact
analysis (Section 4.3). Based on impact analysis, unaffected abstract states computed in the original
program are reused or strengthened by syntactic heuristics. Fixed point computation for the revised
program then starts from such abstract states (Section 4.5). Compared to accurate semantic impact
or strengthening techniques, our syntactic heuristics are much more efficient. Trade-off between
efficiency and accuracy is again not uncommon in abstract interpretation. We carefully design our
incremental predicate analysis for efficiency. Our design choices will be justified in the next section.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

184:16 Qianshan Yu, Fei He, and Bow-Yaw Wang

Our technique can also be applied to other abstract domains. We briefly explain how to adapt
our techniques in the explicit-value domain. In the explicit-value domain, we wish to track explicit
values of certain program variables. An abstract precision 𝜆 in the explicit-value domain is a subset
𝑋 ⊆ 𝑉 of program variables. We are interested in values of program variables in 𝑋 .

Consider an integer variable 𝑣 ∈ 𝑋 , its abstract domain is Z ∪ {⊤𝑍 ,⊥𝑍 }. ⊤𝑍 means 𝑣 can take
any values in Z. ⊥𝑍 indicates no possible assignment for 𝑣 . An abstract state in the explicit-value
domain is a pair (𝑙, 𝑠) where 𝑙 is a location and 𝑠 is a valuation of all variables in 𝜆.
Change impact analysis relies only one program texts and is applicable regardless of abstract

domains. Let (𝑙, 𝑠1), (𝑙, 𝑠2) be two abstract states in the explicit-value domain. For any 𝑣 ∈ 𝑋 , define

(𝑠1 ∨ 𝑠2) (𝑣) =

{
𝑠1 (𝑣) 𝑖 𝑓 𝑠1 (𝑣) = 𝑠2 (𝑣)
⊤𝑍 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

That is, the join of any two abstract data states is another abstract data state. Recall Algorithm 2.
The above definition ensures that assertions on any location is an abstract data state in the explicit-
value domain. Given a set of impacted variables 𝜉𝐼𝑉𝑎𝑟 (𝑙) at 𝑙 and an abstract data state 𝑠 , define the
abstract data state Strengthen(𝑠) as follows (Algorithm 6).

Strengthen(𝑠) (𝑣) =

{
⊥𝑍 𝑣 ∈ 𝜉𝐼𝑉𝑎𝑟 (𝑙)
𝑠 (𝑣) 𝑣 ∉ 𝜉𝐼𝑉𝑎𝑟 (𝑙)

for any 𝑣 ∈ 𝑋 . With slight but standard modification, Algorithm 7 can then be used to analyze
explicit values of variables incrementally.

5 EVALUATION

In this section, we describe our implementation and conduct extensive experiments on industrial
programs to evaluate performance of our technique. Through the experiments, we will answer the
following research questions:

• RQ1: How effective is our technique compared to classical predicate analysis in practice?
• RQ2: How significant is the impact of annotation reuse on efficiency of our technique?

5.1 Implementation

We implemented our algorithms on top of the software verification tool CPAchecker [Beyer and
Keremoglu 2011]. CPAchecker provides a configurable program analysis framework and offers
mainstream software verification algorithms such as predicate analysis and CEGAR. By adopting
these techniques from CPAchecker, it is straightforward to integrate our incremental algorithm
(Algorithm 7) in the program analysis framework.

Specifically, we implement the following features in CPAchecker to realize our incremental
predicate analysis technique:

• a CFADiff procedure1;
• a static change impact analysis procedure;
• a persistent representation (the SMT-LIB format [Barrett et al. 2010]) for annotations; and
• the annotation reuse and strengthening procedures.

5.2 Experimental Setup

We used 1,119 real revisions of 62 Linux device drivers to conduct the empirical evaluation.
All revisions were extracted from the Linux kernel and prepared for verification by the LDV

1The implementation is based on https://github.com/kientuong114/SimilarityFlooding.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

https://github.com/kientuong114/SimilarityFlooding

Incremental Predicate Analysis for Regression Verification 184:17

toolkit [Khoroshilov et al. 2010; Mandrykin et al. 2012]. A device driver may have multiple specifi-
cations obtained from [Beyer et al. 2013]. A verification task consists of a program revision and a
specification. For each device driver, the initial version is verified from scratch. Verification tasks of
the same device driver and the same specification are performed incrementally. The annotation of
the previous revision is reused in the next revision. There are 259 driver/specification pairs (called
verification cases) resulted in 4,193 verification tasks. Among them, 3,934 are regression verification
tasks.
All experiments are carried out on a machine with 2.6 GHz Intel Xeon E5-2640 CPU with 32

cores and 128GB RAM. We use Ubuntu 16.04 (64-bit) with Linux 4.4.0 and jdk1.8.0. CPAchecker
is configured with the predicateAnalysis-ABE [Beyer et al. 2010] option. Each verification task is
limited to 300 seconds in CPU time, 2 CPU cores and 10 GB in Java heap size.

5.3 Overall Results of 𝐼𝑃𝐴 (RQ1)

We present the overall experimental results of our technique in this section. Classical predicate
analysis (called 𝑃𝐴) is the baseline algorithm in this comparison. 𝐼𝑃𝐴 refers to our incremental
predicate analysis technique. To evaluate the effect of 𝐼𝑃𝐴 and answer RQ1, we use the same
configurations for 𝑃𝐴 and 𝐼𝑃𝐴 in CPAchecker.

Detailed experimental results are shown in Table 1. Each line represents a verification case. Only
40 best and 10 worst cases are listed due to space limitation. In Verification Case, the following
information is provided:

• Driver is the name of device driver;
• Spec. is the name of specification (see [Beyer et al. 2013]);
• LoC denotes the lines of code for the initial version;
• #Solve is the number of regression verification tasks solved by both techniques. The expression
𝑋 + 𝑌 means that 𝑋 are solved by both techniques and additional 𝑌 tasks are solved by 𝐼𝑃𝐴;
• 𝑇1𝑠𝑡 is the analysis time for verifying the first version.

