
232

Koord: A Language for Programming and Verifying

Distributed Robotics Application

RITWIKA GHOSH, University of Illinois at Urbana-Champaign, USA

CHIAO HSIEH, University of Illinois at Urbana-Champaign, USA

SASA MISAILOVIC, University of Illinois at Urbana-Champaign, USA

SAYAN MITRA, University of Illinois at Urbana-Champaign, USA

A robot’s code needs to sense the environment, control the hardware, and communicate with other robots.

Current programming languages do not provide suitable abstractions that are independent of hardware

platforms. Currently, developing robot applications requires detailed knowledge of signal processing, control,

path planning, network protocols, and various platform-specific details. Further, porting applications across

hardware platforms remains tedious.

We present KoordÐa domain specific language for distributed roboticsÐwhich abstracts platform-specific

functions for sensing, communication, and low-level control. Koord makes the platform-independent control

and coordination code portable and modularly verifiable. Koord raises the level of abstraction in programming

by providing distributed shared memory for coordination and port interfaces for sensing and control. We have

developed the formal executable semantics of Koord in the K framework. With this symbolic execution engine,

we can identify assumptions (proof obligations) needed for gaining high assurance from Koord applications.

We illustrate the power of Koord through three applications: formation flight, distributed delivery, and

distributed mapping. We also use the three applications to demonstrate how platform-independent proof

obligations can be discharged using the Koord Prover while platform-specific proof obligations can be checked

by verifying the obligations using physics-based models and hybrid verification tools.

CCS Concepts: · Software and its engineering → Formal language definitions; · Computer systems

organization → Robotics; · Computing methodologies → Distributed programming languages; ·

Theory of computation→ Program verification.

Additional Key Words and Phrases: Distributed Robotics, Programming Language for Robotics

ACM Reference Format:

Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra. 2020. Koord: A Language for Programming and

Verifying Distributed Robotics Application. Proc. ACM Program. Lang. 4, OOPSLA, Article 232 (November 2020),

30 pages. https://doi.org/10.1145/3428300

1 INTRODUCTION

Distributed robotics applications (DRAs) have the potential to transform manufacturing [Gau-
thier et al. 1987; Pires and Da Costa 2000], transportation [Gerla et al. 2014; Guo and Yue 2012],
agriculture [Blender et al. 2016; R Shamshiri et al. 2018], delivery [Mosterman et al. 2014], and
mapping [Thrun 2003]. Following the trends in cloud, mobile, and machine learning applications,

Authors’ addresses: Ritwika Ghosh, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, rghosh9@illinois.edu;

Chiao Hsieh, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, chsieh16@illinois.edu; Sasa Misailovic,

University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, misailo@illinois.edu; Sayan Mitra, University of Illinois

at Urbana-Champaign, Urbana, Illinois, USA, mitras@illinois.edu.

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART232

https://doi.org/10.1145/3428300

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3428300
https://doi.org/10.1145/3428300
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3428300&domain=pdf&date_stamp=2020-11-13

232:2 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

programmability is key in unlocking this potential as robotics platforms become more open, and
hardware developers shift to the applications marketplace. Available domain specific languages
(DSL) for robotics are tightly coupled with platforms, and they combine low-level sensing, commu-
nication, and control tasks with the application-level logic. This tight-coupling and the attendant
lack of abstraction hinders application development on all frontsÐportability, code reuse, and
verification and validation (V&V).

Building a reliable DRA involves addressing two very different types of concerns: (1) Correctness
arguments for coordination algorithms under concurrency and asynchrony are hardware platform-
independent, and use techniques from formal verification and distributed computing. (2) Correctness
arguments for physical interactions of the robots (e.g., sensing and motion control) under noise
and disturbances are platform-dependent, and use techniques from control theory. Verification
frameworks, such as hybrid automata [Alur and Dill 1994; Henzinger et al. 1995] and hybrid
dynamic logic [Platzer 2018], can combine these different types of reasoning at a mathematical level,
but are far too abstract for generating executable programs for applications of realistic complexity.
At the other end, domain specific languages (DSL) for robotics are practical for programming, but
do not provide precise semantics and have no support for verification [Blanco-Claraco 2009; Murali
et al. 2019; St-Onge et al. 2017]. The DRONA framework [Desai et al. 2017] aims to bridge this gap
in the context of distributed motion planning applications for drones. A more detailed discussion
of DRONA and other related works appear in Section 9.

Symbolic

program

execution

Koord symbolic

execution

engine

Platform-

independent

Abstraction

Z3 based Koord

prover

Platform-

independent

Proof

Requirements

e.g.

invariance

Koord

program

Koord

execution

engine

Sensing

actuation,

comm. libs

per platform

Reachability

Queries

per platform

Platform-

dependent

Proof

From same formal semantics

Program

Execution per

platform

Fig. 1. Koord simplifies DRA programming with key

abstractions, and tools for verification that can combine

different techniques for program logic and platform-

specific controllers.

Our Work. We aim to improve the reliable
engineering of a diverse class of DRAs by en-
abling different types of reasoning at the code
level. Our insight is to cleanly decompose the
correctness proof of thewhole application code
into (1) platform-independent proof obligations
for distributed program logic, and (2) platform-
dependent proof obligations for controllers on
each target platform. If such a decomposition
exists, it enables us to plug in analyses from
different communities for the different proof-
obligations.
We embody our approach in Koord system:

a language for DRAs, its formal executable se-
mantics, and supporting verification and test-
ing tools. A user can write code for DRAs using the Koord language. This Koord program can
be deployed on ground vehicles and drones, simulated with virtual vehicles, and verified via our
decomposition approach and various existing verification tools. Figure 1 shows the overall workflow
of verifying a Koord program with the tools in the Koord system. We present the key features of
the Koord system in this work.
First, Koord provides abstractions and language constructs for coordination and control that

separate the platform-independent program logic, such as distributed decisionmaking, from platform-
dependent control tasks for sensing, planning, and actuation. This makes Koord applications very
succinct and readable. A program to make a set of robots form a line can be written in 10 lines
of Koord code (see Figure 3). In another application, robots coordinate and visit waypoints in
a mutually-exclusive fashion, while avoiding collisionsÐall in 50 lines of Koord code. A third
application, discussed briefly here, accomplishes distributed mapping. Development of these and
other nontrivial DRAs, demonstrate the utility of the Koord abstractions.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

Koord : A Language for Programming and Verifying Distributed Robotics Application 232:3

Fig. 2. Swarm formation

show by FireFly Inc. (Left).

A Koord application for for-

mation control simulated on

16 virtual drones (Top Right).

Racecar and drone platforms

on which Koord applications

has been deployed (Bottom

Right).

Second, we have developed the executable semantics of Koord in K [Rosu and Serbanuta 2014].
To our knowledge this is the first formalization of a programming language for DRAs which
has been deployed on actual heterogenous platforms. We show that Koord’s executable semantics
indeed enables us to plug-in different verification techniques for the platform-independent and
the platform-dependent proof obligations. We are able to decompose and verify geofencing and
collision-avoidance invariants for the above mentioned Koord applications. We show that:

• Platform-independent proof obligations can be formulated as inductive invariance checks. The
invariance checks are further encoded as SMT problems by applying symbolic executions over Ko-
ord programs, and eventually discharged with Z3. Our experiments show that for upto 15 robots,
the time taken for symbolic execution remains relatively stable. The time taken for SMT encoding,
and the solving itself increases, but the process completes in the order of seconds using Z3 in
Python. This suggests that our verification approach for such proof obligations can scale to
multi-robot systems with tens of robots.

• Platform-dependent proof obligations can be formulated as reachability queries and can be
effectively discharged using any number of tools including the simulation-driven reachability
tool DryVR [Fan et al. 2017].

Finally, the K semantics of Koord allows us to generate a reference verified interpreter. A multi-
platform Koord execution engine has been implemented to deploy Koord programs to robotic
platforms, and program execution on the actual platforms conforms to the formal semantics (details
of these experiments are presented in [Ghosh et al. 2020]).

Contributions. In summary, our main contributions are: (1) abstractions to enable separating
analyses of platform-independent distributed program logic, and platform-dependent controllers.
(2) a formal executable semantics of Koord and case studies demonstrating verification approach and
supporting tools (3) a realizable language design with a compiler implementation and supporting
middleware, which can be deployed on actual hardware platforms.

2 OVERVIEW

We present an example application for formation control to highlight the main features of the Koord
programming system. This application makes a collection of drones form a pattern as is seen in
aerial shows (Figure 2). The Koord application LineForm of Figure 3 is a basic version that makes a
collection of drones line up uniformly between two extremal drones.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

232:4 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

1 using Motion:

2 sensors: pos psn

3 actuators: pos target

4

5 allread: pos x[Nsys]

6 TargetUpdate:

7 pre: True

8 eff:

9 x[pid] = Motion.psn

10 if not(pid == Nsys − 1 or pid == 0) :
11 Motion.target = mid([x[pid+1],x[pid−1]])

Fig. 3. Koord program LineForm for a set of robots to form a line.

2.1 The Koord Language

Koord is an event-driven language in which application programs use shared variables for coordina-
tion across robots and ports for interfacing with platform-specific controllers.

Port Abstractions for Platform-dependent Control. For the same abstract functions, such
as reading the current position, sensing obstacles, and moving from point 𝑎 to point 𝑏 in space,
different robot platforms need different implementations. One of the key abstractions in Koord
hides these implementation details and allows the robot program to interact with its environment
through sensor and actuator ports. For example, LineForm uses a module (library) called Motion

which provides a sensor port called psn as declared on Line 2 in Figure 3. The sensor port psn has
data type pos expressing the 𝑥 , 𝑦 and 𝑧 coordinates of a point in 3D space, and it publishes the
robot’s position with some periodicity and accuracy. The Motion module also provides an actuator
port called target as declared on Line 3 of LineForm, for specifying a target position that the
controller should try to drive to. Implementations of Motion would use different strategies for
different platforms. In our experiments, the Motion module for a drone uses an indoor camera
based positioning system to update the psn port, and it uses an RRT-based [LaValle 1998] path
planner and PID controller. On the other hand, for a small racecar platform, the implementation
uses a model-predictive controller [Grüne and Pannek 2017; Kvasnica et al. 2004].

Distributed Shared Variables for Platform-independent Coordination. The second im-
portant abstraction in Koord provides shared variables for participating robots to communicate and
coordinate. At Line 5 in LineForm, the variable 𝑥 , declared with the allread keyword, is a shared
array which all robots can read from, but each robot pid can only write to 𝑥 [pid]. This shared
array makes it possible for a robot to read the current position of other robots in one line of code.
LineForm uses (a) the unique integer identifier pid for the robot executing the program and

(b) the number Nsys of all participating robots. For multiple robot programs writing to shared
variables Koord provides concurrency control with mutual exclusion and atomic blocks. In [Ghosh
et al. 2020], shared variable writes are propagated to all robots through UDP message passing
over WiFi. In Section 8.1, we briefly explain how shared memory and mutual exclusion is realized
through message passing in [Ghosh et al. 2020].

Event-driven Style of Programming. In Koord programs, events written using a precondition-
effect style define how program variables are updated. The effect of an event can only be executed
if its precondition is true. LineForm uses a single TargetUpdate event, which updates the shared
variable 𝑥 [pid] (Line 9) and sets the target of each robot (except the extremal robots) to be the
center of the position of its neighbors (Line 11). This event has a precondition which always
evaluates to true. As we shall see in Section 3.3, Koord semantics ensures a synchronous round-by-
round execution of events for all robots. That is, for a given execution parameter 𝛿 > 0, one event
per robot can occur every 𝛿 time.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

Koord : A Language for Programming and Verifying Distributed Robotics Application 232:5

2.2 Semantics and Decomposed Verification

In a DRA, multiple instances of the same program are executed by all participants to solve a problem.
Execution semantics of such a DRA are complicated by issues of asynchrony, concurrency, as well
as the interactions between software and the physical environment. We have developed the full
executable semantics of Koord in the K framework [Rosu and Serbanuta 2014]. In solving this
problem, we made a few simplifying assumptions:

• The execution of the Koord program advances in a synchronous, round-by-round fashion. Each
round lasts for some 𝛿 > 0 time; 𝛿 is an execution parameter, which is assigned values obeying
network and platform constraints discussed further in Section 8.1.

• During a 𝛿-duration round, the robots compute, move, and communicate with each other through
distributed shared memory.

We discuss these assumptions and their rationale in more detail in Section 3.3. While these assump-
tions sidestep the issues of asynchrony and failures, they make our executable semantics tractable.
Our experiments show that it is easy to check whether these assumptions are met by any platform
deploying a Koord application [Ghosh et al. 2020].
Koord’s executable semantics enables explicit and exhaustive exploration of non-deterministic

behaviors of Koord applications. We have also implemented a Koord Prover tool on top of these se-
mantics for symbolically checking inductive invariants for Koord programs.We considerGeofencing,
a natural requirement for LineForm: given a rectangle rect (a, b), defined by two corners a and b, if
all robots are initialized within rect (a, b), then they stay in rect (a, b) at all times. This requirement
can be stated as an invariant of the system:

Invariant 1.
∧
𝑖∈ID

(
Motion.psn𝑖 ∈ rect (a, b) ∧ 𝑥 [𝑖] ∈ rect (a, b)

)
The user can specify such invariants as Boolean expressions allowed by the Koord language

syntax. Checking Invariant 1 requires reasoning about both platform-dependent and independent
parts of the application. Using Koord tools one can reason about it in a decomposed fashion:

(1) Assuming that all shared position 𝑥 [𝑖] are in rect (a, b), we have to show that the targets
computed by LineForm are in rect (a, b). This platform-independent proof obligation is about
the correctness of the program logic of LineForm. To check this, one has to compute the reached
states of the TargetUpdate event and check that Invariant 1 still holds in all reached states.
The Koord Prover uses the symbolic semantics for post event configuration computation and
encodes this check as an SMT problem. In case of Invariant 1, and many other applications and
invariants, this proof obligation is discharged fully automatically.

(2) Assuming that the sensed current position Motion.psn𝑖 and the computed target are in rect (a, b),
we have to show that a given robot’s controller indeed keeps the position in rect (a, b). This
platform-dependent proof obligation is about the correctness of the controller implemented
in the Motion module. Koord helps formalize these obligations or assumptions about Module
implementations to connect with analysis tools for dynamical and hybrid systems. For instance,
we can restate the proof obligation as the following assumption:

Assumption 1.

∀𝑡 ∈ [0, 𝛿], traj(Motion.psn, Motion.target, 𝑡) ∈ rect (Motion.psn, Motion.target),

where traj is an uninterpreted function that gives the position of the robot at time 𝑡 , as a function
of the target and initial position at the beginning of the round.
To check these types of assumptions, we can use a reachability analysis tool for dynamical and
hybrid systems with or without the complete model of traj, of which there are many [Bak and

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

232:6 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

Duggirala 2017; Chen et al. 2013; Duggirala et al. 2013; Fan et al. 2017; Frehse et al. 2011]. In
our experiments, we use the simulation-driven reachability tool DryVR [Fan et al. 2017] which
provides probabilistic guarantees, but does not require complete dynamical models of traj.

This decomposition of the platform-dependent and platform-independent components of a Koord
program enables different tools and analysis techniques to be used to verify its correctness.

2.3 Koord Compiler, Implementation, and Simulator

In this paper, we present the Koord design, semantics and associated formal analysis techniques,
without going into the intricate details of implementing the language and system. In Section 8, we
briefly discuss the compiler for Koord. The overall toolchain including an open source implementa-
tion of Koord is presented in [Ghosh et al. 2020], and it offers programming tools for simulation,
and hardware deployment. We deployed Koord applications on heterogeneous multi-robot systems
of drones and small racecars.

2.4 Engineering Reliable DRAs

Koord tools support the engineering of reliable systems by helping discover and validate platform-
dependent proof obligations (see case studies in Section 5 and Section 6). In general, if the assump-
tions needed for proving correctness of an application are too strong, a DRA engineer could either
revise the assumptions or modify the invariant requirement so that weaker assumptions may be
sufficient. Using the high-fidelity Koord simulator which is a part of the Koord programming tools,
we can gain insights about when such assumptions are violated.

For instance, we see in Section 5 that reachability analysis using DryVR is able to detect violations
of Assumption 1. A drone model with poor PID control could temporarily go out of bounds due to
inertia while moving towards the target. Upon configuring the same drone model with different
PID control parameters, DryVR was able to verify Assumption 1. Similarly, DryVR is able to detect
that the racecar may not be able to follow a path computed by a path-planner as closely as required
for maintaining safe distances between vehicles in Section 6. As we shall see in these case studies,
these assumptions require reasoning only about the platform-dependent control ports, allowing us
to decouple their verification from the distributed program logic.

3 THE KOORD LANGUAGE

In this section, we present the syntax and the semantics of Koord. When a Koord application is
deployed on a fleet of Nsys robots, each robot runs an instance of the same program. There is a
known set of identifiers ID = {0, 1, . . . ,Nsys−1}, and each robot is assigned a unique index pid ∈ ID.

3.1 Syntax

Figure 4 shows the core grammar of Koord syntax in BNF. Each robot program essentially consists
of (a) declarations of modules to interface the program with sensors/actuator ports, (b) declarations
of shared and local program variables, and (c) events, consisting of preconditions and effects.
Koord supports the following three types of names for reading/writing values:

(i) Sensor and actuator ports are used to read from sensor ports and write to actuator ports of
controllers.