The columns 𝑃𝐴 and 𝐼𝑃𝐴 present the experimental results of baseline and our technique. We report
the number of abstract states (#Abs) and the analysis time 𝑇𝑎 of regression verification tasks solved
by both techniques in Table 1. The metric #Abs measures the computation efforts of abstract state
space, 𝑇𝑑𝑖ff measures the time for calculating program differences (CFADiff), 𝑇𝑎𝑛𝑛𝑜 represents the
time for reusing annotations (ReuseAnnotation), and 𝑇𝐼𝑂 represents the time for loading/writing
annotations. We also count the total time required by 𝐼𝑃𝐴, i.e.,𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑎 +𝑇𝑑𝑖ff +𝑇𝑎𝑛𝑛𝑜 +𝑇𝐼𝑂 . Note
that all the time metrics are the CPU time in seconds. Additionally, the FSize column lists the size
of annotation files (in kilobyte). The SU𝑎 and SU columns show the average speedups of 𝐼𝑃𝐴 over
𝑃𝐴 on the analysis time (calculated by 𝑇 𝑃𝐴

𝑎 /𝑇
𝐼𝑃𝐴
𝑎) and on the total time (calculated by 𝑇 𝑃𝐴

𝑎 /𝑇
𝐼𝑃𝐴
𝑡𝑜𝑡𝑎𝑙

),
respectively. Table 1 is sorted by SU𝑎 . The last two rows (Total and Average) show the total and
average amount of solved verification cases, respectively. Note that 18 verification cases cannot
be solved by either techniques. Table 1 thus contains 241 verification case results. Although 𝐼𝑃𝐴

solved 393 more regression verification tasks, Table 1 only reports the 3,407 tasks solved by both
techniques.
From the table, we see that 𝐼𝑃𝐴 wins in all verification cases in regard to analysis time (𝑇𝑎)

and the average speedup of analysis time (SU𝑎) is 16.8x. Comparing the columns #Abs of 𝑃𝐴 and
𝐼𝑃𝐴, we find that our incremental technique reduces the number of abstract states dramatically
(97.6% in total). This is consistent with the overall speedup of analysis time (SU𝑎). It suggests that
the computation of abstract states takes up the majority of time in predicate analysis, and 𝐼𝑃𝐴

successfully reduces such computation. When considering the total time, the average speedup (SU)
is 2.8x. The average time of 𝑇𝑑𝑖ff and 𝑇𝑎𝑛𝑛𝑜 among all solved verification cases are 170.1 and 62.9

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

184:18 Qianshan Yu, Fei He, and Bow-Yaw Wang

Table 1. Overall experimental results on real revisions

Verification Case PA IPA SU𝑎 SU
Driver Spec. LoC #Solve 𝑇1𝑠𝑡 #Abs 𝑇𝑎 #Abs 𝑇𝑎 𝑇𝑑𝑖ff 𝑇𝑎𝑛𝑛𝑜 𝑇𝐼𝑂 𝑇𝑡𝑜𝑡𝑎𝑙 FSize

wm831x 39_7a 5183 33 94.8 7.7M 6.4K 2.0K 14.0 126.6 74.3 9.4 224.3 56.5 459.4 28.6
rtl28xxu 39_7a 10263 9 19.1 43.4K 227.5 30 0.6 34.4 41.5 2.4 78.8 14.2 373.0 2.9
wm831x 08_1a 4579 33 57.8 3.9M 4.1K 2.0K 12.8 129.9 73.4 6.5 222.6 40.3 321.5 18.4
wl12xx 32_7a 6813 37 14.0 341.0K 671.3 167 2.2 136.3 43.1 6.9 188.5 43.2 307.9 3.6
wl12xx 08_1a 6661 37 14.0 324.7K 630.7 167 2.3 139.1 43.7 5.1 190.2 41.0 279.1 3.3
wl12xx 39_7a 8578 37 84.8 3.9M 3.5K 947 14.0 142.3 69.8 12.7 238.8 94.6 250.9 14.7
wm831x 39_7a 4174 19 44.9 369.6K 656.5 264 2.6 50.5 34.5 3.1 90.7 29.1 250.6 7.2
cx231xx 39_7a 9959 1+11 229.6 272.7K 239.7 60 1.0 6.2 4.3 0.3 11.7 2.9 247.1 20.5
wm831x 68_1 6569 2 88.4 347.6K 277.2 259 1.2 5.3 5.7 0.5 12.7 3.4 221.7 21.9
rtl28xxu 32_7a 9296 9 9.2 13.6K 116.2 30 0.5 35.5 39.1 1.7 76.9 10.6 219.2 1.5
gpio 32_7a 3890 19 25.9 287.4K 540.2 269 2.8 51.1 33.7 2.9 90.4 25.4 195.0 6.0
i915 68_1 13916 78 43.3 2.1M 4.1K 4.9K 23.0 1.3K 319.9 31.7 1.7K 150.3 179.4 2.4
wm831x 32_1 5339 2 63.5 261.2K 253.2 259 1.5 5.9 6.5 0.6 14.6 3.2 164.4 17.4
rtl28xxu 08_1a 8705 9 5.5 4.1K 72.7 30 0.5 34.9 36.6 1.3 73.3 8.5 161.6 1.0
i915 32_1 13557 78 32.7 1.4M 3.4K 4.9K 22.4 1.4K 312.8 32.6 1.8K 145.5 150.5 1.9
i915 08_1a 11157 78 34.2 1.1M 3.5K 4.8K 26.0 1.1K 292.9 32.5 1.5K 144.5 135.0 2.4
gpio 08_1a 3524 19 16.2 94.6K 273.6 264 2.5 52.3 32.5 2.2 89.4 21.3 111.7 3.1
tcm_loop 39_7a 12515 30+10 134.3 5.6M 5.1K 3.7K 46.5 133.0 93.4 18.4 291.2 167.5 109.4 17.4
cx231xx 08_1a 8241 1+11 68.7 24.1K 73.8 60 0.7 7.3 4.7 0.1 12.8 1.2 101.1 5.8
cx231xx 32_7a 8393 1+2 68.7 24.1K 74.6 60 0.7 7.1 4.1 0.1 12.0 1.3 100.8 6.2
uartps 39_7a 6518 2 146.1 346.7K 284.2 184 2.9 8.8 10.7 0.8 23.3 14.8 96.7 12.2
uartps 08_1a 5239 2 91.2 95.2K 198.4 124 2.1 9.0 9.0 0.6 20.6 6.0 96.3 9.6
vsxxxaa 68_1 5869 1 32.2 33.1K 49.8 69 0.5 4.9 1.7 0.3 7.4 1.5 94.0 6.7
uartps 32_7a 5393 2 88.3 95.4K 187.4 124 2.1 8.7 9.6 0.6 21.0 6.2 88.8 8.9
dp83640 08_1a 7454 15 130.0 2.4M 2.0K 3.5K 23.8 77.3 57.2 6.2 164.6 42.8 85.3 12.4
vsxxxaa 32_1 5484 1 25.5 21.4K 39.1 69 0.5 4.2 2.0 0.2 6.9 1.4 78.3 5.7
vsxxxaa 43_1a 4373 1 18.3 6.2K 19.0 34 0.3 3.6 1.6 0.2 5.6 1.7 72.9 3.4
i915 39_7a 14298 78 68.0 4.1M 6.6K 20.8K 105.8 1.2K 379.6 49.4 1.7K 327.1 62.5 3.9
sercos3 08_1a 3908 4 6.9 2.8K 27.8 28 0.5 16.3 5.6 0.6 23.0 5.0 57.9 1.2
uartlite 39_7a 6216 8 88.2 666.8K 679.6 1.0K 12.0 31.4 27.3 3.3 74.0 29.9 56.7 9.2
tcm_loop 08_1a 10264 40 40.6 2.8M 2.8K 8.4K 50.4 193.7 84.5 13.1 341.7 66.7 55.1 8.1
az6007 08_1a 7912 4 84.9 1.6M 807.1 4.1K 14.9 19.9 19.0 0.9 54.7 4.9 54.2 14.7
farsync 43_1a 7046 8 32.1 536.4K 458.8 1.3K 8.5 125.9 20.8 2.8 158.0 13.6 54.0 2.9
catc 32_1 6245 9 21.4 294.7K 427.5 1.0K 8.2 57.0 21.8 2.0 89.0 11.1 52.3 4.8
ems_usb 39_7a 9647 20 168.9 4.1M 3.3K 12.5K 63.8 98.0 34.6 9.0 205.4 90.3 51.4 16.0
sil164 39_7a 7026 2 74.3 134.4K 149.8 302 3.2 13.5 6.0 0.6 23.3 5.5 47.1 6.4
matroxfb 39_7a 6148 6 42.8 145.9K 211.9 539 4.6 29.9 14.1 2.4 51.0 18.3 46.6 4.2
keyspan 43_1a 4729 2 3.8 570 7.6 18 0.2 7.7 3.2 0.2 11.3 2.3 44.5 0.7
tcm_loop 32_7a 10415 40 40.5 3885.8K 3.2K 9.7K 73.9 190.3 103.7 16.1 384.0 116.2 42.7 8.2
mtdoops 39_7a 4036 34 22.2 160.3K 587.3 923 13.9 82.2 95.0 5.8 196.8 51.5 42.4 3.0