(ii) Local program variables record the state of the program.
(iii) Distributed shared variables are used for coordination across robots. All shared variables can

be read by all participating robots; an allwrite variable can be written by any participating
robot; while an allread variable can be written only by a single robot.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

Koord : A Language for Programming and Verifying Distributed Robotics Application 232:7

Program ::= Defs? Module* DeclBlock Init? Event+

Defs ::= FuncDef * AdtDef *
FuncDef ::= def fun identifier (Param*) : Stmt+

AdtDef ::= def adt identifier : Decl+

Param ::= Type identifier

Module ::= using module identifier : SPorts APorts
SPorts ::= sensors : Decl+

APorts ::= actuators : Decl+

Decl ::= Type identifier | Type identifier =Val
ARDecl ::= Type identifier [Nsys]
Type ::= int | float | bool | pos | adt

| Type [Int] | List ⟨Type⟩ | Queue ⟨Type⟩

DeclBlock ::= AWDecls ARDecls LocalDecls
AWDecls ::= allwrite : Decl+

ARDecls ::= allread : ARDecl+

LocalDecls ::= local : Decl+

Init ::= init : Stmt+

Event ::= identifier : pre (Cond) eff : Stmt+

Expr ::= AExpr |BExpr
AExpr ::= AExpr AOp AExpr

| Expr++ | -AExpr | Var | AVal
AOp ::= + | − | ∗ | /
BExpr ::= Expr RelOp Expr |Expr COp Expr

| not Expr | Var | BVal
RelOp ::= ≥ |≤ |≥ |== |> |< |≠
COp ::= and | or

Stmt ::= Assign | FnCall | Atomic
| Ite | Loop | Return

Assign ::= Var = Expr

Ite ::= if BExpr : Stmt+ ElseBlk?

ElseBlk ::= else : Stmt+

FnCall ::= identifier (Expr+)
Atomic ::= atomic : Stmt+

Loop ::= for identifier in AExpr : Stmt+

Return ::= return Expr?

Var ::= identifier | identifier [Expr]
| identifier .identifier

Val ::= AVal | BVal
AVal ::= Int | Float
BVal ::= Bool

Fig. 4. Core Koord program syntax. Given an nonterminal NT, NT? means that it is optional in the syntax at

that position, NT* refers to zero or more occurrences, and NT+ refers to one or more occurrences. (𝐸1 | 𝐸2)
denotes that one can use either 𝐸1 or 𝐸2. We indicate Koord keywords and data types in bold.

Aside from the basic shared and local variable declarations, the user can also define functions and
abstract data types.
Robot programs (rule Program) can import sensor/actuator modules which will be used by the

program to interact with the environment. The module import grammar production specifies the
interfaces or ports: it contains all input and output ports for actuators (APorts) and sensors (SPorts)
that the program uses.
Users can then optionally specify the initial values of program variables (rule Init). The main

body of the program is a sequence of events (rule Event) which include a Boolean precondition
(pre) and an effect (eff). The effect of an event is a block of statements (rule Effect).

A statement (rule Stmt) in Koord resembles those in most imperative languages and includes
conditional statements, function calls, assignments, blocks of statements, etc. Mutual exclusion is
always an essential feature when shared variables are involved.Koord provides a lockingmechanism
using the keyword atomic to update shared variables mutually exclusively, wherein only one robot
is allowed to execute the statements within an atomic block in a round.

These features enable a natural separation of the discrete computational (platform-independent)
and dynamic (platform-dependent) behaviors. To discuss these behaviors, we need to establish the
notion of system and robot configurations.

3.2 Robot and System Configurations

The semantics of a Koord program execution is based on synchronous rounds. Each round is
divided into program transitions and environment transitions that update the system configuration.
In each round, each robot performs at most one event. The update performed by a single robot
executing an event is modeled as an instantaneous transition that updates the program variables
and potentially actuator ports; however, different events executed by different robots may interleave
in an arbitrary order. In between the events of successive rounds, 𝛿 > 0 duration of time elapses,
the program variables remain constant while the values held by the sensor and actuator ports may

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

232:8 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

change. These are modeled as environment transitions that advance time as well as the sensor
and actuator ports. Thus, each round consists of a burst of (at most Nsys) program transitions
followed by an environment transition. This is a standard model for synchronous distributed
systems where the speed of computation is much faster than the speed of communication and
physical movement [Attiya and Welch 2004; Lynch 1996].
We now describe the system state, or system configurations which we use to formalize Koord

semantics.

System Configurations. A system configuration is a tuple 𝒄 = ({𝐿𝑖 }𝑖∈ID, 𝑆, 𝜏, turn), where

(i) {𝐿𝑖 }𝑖∈ID is an indexed set of robot configurationsśone for each participating robot. 𝐿𝑖 refers
to the configuration of the 𝑖-th element, i.e., the 𝑖-th robot in the system.

(ii) 𝑆 : Var ↦→ Val is the global context, mapping all shared variable names to their values.
(iii) 𝜏 ∈ R≥0 is the global time.
(iv) turn ∈ {prog, env} is a binary bookkeeping variable determining whether program or envi-

ronment transitions are being processed.

We use C to denote the set of all possible system configurations. Bookkeeping variables are invisible
in the language syntax, and only used in the semantics. While turn in the system configuration is
a bookkeeping variable, it is directly used to achieve the separation of platform-dependent and
platform-independent concerns in the semantics. We now define the robot configurations which
define the state of every robot in the system.

Robot Configurations. A robot configuration is used to specify the semantics of each robot.
When a Koord program is running on a system of robots, each participating robot would have
its own set of module ports and local variables, along with a local copy of each shared variable.
Given a Koord program 𝑃 , we can define Var be the set of variables, Val be the set of values that an
expression in Koord can evaluate to, CPorts be the set of sensor and actuator ports of the controller
being used, and Events the set of events in 𝑃 . A robot configuration is a tuple 𝐿 = (𝑀, cp, turn),
where

(i) 𝑀 : Var ↦→ Val is its local context mapping both local and shared variables to values. Note
that this implies𝑀 includes a copy of shared variable values.

(ii) cp : CPorts ↦→ Val is the mapping of sensor and actuator ports to values.
(iii) turn ∈ {prog, env} is a bookkeeping variable indicating whether this robot is executing a

program or environment transition.

For readability, we use the dot (ł.ž) notation to access components of a robot configuration 𝐿. For
example, 𝐿.𝑀 means accessing the local context𝑀 in the robot configuration 𝐿.

3.3 Semantics

The execution semantics for a Koord program captures the separation of the platform-independent
distributed program behaviors and the platform-specific controller behaviors (the program and
environment transitions) of the robots through rewrite rules. Rewrite rules at various levels: System,
Robot, and Expression are used to specify the semantics of a Koord program, and they provide the
mathematical basis for creating a framework for formal analysis.

System Semantics. For system-level semantics, the rewrite rule is a mapping from a given
system configuration to a set of possible next system configurations. It has the type

→𝐺 ⊆ C ↦→ ℘(C),

where ℘(𝑋) denotes the powerset of a set 𝑋 .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

Koord : A Language for Programming and Verifying Distributed Robotics Application 232:9

The bookkeeping variable turn is used by the system to determine whether the system (all
robots in the system) is performing a program transition or an environment transition. The system
executes an environment transition only when the local turn of every robot is env. After all robots
enter the env turn, rule EndProgTrans sets the global turn from prog to env indicating the end of
program transition, and an environment transition will occur afterwards.

∀𝑖 ∈ ID, 𝐿𝑖 .turn = env

({𝐿𝑖 }𝑖∈ID, 𝑆, 𝜏, prog) →𝐺 ({𝐿𝑖 }𝑖∈ID, 𝑆, 𝜏, env)
EndProgTrans

∀𝑖 ∈ ID, 𝐿𝑖 .turn = env ∧ ⟨𝑆, 𝐿𝑖 ⟩ →env ⟨𝑆, 𝐿′𝑖 ⟩ ∧ 𝐿′𝑖 .turn = prog

({𝐿𝑖 }𝑖∈ID, 𝑆, 𝜏, env) →𝐺 ({𝐿′𝑖 }𝑖∈ID, 𝑆, 𝜏 + 𝛿, prog)
EnvTrans

∃𝑖 ∈ ID, 𝐿𝑖 .turn = prog ∧ ⟨𝑆, 𝐿𝑖 , ⊕⟩ →stmt ⟨𝑆
′, 𝐿′𝑖 , ·⟩ ∧ 𝐿′𝑖 .turn = env

({𝐿𝑖 }𝑖∈ID, 𝑆, 𝜏, prog) →𝐺 ({𝐿′𝑖 }𝑖∈ID, 𝑆
′, 𝜏, prog)

EventTrans

Fig. 5. System semantic rules for Koord .

Rule EnvTrans shows the evolution of the system configuration after the rule EndProgTrans
is applied. This rule synchronizes the environment transitions of the robots and advances the global
time from 𝜏 to 𝜏 + 𝛿 where 𝛿 is the duration of each round. During a program transition, each robot
executes a sequence of statements, or rewrite rules for statement semantics of type

→stmt⊆ (S × L × (Stmt ∪ {⊕, ·})) ↦→ ℘(S × L × Stmt ∪ {·}),

where Stmt refers to the set of all possible statements allowed by Koord syntax. We use internal
syntactic structures ‘⊕’ and ‘·’, which are are not in Koord themselves, but are used to represent
control flow in Koord programs in the semantics, as we will see in the discussion on per-robot
semantics. ‘⊕’ is to denote nondeterministic selection of events, and ‘·’ is to indicate an łempty"
statement.
The→stmt relation takes as input a tuple of (1) a global context, (2) a robot configuration, and

(3) a statement, and maps it to a set of tuples of same three types of elements. Rule EventTrans
expresses that starting from a system configuration 𝒄 = ({𝐿𝑖 }𝑖∈ID, 𝑆, 𝜏, prog), a robot 𝑖 with the
configuration 𝐿𝑖 starts by selecting an enabled event, executes the event via a sequence of→stmt

rewrites, and sets its own turn to env at the end of the event execution. The system goes from
a configuration 𝒄 to 𝒄

′
= ({𝐿′

𝑖 }𝑖∈ID, 𝑆
′, 𝜏, prog), with possibly different robot configurations and

global context depending on whether any statement executed resulted in writes to shared variables.
In the premise of Rule EventTrans, the existential quantification denotes that any robot in prog

turn (𝐿𝑖 .turn = prog) may select and execute an event, and then enters env turn (𝐿′
𝑖 .turn = prog)

when finished. The system thus displays nondeterministic behaviors due to different execution
orders of robots still in prog turn.
We now go into some detail to discuss the →stmt rewrites which specify the behavior of each

robot during a program transition. These rules are used to update individual robot configurations.

Robot Semantics. Events are the main computational blocks in a Koord program. We present
the core semantic rules for event execution by a robot running a Koord program. In Figure 6,
Rule SelectEvent shows that any event may be executed when the precondition𝐶𝑜𝑛𝑑 is evaluated
to true, and by replacing ⊕ with the event effect Body, it ensures only one event is selected and
executed. The event effect is then executed following the semantics of each statement in Body.
Rule SkipEvent allows the robot to skip the event completely. At the end of the event, the sequence

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

232:10 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

𝐿.turn = prog ∧ łName: pre: Cond eff: Body” ∈ Events ∧ ⟦Cond⟧S,L

⟨𝑆, 𝐿, ⊕⟩ →stmt ⟨𝑆, 𝐿, Body⟩
SelectEvent

⟨𝑆, 𝐿, ⊕⟩ →stmt ⟨𝑆, 𝐿, ·⟩ SkipEvent ⟨𝑆, (𝑀, cp, prog), ·⟩ →stmt ⟨𝑆, (𝑀, cp, env), ·⟩ EndEvent

∀𝑥 ∈ Keys(𝑆), 𝑀 ′
= 𝑀 [𝑥 ↦→ 𝑆 [𝑥]] ∧ cp′ = f (cp, 𝛿)

⟨𝑆, (𝑀,𝑐𝑝, env)⟩ →env ⟨𝑆, (𝑀 ′, 𝑐𝑝 ′, prog)⟩
RobotEnv

Fig. 6. Partial per robot semantic rules for Koord .

of statements becomes empty ‘·’. Rule EndEvent then makes sure the turn of the robot is set to
env indicating that an environment transition will occur afterwards.
While →stmt rewrites define each robot’s behavior during a program transition, we separate

the platform-dependent semantics of how each robot interacts with environment (including other
robots) using environment transition rules of the type

→env⊆ (S × L) ↦→ ℘(S × L),

which takes a global context and a robot configuration as input. Rule RobotEnv simply states
that the new local context 𝑀 ′ is the old local context 𝑀 updated with the global context 𝑆 ; thus
ensuring that all robots have consistent shared variable values before the next program transition.
To define the executable K semantics of Koord applications, we have to provide executable

descriptions for the environment transitions. The type of this executable object (𝑓) is defined by
CPorts, namely, 𝑓 : [CPorts ↦→ Val] ×R≥0 ↦→ [CPorts ↦→ Val]. That is, given old sensor and actuator
values and a time point, 𝑓 should return the new values for all sensor and actual ports. New sensor
readings cp′ are then obtained by evaluating the black-box dynamics 𝑓 with time 𝛿 . In an actual
execution, the controller would run the program on hardware, whose sensor ports evolve for 𝛿 time
between program transitions. Finally, the turn of the robot is set back to prog. This formalization
allows arbitrary value changes of ports over the duration 𝛿 , and is sufficient for modeling any
black-box platform-specific controller. It further simplifies the verification procedure in Section 4
that to analyze different platform-specific controllers is to simply consider different additional
assumptions over 𝑓 for the 𝛿 period.

⟨𝑆, 𝐿, 𝑆𝑡⟩ →stmt ⟨𝑆
′, 𝐿′, 𝑆𝑡 ′⟩

⟨𝑆, 𝐿, 𝑆𝑡 𝑆𝑡𝐿𝑖𝑠𝑡⟩ →stmt ⟨𝑆
′, 𝐿′, 𝑆𝑡 ′ 𝑆𝑡𝐿𝑖𝑠𝑡⟩

StmtSeq1

⟨𝑆, 𝐿, · 𝑆𝑡𝐿𝑖𝑠𝑡⟩ →stmt ⟨𝑆, 𝐿, 𝑆𝑡𝐿𝑖𝑠𝑡⟩ StmtSeq2

𝑥 ∈ Keys(𝑆) ∧ 𝑥 ∈ Keys(𝐿.𝑀) ∧ 𝐿′.𝑀 = 𝐿.𝑀 [𝑥 ↦→ 𝑣]

⟨𝑆, 𝐿, 𝑥 = 𝑣⟩→stmt ⟨𝑆 [𝑥 ↦→ 𝑣], 𝐿′, ·⟩
SvarAssign

𝑥 ∉ Keys(𝑆) ∧ 𝑥 ∈ Keys(𝐿.𝑀) ∧ 𝐿′.𝑀 = 𝐿.𝑀 [𝑥 ↦→ 𝑣]

⟨𝑆, 𝐿, 𝑥 = 𝑣⟩→stmt ⟨𝑆, 𝐿
′, ·⟩

LvarAssign

Fig. 7. Example statement level semantic rules for Koord .

Aside from aforementioned rules for the whole event, we now discuss about the semantics
rules for statements inside an event. Koord semantics include rewrite rules showing the impact

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

Koord : A Language for Programming and Verifying Distributed Robotics Application 232:11

of statements accessing the shared memory abstractions on the configurations of each robot,
control flow, etc. We illustrate a few of these rules in Figure 7. Rule StmtSeq1 and StmtSeq2

show how a statement representing a sequence of statements is executed. Rule LvarAssign and
Rule SvarAssign show the semantic rules for local and shared variable assignment respectively
are also examples of statement level rules. Evaluating these rules requires expression-level rules,
which include variable lookup, arithmetic, logical, and relational operations amongst others. We
present a few illustrative examples below.

Expression Semantics. The expression level semantics is given by rewrite rules of the type

→𝐸 ⊆ (S × L × E) × (S × L × E),

where S is the set of all possible global contexts, L refers to the set of all possible values for
configurations of an robot, and E refers to the set of all possible expressions allowed by the Koord
language syntax.
The variable lookup rule Var-Lookup-Rule states that every robot has a local copy of every

variable in the program, and if an robot is evaluating an expression involving variable 𝑥 , it will
replace 𝑥 with the current value 𝑣 from the local context 𝑀 . 𝑀 [𝑥] here obtains the value corre-
sponding to the key 𝑥 . We also present the rules for addition (Add-rule). They are fairly standard:
the execution first evaluates the left subexpression, then the right subexpression given that left is
already evaluated to a value and finally adding the two values. We omit the similar rules for other
arithmetic, logical, and relational operations.

𝐿.𝑀 [𝑥] = 𝑣

⟨𝑆, 𝐿, 𝑥⟩ →𝐸 ⟨𝑆, 𝐿, 𝑣⟩
Var-Lookup-rule

𝐸1 →𝐸 𝐸 ′1

⟨𝑆, 𝐿, 𝐸1 + 𝐸2⟩ →𝐸 ⟨𝑆, 𝐿, 𝐸 ′1 + 𝐸2⟩
Add-rule-1

𝑣1 ∈ Val ∧ 𝐸2 →𝐸 𝐸 ′2

⟨𝑆, 𝐿, 𝑣1 + 𝐸2⟩ →𝐸 ⟨𝑆, 𝐿, 𝑣1 + 𝐸 ′2⟩
Add-rule-2

𝑣1 ∈ Val ∧ 𝑣2 ∈ Val ∧ 𝑣1 + 𝑣2 = 𝑣3

⟨𝑆, 𝐿, 𝑣1 + 𝑣2⟩ →𝐸 ⟨𝑆, 𝐿, 𝑣3⟩
Add-rule-3

Fig. 8. Example expression semantic rules for Koord .

The semantic rules we discussed realize the distributed nature of the design of the Koord system.
The memory consistency model, and the synchronization model of Koord have been designed to
complement the separation and analysis of the platform-independent program transitions and
platform-dependent environment transitions.