.

.

.

.

.

.

.

.

.
paride 32_7a 5163 8 37.0 85.3K 319.6 70.6K 258.8 33.8 94.8 1.8 389.2 10.0 1.2 0.8
magellan 08_1a 3814 1 15.0 3.2K 15.3 3.2K 12.5 5.9 0.0 0.2 18.6 1.4 1.2 0.8
abyss 32_7a 4036 3 3.0 150.2K 131.6 150.2K 113.1 27.5 3.6 0.4 144.6 3.1 1.2 0.9
algo-pca 43_1a 3031 6 1.5 672 16.8 672 14.5 24.8 0.0 0.7 40.0 5.7 1.2 0.4
ar7part 43_1a 1000 1 0.6 28 1.4 28 1.3 1.9 0.0 0.1 3.2 0.8 1.1 0.4
budget 32_7a 6243 4+2 91.2 250.2K 405.5 250.1K 390.7 25.8 3.9 1.5 421.9 4.7 1.0 1.0
mos7840 32_7a 8869 28+30 5.5 23.5K 159.6 22.0K 155.9 301.1 67.9 10.0 534.8 46.4 1.0 0.3
twidjoy 08_1a 3763 1 10.7 2.0K 9.7 2.0K 9.5 5.7 0.0 0.0 15.2 0.0 1.0 0.6
spaceorb 08_1a 3879 1 15.4 4.6K 14.4 4.6K 14.3 5.8 0.0 0.0 20.1 0.0 1.0 0.7
dmx3191d 32_7a 6842 1 1.9 48.6K 50.1 45.9K 49.8 22.1 0.8 0.3 73.0 1.1 1.0 0.7

Total - 1.5M 3407 8.2K 153.7M 188.6K 3.7M 11.2K 41.0K 15.1K 1.2K 68.5K 8.2K - -
+393

Average - 6.3K 15 34.0 637.8K 782.7 15.5K 46.6 170.1 62.9 4.8 284.4 34.1 16.8 2.8

seconds, respectively, both longer than the average analysis time (46.6s). The annotation I/O time
(𝑇𝐼𝑂) and the annotation file size (FSize) are negligible ś the average time of annotation I/O among
all solved cases is 4.8 seconds, and the average size of annotation files among all solved cases is
34.1KB. Looking at the worst 10 cases in Table 1, 𝐼𝑃𝐴 consumes more total time than 𝑃𝐴. This is
mainly due to the unavoidable overheads of CFADiff and ReuseAnnotation procedures. On the
other hand, 𝐼𝑃𝐴 also benefits from these two procedures by achieving 2.8x overall speedup.
Fig. 5 compares 𝑃𝐴 and 𝐼𝑃𝐴 in total time, number of abstract states, and memory usage. Each

(green) cross compares a metric between two techniques for a regression verification task (3,407
crosses plotted in total). The X- and Y-axes represent the results of 𝐼𝑃𝐴 and 𝑃𝐴. Crosses above
the dotted diagonal line indicate that 𝐼𝑃𝐴 performs better. Fig. 5(a) compares total time. We