3.4 Synchronization and Consistency

Following our semantic rules in Section 3.3, careful readers would notice that all program transitions
of Koord program take zero time. The environment transitions however take 𝛿 time for the evolution
of the controller ports together with the update of the local context from the global context.
To reiterate, the following are the timing requirements from rule EventTrans and EnvTrans:

(a) a program transition takes zero time, (b) new values of controller ports are sampled at the end
of each round (c) shared variables should reach consistent values within 𝛿 time, and (d) a global
clock is used to synchronize each 𝛿-time round. The first two requirements are achievable if the
time taken to complete a program transition is negligible compared to 𝛿 , and 𝛿 can be a common
multiple of the sampling intervals of all controller ports in use. These constraints are reasonable
when computation and communication is comparatively much faster. Using the Motion module as
an example, our position sensor on each device publishes every 0.01 sec (100Hz) while the CPU on

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

232:12 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

each drone is 1.4 GHz. If we set 𝛿 to be 0.01 sec, a program transition taking 10K CPU cycles is still
less than 0.1% of 𝛿 .
Requirement (c) and (d) are well-known research topics in distributed computing with an ex-

tensive literature. A global clock can be achieved with existing techniques that synchronize all
local clocks on robots. The toolchain in [Ghosh et al. 2020] uses message passing to implement
distributed shared memory for shared variables. It requires that 𝛿 is always set to be larger than the
time taken to propagate values through messages and reach consistency. As a result, the update
on shared memory is visible in the next round of program transitions for all robots. We therefore
conclude our round based semantic with shared memory is a reasonable abstraction.

4 VERIFYING KOORD PROGRAMS

We have built the semantics of Koord in the K framework to enable decoupled analyses of platform-
independent distributed program logic and the platform-dependent controllers of DRAs. The events
in an Koord program define the distributed program logic in the system. The effect of a robot
𝑖 executing event 𝑒 ∈ Events on a configuration 𝒄 ∈ C, can be seen as a →stmt application to
⟨𝒄 .𝑆, 𝒄 .𝐿𝑖 , Body⟩, where 𝑒 is łeventName: pre: Cond eff: Bodyž.

4.1 Reachable Configurations

Given a set of system configurations C, we define the following sets using the semantic rules of
Section 3.3 and present their formal definitions in Figure 9:

(i) Post (C, 𝑖, 𝑒) returns the set of configurations obtained by robot 𝑖 executing event 𝑒 ∈ Events
from a configuration in C.

(ii) Post (C, 𝑖) returns the set of configurations obtained by robot 𝑖 executing any event or skipping
from a configuration in C.

(iii) Post (C, ®𝑝) returns all configurations visited, when robots execute their events in the order ®𝑝 ,
where ®𝑝 is a sequence of 𝑝𝑖 ∈ ID.

(iv) Post (C) is the union of Post (C, ®𝑝) over all orders ®𝑝 .
(v) End (C) is the set of configurations reached from C after a program transition.

All these definitions can be restricted naturally to individual configurations.

Post (C, 𝑖, 𝑒) := {𝒄 ′ | ∃𝒄 ∈ C, ⟦Cond⟧𝒄 .𝑆,𝒄 .𝐿𝑖 ∧ ⟨𝒄 .𝑆, 𝒄 .𝐿𝑖 , Body⟩ →stmt
〈
𝒄
′.𝑆, 𝒄 ′.𝐿𝑖 , ·

〉
},

Post (C, 𝑖) := C ∪
⋃

𝑒∈Events

Post (C, 𝑖, 𝑒),

Post (C, ®𝑝) :=

{
∅, if ®𝑝 = ()

Post (Post (C, 𝑝0), ®𝑝
′), if ®𝑝 = (𝑝0, ®𝑝

′)

Post (C) :=
⋃

®𝑝∈perms (ID)

Post (C, ®𝑝),

End (C) := {𝒄 | 𝒄 ∈ Post (C) ∧ ∀𝑖 ∈ ID, 𝒄 .𝐿𝑖 .turn ≠ prog} .

Fig. 9. Intermediate definitions for defining reachable configurations.

In Figure 9, a sequence ®𝑝 = (𝑝0, ®𝑝
′), is written as a concatenation of the first element 𝑝0 and the

suffix ®𝑝 ′, and perms(ID) refers to the set of permutations of ID. Also, ⟦Cond⟧𝒄 .𝑆,𝒄 .𝐿𝑖 refers to the
evaluation of Cond on 𝒄 .𝑆 and 𝒄 .𝐿𝑖 .
Next, we identify the set of configurations that the system reaches during and after an envi-

ronment transition. Recall that environment transition rule RobotEnv in Figure 6 captures the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

Koord : A Language for Programming and Verifying Distributed Robotics Application 232:13

evolution of the sensor and actuator ports over a time interval [0, 𝛿] and the update on local context
with global context; all other parts of the configuration remain unchanged. The rule defines the
environment transitions with an uninterpreted function 𝑓 which is possibly a black-box function
that captures the dynamics of individual robots.1

Given such a function 𝑓𝑖 for each robot 𝑖 , we define the function traj : C× [0, 𝛿] ↦→ C to represent
the evolution of the system over a [0, 𝛿] time interval. The function traj is constructed by updating
all controller ports cp of every robot 𝑖 using the function 𝑓𝑖 . That is,

𝒄
′
= traj(𝒄, 𝑡) ⇔

(
∀𝑖 ∈ ID, 𝒄 ′.𝐿𝑖 .cp = 𝑓𝑖 (𝒄 .𝐿𝑖 .cp, 𝑡) ∧ 𝒄

′.𝐿𝑖 .𝑀 = 𝒄 .𝐿𝑖 .𝑀

∧ 𝒄
′.𝐿𝑖 .turn = 𝒄 .𝐿𝑖 .turn ∧ 𝒄

′.𝑆 = 𝒄 .𝑆 ∧ 𝒄
′.𝜏 = 𝒄 .𝜏 ∧ 𝒄

′.turn = 𝒄 .turn

)
(1)

Notice that there are additional constraints denoting that all other fields of 𝒄 and 𝒄
′ are the same.

The set of all transient system configurations C[0,𝑡] reached in an interval [0, 𝑡] from C is then
defined as follows:

C[0,𝑡] := {𝒄 ′ | ∃𝜏 ∈ [0, 𝑡], ∃𝒄 ∈ C, 𝒄 ′ = traj(𝒄, 𝜏)} . (2)

We denote the set of configurations reached precisely at the end of an environment transition
from C as Cenv.

Cenv := {𝒄 ′ | ∃𝒄 ∈ C, 𝒄 ′ = traj(𝒄, 𝛿)} (3)

where 𝛿 is the time for a round. Now, to conform to our semantics, we carefully define the exact
set of configurations reached right at the end of each round without transient configurations. A
frontier set of configurations C𝑛 represents those configurations that are reached from C when 𝑛

rounds have been completed. Formally,

C𝑛 :=

{
C, if 𝑛 = 0

(End (C𝑛−1))env otherwise
(4)

Finally, given a set of configurations C ⊆ C, we can inductively define the set of all reachable
configurations in 𝑛 rounds:

Reach(C, 𝑛) :=

{
C, if 𝑛 = 0

Reach(C, 𝑛 − 1) ∪ Post (C𝑛−1) ∪ (End (C𝑛−1))[0,𝛿], otherwise
(5)

Notice that Reach includes the transient configurations reached during both program and environ-
ment transitions.

4.2 Decomposing Invariance Verification

Properties of Koord programs are specified in terms of boolean-valued expression called predicates
specified using the syntax below:

Pred ::=
∧
𝑖∈Nsys

BExpr𝑖 ,

where BExpr𝑖 is the non-terminal BExpr defined in the Koord syntax shown in Figure 4 with every
local variable and port parameterized by 𝑖 , the robot pid. A local variable or port 𝑝 parameterized
by pid 𝑖 is represented as 𝑝𝑖 .

Given a predicate inv, ⟦inv⟧C represents the evaluation of inv over each configuration in C. We
use the notation ⟦inv⟧𝒄 for evaluating inv over a single configuration 𝒄 as well. An invariant of
a Koord program is a predicate that holds in all reachable configurations. Invariants can express

1For different platforms, this function could be explicitly given in closed form such as a solution to differential equations, or
in terms of a numerical simulator.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

232:14 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

safety requirements for an application, for instance, that no two robots are ever too close (Collision
avoidance), or that robots always stay within a designated area (Geofencing).

Definition 1. Given a set of initial configurations of the system C0, a predicate (Boolean valued
function) inv over configurations is an invariant of the system if ∀𝑛 ∈ N, ⟦inv⟧Reach(C0,𝑛) .

Definition 2. A predicate inv is an inductive invariant of the system if given a set of initial
configurations of the system C0, the following proof obligations (POs) hold:

⟦inv⟧C0 (6)

⟦inv⟧C ⇒ ⟦inv⟧Reach(C,1) (7)

That is, inv holds in the initial configuration(s) (PO (6)), and inv is preserved by both platform-
independent program transitions (distributed program logic) and the platform-dependent environ-
ment transitions (controllers), according to PO (7). It is straightforward to prove that an inductive
invariant is an invariant of the system.
Our verification strategy for user-specified (inductive) invariants is to discharge the proof

obligations. PO (6) is usually trivial. Therefore, we focus on PO (7). By expanding Reach(C, 1) using
the definition of Reach, PO (7) can be restated as

⟦inv⟧C ⇒ ⟦inv⟧Post (C) (8)

⟦inv⟧C ⇒ ⟦inv⟧End (C)[0,𝛿] (9)

Notice that Reach(C, 1) is decomposed into configurations reached by program transition, Post (C),
and by environment transitions, End (C)[0,𝛿] , and therefore they can be analyzed separately. This
decomposition is enabled by the Koord semantic rules in Figures 5 and 6.

4.3 Proof Obligations for Inductive Invariants

As in other concurrent systems, a major bottleneck in computing Post (C) for PO (8) is the required
enumeration of all ®𝑝 ∈ perms(ID) permutations for all robots with reads/writes to the global
memory. We, therefore, seek a stronger and easier to prove proof obligation using the lemma below:

Lemma 1. Given a predicate 𝜑 and a configuration 𝑐 , if ⟦𝜑⟧𝑐 ⇒
∧
𝑖∈ID

∧
𝑒∈Events⟦𝜑⟧Post (𝑐,𝑖,𝑒) , then:

⟦𝜑⟧𝑐 ⇒ ⟦𝜑⟧Post (𝑐)

Proof. Suppose the robots execute their events in the order ®𝑝 = 𝑝1, 𝑝2, . . . 𝑝Nsys . From its definition
in Figure 9, Post (𝑐, ®𝑝) = Post ((Post (𝑐, 𝑝1), (𝑝2, . . . , 𝑝Nsys)), since ®𝑝 is not an empty sequence. Because
⟦𝜑⟧𝑐 ⇒

∧
𝑖∈ID

∧
𝑒∈Events⟦𝜑⟧Post (𝑐,𝑖,𝑒) , we know∧

𝑒∈Events

⟦𝜑⟧Post (𝑐,𝑝1,𝑒) (10)

Using (10) and the definition of Post (𝑐, 𝑝1), we get that ⟦𝜑⟧Post (𝑐,𝑝1) . A similar argument can be used
to derive that ⟦𝜑⟧Post (𝑐,𝑝𝑖) for any 𝑝𝑖 ∈ ®𝑝 . Since ⟦𝜑⟧Post (𝑐,𝑝1) , it follows that ⟦𝜑⟧Post (𝑐′,𝑝2) , where
𝑐 ′ ∈ Post (𝑐, 𝑝1). In fact, for robots with pids 𝑝𝑖 , 𝑝𝑖+1 in ®𝑝 executing their events consecutively from
a configuration 𝑐 , we have

⟦𝜑⟧Post (𝑐,𝑝𝑖) ⇒ ⟦𝜑⟧Post (Post (𝑐,𝑝𝑖),𝑝𝑖+1) (11)

Given (11) and the definition of Post (𝑐, ®𝑝), we can conclude that:

⟦𝜑⟧𝑐 ⇒ ⟦𝜑⟧Post (𝑐,®𝑝) (12)

Further, since we proved (12) for an arbitrary permutation ®𝑝 , we can conclude that (12) holds for
every permutation, i.e,

∧
®𝑝∈perms (ID)⟦𝜑⟧Post (𝑐,®𝑝) . Hence, ⟦𝜑⟧𝑐 ⇒ ⟦𝜑⟧Post (𝑐) . □

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

Koord : A Language for Programming and Verifying Distributed Robotics Application 232:15

Lemma 1 states that as 𝜑 is preserved by all event executions by all robots, the order of event
execution does not impact the validity of 𝜑 . With Lemma 1, we strengthen and rewrite PO (8) as

⟦inv⟧C ⇒
∧
𝑖∈ID

∧
𝑒∈Events

⟦inv⟧Post (C,𝑖,𝑒) (13)

which no longer requires enumeration of all permutations. We use this lemma for scalable verifica-
tion of Koord applications in our synchronous round-based model of execution.

We now discuss our approach to discharge PO (9). To further decouple program and environment
transitions, we rewrite PO (9) by expanding ⟦inv⟧(End (C))[0,𝛿] and derive:

⟦inv⟧C ⇒ (∀𝒄 ′, 𝒄 ′′,∀𝑡 ∈ [0, 𝛿], 𝒄 ′ ∈ End (C) ∧ 𝒄
′′
= traj(𝒄 ′, 𝑡) ⇒ ⟦inv⟧𝒄′′). (14)

PO (14) requires reasoning about the continuous behavior of traj during environment transitions,
and it is a challenging research problem by itself. We introduce controller assumption to abstract
away the continuous behavior of traj.

Definition 3. A controller assumption is a pair of predicates ⟨𝑃,𝑄⟩, where 𝑃 is defined over
CPorts × Val × CPorts × Val and 𝑄 is over CPorts × Val. Given a controller assumption ⟨𝑃,𝑄⟩, the
traj function satisfies the assumption if starting from any 𝒄

′ with port values satisfying 𝑃 then any
reachable configuration 𝒄

′′ within [0, 𝛿] also satisfies 𝑄 . Formally,

∀𝒄 ′, 𝒄 ′′,∀𝑡 ∈ [0, 𝛿], 𝑃 (𝒄 ′.Acts, 𝒄 ′.Sens) ∧ 𝒄
′′
= traj(𝒄 ′, 𝑡) ⇒ 𝑄 (𝒄 ′′.Sens) (AAsm)

where 𝒄 ′.Acts refers to its actuator port values, 𝒄 ′.Sens refers to the sensor port values. A controller
assumption ⟨𝑃,𝑄⟩ is similar to preconditions and postconditions for the traj function with an
additional guarantee that 𝑄 must hold at all time during the time horizon [0, 𝛿]. It allows users to
over-approximate the set of all transient configurations reached by traj and prove the invariant.
We demonstrate in Section 5 and Section 6 how controller assumptions can be validated with
specialized tools for continuous dynamics.
We know by definition End (C) ⊆ Post (C). With Lemma 1, we can merge PO (13) and PO (14),

add program and controller assumptions, and simplify our proof obligation as:∧
𝑖∈ID

∧
𝑒∈Events

⟦inv⟧C ∧ 𝒄
′ ∈ Post (C, 𝑖, 𝑒) ∧ (𝑃 (𝒄 ′.Acts, 𝒄 ′.Sens) ⇒ 𝑄 (𝒄 ′′.Sens)) ⇒ ⟦inv⟧𝒄′′ . (Ind)

Notice the continuous dynamics no longer appear in PO (Ind), allowing us to reason in per event
fashion as well as per robot fashion. We can then use our K symbolic execution semantics to
construct the symbolic post event configurations Post (C, 𝑖, 𝑒) for each event 𝑒 , and prove the
validity with SMT solvers.

Dealing with Loops and External Functions. Koord programs may include for loops with
bounded iterations. Proving invariants over loops is by itself a well studied and difficult research
problem. In this work we deal with loops by simply unrolling them. Koord programs can also
include external functions such as computing distance between two points, and path generated
by path planners (as shown in Section 6). To deal with such functions, we instruct our symbolic
execution to treat them as uninterpreted functions, and we introduce a function summary for these
uninterpreted functions similar to controller assumptions.

Definition 4. A function summary 𝐹 (𝑥,𝑦) for an uninterpreted function 𝑓 (𝑥) is a predicate for
which the following holds:

∀𝑥, 𝐹 (𝑥, 𝑓 (𝑥)) (FSum)

where 𝑥 can be extended according to the arity of 𝑓 . Verification and generation of good function
summaries is extensively discussed and widely used in software verification [Dillig et al. 2011; Yorsh
et al. 2008]. We believe writing a good function summary requires substantial domain knowledge

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

232:16 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

in both the particular robot devices and the problem to be solved. We present an example of writing
a function summary in Section 6.

5 CASE STUDY: DISTRIBUTED FORMATION CONTROL

In this section, we revisit the LineForm program of Section 2 and discuss how our approach towards
verifying inductive invariants can be applied to verify the Geofencing requirement of this program.

As mentioned in Section 4, the symbolic post event configuration Post (C, 𝑖, 𝑒) generated by
K represents a set of system configurations. For variables in 𝒄 , their primed copies, and their double
primed copies represent the variables in 𝒄

′ ∈ Post (C), and 𝒄
′′ ∈ End (C)[0,𝛿] respectively. Consider

a candidate invariant for the 𝑖th robot:

Invariant 2. ⟦𝐼𝑖⟧𝒄 := Motion.psn𝑖 ∈ rect (a, b) ∧ 𝑥 [𝑖] ∈ rect (a, b)

This invariant asserts that the position of each robot 𝑖 is always within rect (a, b), and that each
agent always updates its shared variable value to be within rect (a, b) as well. The expression
Motion.psn𝑖 ∈ rect (a, b) is actually a syntactic simplification for

𝑎.𝑥 ≤ Motion.psn𝑖 .𝑥 ≤ 𝑏.𝑥 ∧ 𝑎.𝑦 ≤ Motion.psn𝑖 .𝑦 ≤ 𝑏.𝑦 ∧ 𝑎.𝑧 ≤ Motion.psn𝑖 .𝑧 ≤ 𝑏.𝑧.