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

Incremental Predicate Analysis for Regression Verification 184:19

P
A

0

60

120

180

240

300

IPA

0 60 120 180 240 300

(a) Total time (s)

P
A

0K

100K

200K

300K

400K

500K

IPA

0K 100K 200K 300K 400K 500K

(b) #Abs

P
A

0

1

2

3

4

IPA

0 1 2 3 4

(c) Memory usage (GB)

Fig. 5. Comparison of analysis time, number of abstract states and memory usage between 𝑃𝐴 and 𝐼𝑃𝐴

observe numerous verification tasks near the Y-axis, where 𝐼𝑃𝐴 performs exceptionally better. The
verification tasks that below the diagonal take more time on the CFADiff and ReuseAnnotation

procedures. Similarly, each cross in Fig. 5(b) compares 𝐼𝑃𝐴 and 𝑃𝐴 in the number of abstract states.
The crosses lying on the diagonal represent tasks where both techniques behave similarly. And
the crosses close to the Y-axis represent cases where 𝐼𝑃𝐴 reused most of the annotations from
previous revisions. Only in very few tasks that 𝐼𝑃𝐴 introduces more abstract states (crosses blew the
diagonal), which reveals that in the worst case, the annotations include redundant predicates for the
current verification. Recall the line 3 in Algorithm 7, the initial precision 𝜆 will be initialized with
such redundant atomic predicates, which may introduces more abstract states. Fig. 5(c) compares
memory usage of the two techniques. Again, the crosses tend to be above the diagonal. They
indicate that 𝐼𝑃𝐴 requires less memory in most tasks. The crosses below the diagonal indicates the
verification tasks that consume more memory on the CFADiff and ReuseAnnotation procedures.

𝐼𝑃𝐴 solves additional 393 tasks with 43.7 seconds on average. The pie chart in Fig. 6 presents the
distribution of analysis time for the 393 tasks. The majority of them (82%) take less than 1 minute.
About 8% of tasks need more time to solve (more than 2 minutes). Fig. 6 demonstrates the efficiency
of 𝐼𝑃𝐴 on tasks unsolved by 𝑃𝐴 within 300 seconds time limit.
Answer to RQ1. Extensive experiments on industrial programs suggest that our incremental

predicate analysis technique is effective and efficient compared with the classical predicate analysis.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

184:20 Qianshan Yu, Fei He, and Bow-Yaw Wang

8%

10%

76%

6%

0-10s 10s-1min 1-2mins 2-5mins

Fig. 6. Distribution of analysis time for 𝐼𝑃𝐴 on 393 timeout tasks

Fig. 7. Speedup on verification tasks with specific minimal RR

5.4 Effect of Annotation Reuse (RQ2)

Reusability of annotation is a vital metric in our experiments. Fig. 7 illustrates the relationship
between reusable rate (RR) and the speedup in analysis time (𝑇𝑎). In the figure, the Y-axis shows the
speedup gained by 𝐼𝑃𝐴. The X-axis represents the minimal RR in verification tasks. For example,
if the minimal RR is 0, SU𝑎 is equal to 16.8. Similarly, we consider the 3,407 tasks solved by both
techniques. In general, the speedup increases considerably with the growth of minimal RR. Fig. 7
demonstrates the benefits of annotation reuse.
Answer to RQ2. Annotation reuse has a noticeable and positive impact on the effectiveness of

𝐼𝑃𝐴 in analysis time.

5.5 Discussion

Our implementation of the CIA algorithm is simple. For example, for a given predicate 𝑖 < 𝑁 , if
variable 𝑖 is considered to be impacted by CIA, all assertions containing 𝑖 < 𝑁 are affected. The
predicate 𝑖 < 𝑁 may not be impacted when 𝑖 changed. In this respect, a more precise CIA algorithm
should be considered. However, our technique achieves considerable performance by introducing
only a little overhead into 𝐼𝑃𝐴 in current implementation.

In our experiments, only C programs of Linux device drivers are evaluated. However, it does not
mean that our technique is limited to specific language or scope. In fact, our technique is capable

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

Incremental Predicate Analysis for Regression Verification 184:21

of programs that can be verified using predicate analysis on CFA. The Linux device drivers contain
many complex syntactic structures and such as struct, array, loop and so on. The effectiveness on
this scope thus convinces us that our technique is adaptive to other scopes.

6 RELATED WORK

𝐼𝑃𝐴 is built on top of classical predicate analysis and change impact analysis. The related techniques
are reviewed below.

6.1 Predicate Analysis

Predicate analysis and related techniques have been studied for a long time. Graf and Saidi [1997]
firstly parameterized predicate abstraction by tracking values of a set of predicates in the abstract
model. Clarke et al. [2000] proposed the counterexample-guided abstraction refinement framework.
Henzinger et al. [2004] proposed to combine Craig interpolation with predicate abstraction. Their
technique provides an efficient way of discovering new predicates from spurious counterexamples.
In [Henzinger et al. 2002], the authors introduced a paradigm that refines abstract models on
demand by allowing different abstract precisions for different program locations. The techniques
above are implemented in CPAchecker. Block-abstraction memorization was proposed in [Wonisch
and Wehrheim 2012] where predicate analysis can benefit from the cached information of previous
block analysis. These techniques aim to optimize the predicate analysis to verify single program
version. In contrast, 𝐼𝑃𝐴 is designed for dealing with two programs, such as regression verification.

6.2 Change Impact Analysis

Change impact analysis [Arnold 1996] is the process of identifying the potential consequences of a
change, or estimating what needs to be modified to accomplish a change. Many CIA techniques
have recently been applied to the source code level [Gallagher and Lyle 1991; Ryder and Tip 2001].
The source code level CIA can be classified into three categories: static approach, dynamic approach,
and online approach. The static approach extracts facts from source codes or documents to assess
impacts of the change [Antoniol et al. 2000; Chaumun et al. 2002; Gallagher and Lyle 1991; Ryder
and Tip 2001]. The dynamic and online approaches collect runtime information from program
execution [Apiwattanapong et al. 2005; Breech et al. 2004]. The CIA technique that we implemented
is a static code-level CIA. The result that we get by CIA algorithm is not the set of impacted
statements but the affected variables for every program location.
Other methods used change impact analysis to invalidate summaries or guide incremental

symbolic execution [Godefroid et al. 2011; Yang et al. 2014]. We utilize this technique to identify
the reusable annotations of predicate analysis. To the best of our knowledge, ours is the first to
apply CIA to predicate analysis-based regression verification.