We first try to prove Invariant 2 without any assumptions, only from the constraints generated
through the symbolic execution of LineForm. Koord Prover symbolically executes the event Targe-
tUpdate (for robot 𝑖) and automatically generates the constraint 𝐸𝑖 specifying the symbolic post
event configuration:

𝐸𝑖 :=
©­«

¬(𝑖 = Nsys − 1 ∨ 𝑖 = 0)
∧ Motion.target′𝑖 = (𝑥 [𝑖 − 1] + 𝑥 [𝑖 + 1])/2 ∧ 𝑥 ′[𝑖] = Motion.psn𝑖
∧ u_vars ∧ Motion.psn′′𝑖 := traj(Motion.psn′𝑖 , Motion.target𝑖 , 𝑡) ∧ 𝑡 ∈ [0, 𝛿]

ª®¬
where traj is treated as an uninterpreted function over R × R. The function rect can both be
precisely defined as well as left uninterpreted. The primed copies of the variables in 𝒄 are their
values in 𝒄

′, and the double primed copies are their values in 𝒄
′′. The rest of the formula includes

a subformula u_vars that ensures that the values of unmodified variables are unchanged such as
Motion.psn′𝑖 = Motion.psn𝑖 and 𝑥

′[𝑗] = 𝑥 [𝑗] for 𝑗 ≠ 𝑖 .
Since there is only one event, the induction proof obligation, Koord Prover generates the following

proof obligation PO (1) for LineForm:

Proof Obligation 1.
∧
𝑖∈ID

⟦𝐼𝑖⟧𝒄 ∧ 𝐸𝑖 ⇒ ⟦𝐼𝑖⟧𝒄′′

The Prover returns that the negation of PO (1) is satisfiable, meaning that our proposed invariant
is not inductive. The satisfying assignment serves as a counter example. This is not surprising
as the automatically generated proof obligation PO (1) does not include any sensor or actuator
assumptions. Specifically, it does not contain any restrictions on Motion.psn′′𝑖 , Motion.target

′′
𝑖

w.r.t any of the variables in the symbolic post event configuration.
Next, we introduce a controller assumption ⟨𝑃𝑖 , 𝑄𝑖⟩

𝑃𝑖 := Motion.psn′𝑖 ∈ rect (a, b) ∧ Motion.target′𝑖 ∈ rect (a, b)

𝑄𝑖 := Motion.psn′′𝑖 ∈ rect (a, b), (15)

where 𝑐 ′ is the configuration 𝑃𝑖 is evaluated on, and 𝑐 ′′ is the configuration 𝑄𝑖 is evaluated on.
PO (1) is then refined to:

Proof Obligation 2.
∧
𝑖∈ID

⟦𝐼𝑖⟧𝒄 ∧ 𝐸𝑖 ∧ (𝑃𝑖 ⇒ 𝑄𝑖) ⇒ ⟦𝐼𝑖⟧𝒄′′

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

Koord : A Language for Programming and Verifying Distributed Robotics Application 232:17

Having added the controller assumption (15), Koord Prover returns that the negation of PO (2) is
unsatisfiable, i.e., (15) is sufficient to prove Invariant 2.
Table 1 summarizes the verification time needed for checking PO (1) on instances of LineForm

with different Nsys . We see that the time taken for symbolic execution in K (𝑇𝐾) remains relatively
stable. While the time taken to encode the problem in SMT and discharge the proof obligation (𝑇𝑉)
increases, it still completes in order of seconds even when the number of robots increases up to 15.

Table 1. Summary of semantics based verification for LineForm. 𝑇𝐾 is the symbolic post event configuration

computation time in K , 𝑇𝑉 is the time taken for construction of constraints and verification in Z3. A system

of robots moving along a line is represented by dim = 1, on a plane by dim = 2, and in 3D space by dim = 3.

Nsys dim 𝑇𝐾 (s) 𝑇𝑉 (s) Valid

3 1 4.90 9.09 !

3 2 4.19 10.13 !

4 1 4.79 12.21 !

4 2 5.28 12.49 !

4 3 5.06 12.77 !

5 1 4.91 18.46 !

Nsys dim 𝑇𝐾 (s) 𝑇𝑉 (s) Valid

5 2 5.60 18.91 !

5 3 4.33 20.30 !

10 1 4.92 32.34 !

10 2 5.16 32.42 !

10 3 4.34 33.61 !

15 1 5.23 53.89 !

We now turn to validating the controller assumption (15). Recall, from PO (AAsm) and ⟨𝑃𝑖 , 𝑄𝑖⟩
above, we can derive the following:

Controller Proof Obligation 1.

∀𝑡 ∈ [0, 𝛿], Motion.psn𝑖 ∈ rect (a, b) ∧ Motion.target𝑖 ∈ rect (a, b)

∧ 𝑐 ′′ = traj(𝑐 ′, 𝑡) ⇒ Motion.psn′′𝑖 ∈ rect (a, b).

This proof obligation essentially states that if the current position and the target of the robot are
within the rectangle rect (a, b), then it remains within rect (a, b) for the next 𝛿 interval. To prove
CPO (1), one has to reason with the function traj that represents the control system of the specific
robot, and we believe such reasoning is better solved with reachability analysis.
Reachability analysis computes the set of states of a control system that is reachable from a

set of initial states. The sensor and actuator ports in Koord can be directly encoded as the state
variables of a (black-box) control system traj. Proving Controller Proof Obligation 1 boils down
to computing the set of reachable states from a set of initial positions bounded by rect (a, b) and
with the target also in the same rectangle, and checking that the result is contained in rect (a, b).
Typically, computing the exact set of reachable states is undecidable for nonlinear control system
models, and therefore, the available algorithms rely on over-approximations.
In this case study, we use the DryVR [Fan et al. 2017] reachability analysis tool which uses

numerical simulations to learn the sensitivity of the trajectories of the robot. Then, DryVR uses this
sensitivity and additional simulations to either prove the required property, with a probabilistic
guarantee, or finds a counter-example trace. DryVR has been used to analyze automotive and
aerospace control systems [Fan et al. 2018]. Here we use the Koord simulator to generate traces of
a drone, specifically using the Hector Quadrotor model [Meyer et al. 2012], from which DryVR
computes the reachsets (sets of reachable states).
Figure 10 shows the outputs of the reachability analysis performed on the model of the drone.

With a simple PID controller, the drone overshoots its target, and violates the Controller Proof
Obligation 1, while for the same controller with different control gains with a lower settling time,
it meets the requirement. Here we have computed reachsets from a smaller initial rectangle and
with a target that is also in a smaller rectangle, than rect (a, b). However, the model of the drone
is symmetric under translations, planar reflections and rotations. Therefore, using Theorem 10

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

232:18 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

Fig. 10. Reachset computations for LineForm, for the drone model. The big green rectangle represents

rect (a, b). The blue rectangle at the bottom left corner of each plot represents starting points in the simulated

trajectories used to generate these reachtubes, and the blue rectangle on the top right corner is the bound on

the targets reached in the trajectories. Left shows that the reachset of the drone overshoots the rectangle.

Right shows that with different PID control parameters, the controller assumption is satisfied.

from [Russo and Slotine 2011] and the computed reachsets can be translated and rotated to cover
all initial and target choices in rect (a, b) (as shown in [Sibai et al. 2020]).

6 CASE STUDY: DISTRIBUTED DELIVERY

Many distributed multi-robot applications can be seen as distributed task allocation problems, with
different points in a shared environment that robots collaboratively visit. We view visiting points
as an abstraction for location-based objectives like package delivery, mapping, surveillance, or
fire-fighting. In this section, we discuss a Koord application Delivery, (shown in Figure 11) that
performs distributed delivery. We then show how our decomposed verification approach can verify
the safety requirements for this application.
The problem statement is as follows: Given a set of (possibly heterogeneous) robots, a safety

distance 𝜖 > 0, and a fixed sequence of delivery points (or tasks) all_tasks = 𝑥1, 𝑥2, . . . where every
𝑥𝑖 ∈ R

3, there are following two requirements: (a) every unvisited 𝑥𝑖 in the sequence is visited
exactly by one robot and (b) no two robots ever get closer than 𝜖 .
A task is a described as a tuple, containing a Boolean which indicates whether it has been

assigned, an integer which is set to the identifier of the robot it has been assigned to, and a Point
which is the location of the task. To get to a task, a robot visits a list of points starting from its
current position to the task location (in order). We refer to this list of points as its path. The idea
behind the solution to the distributed delivery problem is simple: Robot 𝐴 looks for an unassigned
task 𝜏 from a list of tasks, all_tasks. If there is a clear path to 𝜏 , then 𝐴 assigns itself the task 𝜏 .
Then 𝐴 visits 𝜏 following the path; once done, it repeats. Converting this to a working solution for
a distributed system is challenging as it involves combining distributed mutual exclusion ([Ghosh
2014; Lynch 1996]) to assign a task 𝜏 exclusively to a robot 𝐴 from all_tasks, dynamic conflict-free
path planning, and low-level motion control.