6.3 Regression Verification

Regression verification is firstly introduced by [Godlin and Strichman 2009], where it mainly refers
to the equivalence checking between revisions. Later, this terminology has been extended in kinds
of literature (e.g., [Beyer et al. 2013; Fedyukovich et al. 2013; Visser et al. 2012; Yang et al. 2009]) for
referring the procedure of re-verifying or re-analyzing the changed systems, where the techniques
of regression verification are often based on the reuse of previously-computed intermediate results.
As a result, there are two research lines for regression verification, i.e., equivalence checking and
reusing intermediate results.

In the research line of regression verification as equivalence checking, the group of approaches
take two programs as input and conduct equivalence check. The method for proving conditional
equivalence of two programs by isolating and abstracting functions is proposed in [Chaki et al.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

184:22 Qianshan Yu, Fei He, and Bow-Yaw Wang

2012; Godlin and Strichman 2009]. Some approaches can check that a property keeps satisfied by
programs changes. Lahiri et al. [2013] applied the equivalence check of two programs to detect if the
properties that hold previously can also hold in new program version. Klebanov et al. [2018] studied
how equivalence proofs can be conducted effectively if the programs to be compared have a similar
control flow. Instead of employing the equivalence check, our approach takes the light-weight
CIA to approximate the potential changed intermediate verification result. And then we apply the
reusable intermediate result to the new program version.
In the literature of regression verification as re-verifying or re-analyzing the changed systems,

researchers proposed various information for reusing in regression verification. The type of reused
information depends on the underlying verification techniques. In [Henzinger et al. 2003a; Lauter-
burg et al. 2008; Yang et al. 2009], state space graph is proposed to be reused in regression verification,
which is usually computed by explicit model checking. However, the state-space graph may be
too large to be efficiently storing and processing. In [Fedyukovich et al. 2013; Sery et al. 2012], the
authors proposed to reuse Craig interpolation-based function summaries in regression verification.
This technique is mainly suitable for bounded model checking, and the interpolation computation
may incur considerable overheads. Rothenberg et al. [2018] proposed a regression verification
technique that reuses the previously generated Floyd-Hoare automata. The underlying verification
algorithm in [Rothenberg et al. 2018] is trace abstraction, which is quite different from the predicate
analysis. We propose to reuse assertion annotations that can be easily obtained from the results of
predicate analysis. We show that annotations are a good candidate of intermediate results for reuse
in incremental predicate analysis.
There are also some techniques that are compatible with predicate analysis and thus can be

combined with our techniques. In [Aquino et al. 2015; Jia et al. 2015; Visser et al. 2012], researchers
proposed techniques for caching and reusing constraint solving results. Given that constraint
solving is at the lower level than verification, these reusing techniques can be easily integrated
(after necessary adaption) with our approach. The work [Beyer et al. 2013] proposed to reuse
the abstract precision for CEGAR-based regression verification. The abstract precision at the last
iteration of CEGAR for verifying the older program version is reused as the initial abstract precision
in regression verification. Note that the abstract precision is high-level information of CEGAR.
Precision reuse does not deal with the model checking process in each iteration of CEGAR. In
contrast, our approach can handle the state space exploring process of predicate analysis. By reusing
the previously-generated assertions, a large portion of abstract state space can be pruned.

Other relevant works are [Fedyukovich et al. 2014, 2016] where the safe inductive invariants were
proposed for reuse. By adapting to the program changes, these invariants can form a valid safety
proof for optimized programs. However, this technique can only be applied to compiler optimizations
where the only permitted change is the reordering of program statements. In contrast, our technique
allows any modifications to programs including adding, revising or deleting statements. This
technique is not applicable to most programs in the benchmark that contain statement changes. It
was thus not compared in the experiments.

7 CONCLUSION

This paper proposed an incremental predicate analysis technique by reusing assertion annotation.
The assertion annotation for the previous revisions was proposed to be reused in the verification of
new revisions. A light-weight impact-analysis technique was designed for analyzing reusability
of assertions. A novel assertion strengthening technique was further developed. Soundness of
our technique was formally established. The proposed approach has been realized in CPAchecker.
Extensive experiments on real-world revisions of Linux drivers show promising performance of
the approach. In the future, we plan to work out incremental techniques in other abstract domains.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

Incremental Predicate Analysis for Regression Verification 184:23

It would also be interesting to improve impact analysis to raise reusability rates without sacrificing
too much efficiency.

ACKNOWLEDGMENTS

This work was partially funded by the NSF of China (No. 61672310 and No. 62072267), the National
Key R&D Program of China (No. 2018YFB1308601), and the Guangdong Science and Technology
Department (No. 2018B010107004).

REFERENCES

June Andronick, Ross Jeffery, Gerwin Klein, Rafal Kolanski, Mark Staples, He Zhang, and Liming Zhu. 2012. Large-Scale

Formal Verification in Practice: A Process Perspective. In Proceedings of the 34th International Conference on Software

Engineering (Zurich, Switzerland) (ICSE ’12). IEEE Press, New York, NY, USA, 1002ś1011. https://doi.org/10.1109/ICSE.

2012.6227120

Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, and Andrea De Lucia. 2000. Identifying the Starting Impact Set of a

Maintenance Request: A Case Study. In 4th European Conference on Software Maintenance and Reengineering (Zurich,

Switzerland) (CSMR 2000). IEEE Press, New York, NY, USA, 227ś230. https://doi.org/10.1109/CSMR.2000.827331

Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. 2005. Efficient and Precise Dynamic Impact Analysis

Using Execute-after Sequences. In Proceedings of the 27th International Conference on Software Engineering (St. Louis, MO,

USA) (ICSE ’05). Association for Computing Machinery, New York, NY, USA, 432ś441. https://doi.org/10.1145/1062455.

1062534

Andrea Aquino, Francesco A. Bianchi, Meixian Chen, Giovanni Denaro, and Mauro Pezzè. 2015. Reusing Constraint

Proofs in Program Analysis. In Proceedings of the 2015 International Symposium on Software Testing and Analysis

(Baltimore, MD, USA) (ISSTA 2015). Association for Computing Machinery, New York, NY, USA, 305ś315. https:

//doi.org/10.1145/2771783.2771802

Robert S. Arnold. 1996. Software Change Impact Analysis. IEEE Computer Society Press, Washington, DC, USA.

Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. 2001. Automatic Predicate Abstraction of C

Programs. In Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language Design and Implementation

(Snowbird, Utah, USA) (PLDI ’01). Association for Computing Machinery, New York, NY, USA, 203ś213. https://doi.org/

10.1145/378795.378846

Thomas Ball and Sriram K. Rajamani. 2001. The SLAM Toolkit. In Computer Aided Verification. Springer, Berlin, Heidelberg,

260ś264. https://doi.org/10.1007/3-540-44585-4_25

Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. The SMT-LIB standard: Version 2.0. In Proceedings of the 8th

International Workshop on Satisfiability Modulo Theories (Edinburgh, England), Vol. 13. 14.

Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. 2007. Configurable Software Verification: Concretizing the

Convergence of Model Checking and Program Analysis. In Computer Aided Verification. Springer, Berlin, Heidelberg,

504ś518. https://doi.org/10.1007/978-3-540-73368-3_51

Dirk Beyer and M. Erkan Keremoglu. 2011. CPAchecker: A Tool for Configurable Software Verification. In Computer Aided

Verification. Springer, Berlin, Heidelberg, 184ś190. https://doi.org/10.1007/978-3-642-22110-1_16

Dirk Beyer, M. Erkan Keremoglu, and Philipp Wendler. 2010. Predicate Abstraction with Adjustable-Block Encoding. In

Proceedings of the 2010 Conference on Formal Methods in Computer-Aided Design (Lugano, Switzerland) (FMCAD ’10).

FMCAD Inc, Austin, Texas, 189ś198. https://doi.org/10.5555/1998496.1998532

Dirk Beyer, Stefan Löwe, Evgeny Novikov, Andreas Stahlbauer, and Philipp Wendler. 2013. Precision Reuse for Efficient

Regression Verification. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering (Saint

Petersburg, Russia) (ESEC/FSE 2013). Association for Computing Machinery, New York, NY, USA, 389ś399. https:

//doi.org/10.1145/2491411.2491429

Dirk Beyer, Damien Zufferey, and Rupak Majumdar. 2008. CSIsat: Interpolation for LA+EUF. In Computer Aided Verification.

Springer, Berlin, Heidelberg, 304ś308. https://doi.org/10.1007/978-3-540-70545-1_29

Ben Breech, Anthony Danalis, Stacey A. Shindo, and Lori L. Pollock. 2004. Online Impact Analysis via Dynamic Compilation

Technology. In 20th International Conference on Software Maintenance (Chicago, IL, USA) (ICSM ’04). IEEE Press, New

York, NY, USA, 453ś457. https://doi.org/10.1109/ICSM.2004.1357834

Sagar Chaki, Arie Gurfinkel, and Ofer Strichman. 2012. Regression Verification for Multi-threaded Programs. In Verification,

Model Checking, and Abstract Interpretation. Springer, Berlin, Heidelberg, 119ś135. https://doi.org/10.1007/978-3-642-

27940-9_9

M.Ajmal Chaumun, Hind Kabaili, Rudolf K. Keller, and François Lustman. 2002. A change impact model for changeability

assessment in object-oriented software systems. Science of Computer Programming 45, 2 (2002), 155 ś 174. https:

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

https://doi.org/10.1109/ICSE.2012.6227120
https://doi.org/10.1109/ICSE.2012.6227120
https://doi.org/10.1109/CSMR.2000.827331
https://doi.org/10.1145/1062455.1062534
https://doi.org/10.1145/1062455.1062534
https://doi.org/10.1145/2771783.2771802
https://doi.org/10.1145/2771783.2771802
https://doi.org/10.1145/378795.378846
https://doi.org/10.1145/378795.378846
https://doi.org/10.1007/3-540-44585-4_25
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.5555/1998496.1998532
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1007/978-3-540-70545-1_29
https://doi.org/10.1109/ICSM.2004.1357834
https://doi.org/10.1007/978-3-642-27940-9_9
https://doi.org/10.1007/978-3-642-27940-9_9
https://doi.org/10.1016/S0167-6423(02)00058-8
https://doi.org/10.1016/S0167-6423(02)00058-8

184:24 Qianshan Yu, Fei He, and Bow-Yaw Wang

//doi.org/10.1016/S0167-6423(02)00058-8

Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. 2012. SMTInterpol: An Interpolating SMT Solver. In Model Checking

Software. Springer, Berlin, Heidelberg, 248ś254. https://doi.org/10.1007/978-3-642-31759-0_19

Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. 2008. Efficient Interpolant Generation in Satisfiability Modulo

Theories. In Tools and Algorithms for the Construction and Analysis of Systems. Springer, Berlin, Heidelberg, 397ś412.

https://doi.org/10.1007/978-3-540-78800-3_30

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000. Counterexample-Guided Abstraction

Refinement. In Computer Aided Verification. Springer, Berlin, Heidelberg, 154ś169. https://doi.org/10.1007/10722167_15

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs

by Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages (Los Angeles, California) (POPL ’77). Association for Computing Machinery, New York, NY,

USA, 238ś252. https://doi.org/10.1145/512950.512973

Satyaki Das, David L. Dill, and Seungjoon Park. 1999. Experience with Predicate Abstraction. In Computer Aided Verification.

Springer, Berlin, Heidelberg, 160ś171. https://doi.org/10.1007/3-540-48683-6_16

V. D’Silva, D. Kroening, and G. Weissenbacher. 2008. A Survey of Automated Techniques for Formal Software Verification.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27, 7 (2008), 1165ś1178. https://doi.org/

10.1109/TCAD.2008.923410

Grigory Fedyukovich, Arie Gurfinkel, and Natasha Sharygina. 2014. Incremental Verification of Compiler Optimizations. In

NASA Formal Methods. Springer, Berlin, Heidelberg, 300ś306. https://doi.org/10.1007/978-3-319-06200-6_25

Grigory Fedyukovich, Arie Gurfinkel, and Natasha Sharygina. 2016. Property Directed Equivalence via Abstract Simulation.

In Computer Aided Verification. Springer, Berlin, Heidelberg, 433ś453. https://doi.org/10.1007/978-3-319-41540-6_24

Grigory Fedyukovich, Ondrej Sery, and Natasha Sharygina. 2013. eVolCheck: Incremental Upgrade Checker for C. In Tools and

Algorithms for the Construction and Analysis of Systems. Springer, Berlin, Heidelberg, 292ś307. https://doi.org/10.1007/978-

3-642-36742-7_21

Keith Brian Gallagher and James R. Lyle. 1991. Using program slicing in software maintenance. IEEE transactions on software

engineering 17, 8 (1991), 751ś761. https://doi.org/10.1.1.39.1532

Patrice Godefroid, Shuvendu K. Lahiri, and Cindy Rubio-González. 2011. Statically Validating Must Summaries for In-

cremental Compositional Dynamic Test Generation. In Static Analysis. Springer, Berlin, Heidelberg, 112ś128. https:

//doi.org/10.1007/978-3-642-23702-7_12

Benny Godlin and Ofer Strichman. 2009. Regression Verification. In Proceedings of the 46th Annual Design Automation

Conference (San Francisco, California) (DAC ’09). Association for Computing Machinery, New York, NY, USA, 466ś471.

https://doi.org/10.1145/1629911.1630034

Susanne Graf and Hassen Saidi. 1997. Construction of abstract state graphs with PVS. In Computer Aided Verification.

Springer, Berlin, Heidelberg, 72ś83. https://doi.org/10.1007/3-540-63166-6_10

Fei He, Shu Mao, and Bow-Yaw Wang. 2016. Learning-Based Assume-Guarantee Regression Verification. In Computer Aided

Verification. Springer, Berlin, Heidelberg, 310ś328. https://doi.org/10.1007/978-3-319-41528-4_17

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. 2004. Abstractions from Proofs. In

Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Venice, Italy) (POPL

’04). Association for Computing Machinery, New York, NY, USA, 232ś244. https://doi.org/10.1145/964001.964021

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Marco A. A. Sanvido. 2003a. Extreme Model Checking. Springer,

Berlin, Heidelberg, 332ś358. https://doi.org/10.1007/978-3-540-39910-0_16

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. 2002. Lazy Abstraction. In Proceedings of the 29th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Portland, Oregon) (POPL ’02). Association

for Computing Machinery, New York, NY, USA, 58ś70. https://doi.org/10.1145/503272.503279

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. 2003b. Software Verification with BLAST. In

Model Checking Software. Springer, Berlin, Heidelberg, 235ś239. https://doi.org/10.1007/3-540-44829-2_17

Xiangyang Jia, Carlo Ghezzi, and Shi Ying. 2015. Enhancing Reuse of Constraint Solutions to Improve Symbolic Execution.

In Proceedings of the 2015 International Symposium on Software Testing and Analysis (Baltimore, MD, USA) (ISSTA 2015).

Association for Computing Machinery, New York, NY, USA, 177ś187. https://doi.org/10.1145/2771783.2771806

Alexey Khoroshilov, VadimMutilin, Alexander Petrenko, and Vladimir Zakharov. 2010. Establishing Linux Driver Verification

Process. In Perspectives of Systems Informatics. Springer, Berlin, Heidelberg, 165ś176. https://doi.org/10.1007/978-3-642-

11486-1_14

Vladimir Klebanov, Philipp Rümmer, and Mattias Ulbrich. 2018. Automating regression verification of pointer programs by

predicate abstraction. Formal methods in system design 52, 3 (2018), 229ś259. https://doi.org/10.1007/s10703-017-0293-8

Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, and Chris Hawblitzel. 2013. Differential Assertion Checking. In

Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering (Saint Petersburg, Russia) (ESEC/FSE

2013). Association for Computing Machinery, New York, NY, USA, 345ś355. https://doi.org/10.1145/2491411.2491452

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

https://doi.org/10.1016/S0167-6423(02)00058-8
https://doi.org/10.1016/S0167-6423(02)00058-8
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-540-78800-3_30
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/3-540-48683-6_16
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1007/978-3-319-06200-6_25
https://doi.org/10.1007/978-3-319-41540-6_24
https://doi.org/10.1007/978-3-642-36742-7_21
https://doi.org/10.1007/978-3-642-36742-7_21
https://doi.org/10.1.1.39.1532
https://doi.org/10.1007/978-3-642-23702-7_12
https://doi.org/10.1007/978-3-642-23702-7_12
https://doi.org/10.1145/1629911.1630034
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-319-41528-4_17
https://doi.org/10.1145/964001.964021
https://doi.org/10.1007/978-3-540-39910-0_16
https://doi.org/10.1145/503272.503279
https://doi.org/10.1007/3-540-44829-2_17
https://doi.org/10.1145/2771783.2771806
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1007/s10703-017-0293-8
https://doi.org/10.1145/2491411.2491452

Incremental Predicate Analysis for Regression Verification 184:25

Steven Lauterburg, Ahmed Sobeih, Darko Marinov, and Mahesh Viswanathan. 2008. Incremental State-Space Exploration for

Programs with Dynamically Allocated Data. In Proceedings of the 30th International Conference on Software Engineering

(Leipzig, Germany) (ICSE ’08). Association for Computing Machinery, New York, NY, USA, 291ś300. https://doi.org/10.

1145/1368088.1368128

M. M. Lehman and L. A. Belady. 1985. Program Evolution: Processes of Software Change. Academic Press Professional, Inc.,

USA.

Manny M Lehman, Dewayne E Perry, and Juan F Ramil. 1998. Implications of evolution metrics on software maintenance.

In Proceedings. International Conference on Software Maintenance (Cat. No. 98CB36272) (Bethesda, Maryland, USA) (ICSM

’98). IEEE Press, New York, NY, USA, 208ś217. https://doi.org/10.1109/ICSM.1998.738510

Meir M Lehman, Juan F Ramil, Paul D Wernick, Dewayne E Perry, and Wladyslaw M Turski. 1997. Metrics and laws of

software evolution-the nineties view. In Proceedings Fourth International Software Metrics Symposium (Albuquerque, NM,

USA). IEEE Press, New York, NY, USA, 20ś32. https://doi.org/10.1109/METRIC.1997.637156

Mikhail U Mandrykin, Vadim S Mutilin, EM Novikov, Alexey V Khoroshilov, and PE Shved. 2012. Using Linux device

drivers for static verification tools benchmarking. Programming and Computer Software 38, 5 (2012), 245ś256. https:

//doi.org/10.1134/S0361768812050039

Kenneth L. McMillan. 2006. Lazy Abstraction with Interpolants. In Computer Aided Verification. Springer, Berlin, Heidelberg,

123ś136. https://doi.org/10.1007/11817963_14

Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. 2002. Similarity flooding: A versatile graph matching algorithm

and its application to schema matching. In Proceedings 18th International Conference on Data Engineering (San Jose, CA,

USA). IEEE Press, New York, NY, USA, 117ś128. https://doi.org/10.1109/ICDE.2002.994702

Flemming Nielson, Hanne R Nielson, and Chris Hankin. 2015. Principles of program analysis. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-662-03811-6

Alessandro Orso, Taweesup Apiwattanapong, and Mary Jean Harrold. 2003. Leveraging Field Data for Impact Analysis

and Regression Testing. In Proceedings of the 9th European Software Engineering Conference Held Jointly with 11th ACM

SIGSOFT International Symposium on Foundations of Software Engineering (Helsinki, Finland) (ESEC/FSE-11). Association

for Computing Machinery, New York, NY, USA, 128ś137. https://doi.org/10.1145/940071.940089

Bat-Chen Rothenberg, Daniel Dietsch, and Matthias Heizmann. 2018. Incremental Verification Using Trace Abstraction. In

Static Analysis. Springer, Berlin, Heidelberg, 364ś382. https://doi.org/10.1007/978-3-319-99725-4_22

Barbara G. Ryder and Frank Tip. 2001. Change Impact Analysis for Object-Oriented Programs. In Proceedings of the 2001

ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (Snowbird, Utah, USA) (PASTE

’01). Association for Computing Machinery, New York, NY, USA, 46ś53. https://doi.org/10.1145/379605.379661

Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. 2012. Incremental upgrade checking by means of interpolation-

based function summaries. In Formal Methods in Computer-Aided Design (FMCAD), 2012 (Cambridge, UK). IEEE Press,

New York, NY, USA, 114ś121. http://ieeexplore.ieee.org/document/6462563/

Wladyslaw M Turski. 1996. Reference Model for Smooth Growth of Software Systems. IEEE Trans. Softw. Eng. 22, 8 (Aug.

1996), 1. https://doi.org/10.1109/32.536959

Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. 2012. Green: Reducing, Reusing and Recycling Constraints in

Program Analysis. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering (Cary, North Carolina) (FSE ’12). Association for Computing Machinery, New York, NY, USA, Article 58,

11 pages. https://doi.org/10.1145/2393596.2393665

Daniel Wonisch and Heike Wehrheim. 2012. Predicate Analysis with Block-Abstraction Memoization. In Formal Methods

and Software Engineering. Springer, Berlin, Heidelberg, 332ś347. https://doi.org/10.1007/978-3-642-34281-3_24

Guowei Yang, Matthew B Dwyer, and Gregg Rothermel. 2009. Regression model checking. In Software Maintenance, 2009.

ICSM 2009. IEEE International Conference on. IEEE Press, New York, NY, USA, 115ś124. https://doi.org/10.1109/ICSM.

2009.5306334

Guowei Yang, Suzette Person, Neha Rungta, and Sarfraz Khurshid. 2014. Directed Incremental Symbolic Execution. ACM

Trans. Softw. Eng. Methodol. 24, 1, Article 3 (Oct. 2014), 42 pages. https://doi.org/10.1145/2629536

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 184. Publication date: November 2020.

https://doi.org/10.1145/1368088.1368128
https://doi.org/10.1145/1368088.1368128
https://doi.org/10.1109/ICSM.1998.738510
https://doi.org/10.1109/METRIC.1997.637156
https://doi.org/10.1134/S0361768812050039
https://doi.org/10.1134/S0361768812050039
https://doi.org/10.1007/11817963_14
https://doi.org/10.1109/ICDE.2002.994702
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1145/940071.940089
https://doi.org/10.1007/978-3-319-99725-4_22
https://doi.org/10.1145/379605.379661
http://ieeexplore.ieee.org/document/6462563/
https://doi.org/10.1109/32.536959
https://doi.org/10.1145/2393596.2393665
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1109/ICSM.2009.5306334
https://doi.org/10.1109/ICSM.2009.5306334
https://doi.org/10.1145/2629536

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Program and Control-Flow Automata
	2.2 Predicate Analysis
	2.3 Counterexample-Guided Abstraction Refinement

	3 Assertion Annotation
	3.1 Hoare Triples and Annotation
	3.2 Assertion Annotation from Predicate Analysis
	3.3 Assertion Annotation for CEGAR

	4 Incremental Predicate Analysis
	4.1 Overview
	4.2 Program Differences
	4.3 Change Impact Analysis
	4.4 Annotation Reuse
	4.5 Incremental Algorithm for Regression Verification
	4.6 Discussion

	5 Evaluation
	5.1 Implementation
	5.2 Experimental Setup
	5.3 Overall Results of IPA (RQ1)
	5.4 Effect of Annotation Reuse (RQ2)
	5.5 Discussion

	6 Related Work
	6.1 Predicate Analysis
	6.2 Change Impact Analysis
	6.3 Regression Verification

	7 Conclusion
	References