Figure 11 shows our Koord language implementation of Delivery. Delivery consists of two events
(1) Assign, in which each robot looks for an unassigned task from all_tasks. If there is a clear path
to the the task cur_task then the robot assigns itself the task, set the actuator port Motion.path,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

Koord : A Language for Programming and Verifying Distributed Robotics Application 232:19

1 using Motion:
2 actuators:
3 List⟨Point⟩ path
4 sensors:
5 Point psn

6 bool reached

7 PathPlanner planner

8 local:
9 bool on_task = s

10 List⟨Point⟩ curr_path
11 Task cur_task

12 allread:
13 List⟨Point⟩ shared_paths[Nsys]
14 allwrite:
15 List⟨Task⟩ all_tasks
16

17 Complete:
18 pre: on_task and Motion.reached
19 eff: on_task=False
20 shared_paths[pid]=[Motion.psn]

21 Assign:
22 pre: !on_task
23 eff:
24 if len(all_tasks) == 0:
25 stop

26 else: atomic:
27 for t in all_tasks:
28 curr_path=Motion.planner(t.target)
29 if pathIsClear(shared_paths, curr_path, pid) :
30 on_task=True

31 cur_task=t

32 break

33 if on_task:
34 all_tasks.remove(cur_task)
35 shared_paths[pid]=curr_path
36 Motion.path=curr_path
37 else:
38 shared_paths[pid]=[Motion.psn]

Fig. 11. Koord code for distributed Delivery application.

and shares its path with all other robots through shared_paths. Otherwise, it shares its position
as the path. (2) Complete, which checks whether a robot has visited its assigned task.
The Motion module drives the robot along a path, as directed by the position value set at its

actuator port Motion.path. The sensor port Motion.planner returns a path to the target of an
unassigned task. A (user-defined) function called pathIsClear is used to determine whether the
currently planned path is within 𝜖 distance of any path in shared_paths. In this case study, we
omit the proof for requirement (a) for Delivery as it requires reasoning only on program variables,
and demonstrate our proof of requirement (b) which involves dealing with controller assumptions
and function summaries. The full proof is available in [Ghosh 2020].

Suppose there is a function parameterized by 𝜖 , taking two paths as input clear𝜖 : List⟨Point⟩ ×
List⟨Point⟩ ↦→ bool, it returns true only if the minimum distance between the two paths is greater
than 𝜖 . We restate requirement (b) as:

Invariant 3. ⟦𝐼𝑖⟧𝒄 = ∀𝑗 ∈ [Nsys], (𝑖 ≠ 𝑗∧clear𝜖 (shared_paths[𝑖], shared_paths[𝑗]))∨(𝑖 = 𝑗)

Computing the clear function involves nested loops over the length of each path, then computing
the minimum distance between each path segment pathIsClear further has to iterate over all
shared paths and check via clear . We use function summary as defined in Section 4 to capture the
notion of correctness for pathIsClear. The function summary PIC is defined below as:

Function Summary 1. PIC (𝑠𝑝, 𝑐𝑝, 𝑖, 𝑦) := ∀𝑗 ∈ ID, 𝑗 ≠ 𝑖 ∧ ¬clear𝜌 (𝑠𝑝 [𝑗], 𝑐𝑝) ⇒ ¬𝑦,

where 𝜌 > 𝜖 . The function summary simply says, if my current path 𝑐𝑝 is not more than 𝜌 distance
to any path 𝑠𝑝 [𝑗] shared by other robots, the output 𝑦 = pathIsClear(sp, cp, 𝑖) should be false.2

We derive this function summary from our understanding of the code in Figure 11. If the result
of pathIsClear evaluates to true at Line 29, the robot’s path curr_path should be at least some
𝜌 > 𝜖 distance away from all other robot paths in shared_paths. Therefore, we constructed the
function summary by contraposition that, if the path is not at least 𝜌 distance away from all other
paths, the output 𝑦 should evaluate to false. The proof-obligation for this function summary is:

2The index 𝑖 in the pathIsClear function is for robot 𝑖 to avoid considering its own previous paths.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

232:20 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

Proof Obligation 3. ∀𝑠𝑝, 𝑐𝑝, 𝑖, PIC (𝑠𝑝, 𝑐𝑝, 𝑖, pathIsClear(𝑠𝑝, 𝑐𝑝, 𝑖))

Validating PO (3) requires reasoning about the implementation of the pathIsClear function,
which is beyond the scope of this discussion.

For constructing the symbolic set of configurations, we use a list with four tasks signified by
{𝑡1, 𝑡2, 𝑡3, 𝑡4} so that the symbolic execution terminates. The for-loop iterating through the task list
is unrolled into a sequence of (nested) if-else statements. For simplicity, we show the automatically
generated symbolic post event configuration of the Assign event for only one execution when
robot 𝑖 picks 𝑡1:

𝐸𝑡1𝑖 := ¬on_task𝑖 ∧ on_task′𝑖 ∧ curr_path′𝑖 = Motion.planner(𝑡1 .𝑡𝑎𝑟𝑔𝑒𝑡)

∧ PIC (shared_paths, curr_path′𝑖 , 𝑖, True) ∧ shared_paths′[𝑖] = curr_pathi
′

∧ Motion.path′𝑖 = shared_paths′[𝑖] ∧ u_vars

where u_vars again, ensures the values of unmodified variables are unchanged. Notice how we can
use PIC to summarize pathIsClear. Similarly, we get 𝐸𝑡2𝑖 , 𝐸

𝑡3
𝑖 and 𝐸𝑡4𝑖 for other execution paths

choosing corresponding tasks. When none of the tasks is picked, the post event configuration
generated is

𝐸𝑛𝑜𝑛𝑒𝑖 := ¬on_task𝑖 ∧ shared_paths′[𝑖] = [Motion.psn𝑖] ∧ u_vars

For the event Assign, the post event configuration is:

𝐸𝑖 :=

(
∀𝑗 ∈ [Nsys], 𝐸

𝑡1
𝑖 ∧ 𝐸

𝑡2
𝑖 ∧ 𝐸

𝑡3
𝑖 ∧ 𝐸

𝑡4
𝑖 ∧ 𝐸none𝑖 ∧ (Motion.psn′′, Motion.reached′′) =

traj(Motion.psn′, Motion.reached′, Motion.path′, 𝑡) ∧ 𝑡 ∈ [0, 𝛿]

)

Our Prover then automatically generates the proof obligation :

Proof Obligation 4.
∧
𝑖∈ID

⟦𝐼𝑖⟧𝒄 ∧ 𝐸𝑖 ⇒ ⟦𝐼𝑖⟧𝒄′′

For abstracting the movement of robots, a robot should move closely (¬clear𝛽 , where 2𝛽 + 𝜖 ≤ 𝜌)
along its Motion.path actuator whose value is denoted by Motion.path until it finishes traversing
the path. We add ⟨𝑃𝑖 , 𝑄𝑖⟩ with

𝑃𝑖 := ¬Motion.reached′𝑖

𝑄𝑖 := ¬clear𝛽 (Motion.psn
′′
𝑖 , Motion.path

′′
𝑖)

The corresponding proof obligation then becomes:

Controller Proof Obligation 2.

∀𝑡 ∈ [0, 𝛿],¬Motion.reached′𝑖 ∧ 𝑐 ′′ = traj(𝑐 ′, 𝑡) ⇒ ¬clear𝛽 (Motion.psn
′′
𝑖 , Motion.path

′′
𝑖)

The induction hypothesis for event Complete is generated similarly (omitted here), and the
overall proof obligation is a conjunction of the two. Table 2 summarizes the verification of these
constraints with different number of robots.

Table 2. Summary of semantics based verification of requirement (b) for Delivery. 𝑇𝐾 is the symbolic post

event configuration computation time in K ,𝑇𝑉 is the time taken for generation of constraints and verification

in Z3, and Nsys is the number of robots in the system.

Benchmark Nsys 𝑇𝐾 (s) 𝑇𝑉 (s) Valid

Task 3 9.90 10.6 !

Task 4 9.79 11.78 !

Task 5 9.91 14.92 !

Task 10 12.92 18.34 !

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

Koord : A Language for Programming and Verifying Distributed Robotics Application 232:21

Fig. 12. Reachset computations for Delivery. In both the plots, the grey shaded area is unsafe and needs to be

avoided. The blue path is the computed path, and the green lines indicate the bounds at 𝛽 distance from the

path. Left shows the computed reachset for the drone lies within 𝛽 of the actual path, thus the drone will not

violate Controller Proof Obligation 2.Right shows the computed reachset for the car model is not contained

so the car may violate the assumption.

We now turn towards DryVR based validation for Controller Proof Obligation 2. We computed
reachsets for our vehicle models and checked whether they were contained within 𝛽 distance
of the desired path. We found that the reachset of the drone satisfied this requirement, but the
car model did not, as seen in Figure 12 (Right). The car model [Karaman et al. 2017] we used
has non-holonomic constraints (constraints that constrain the velocities of particles but not their
positions) and making the turn formed by the two components of the path shown in Figure 12
requires the car to perform a reverse maneuver that may violate the safety constraint.

7 CASE STUDY: DISTRIBUTED MAPPING

We demonstrate how Koord port abstractions support versatile robotic functionality through a
distributed grid mapping application (Mapping). This problem requires a set of robots to collabora-
tively mark the position of static obstacles within a given area 𝐷 quantized by a grid, which any
robot should avoid while moving in 𝐷 . For simplicity, we assume that the robots are constrained to
move in a 2D space and use only LIDAR sensors for sensing obstacles.

TheMapping algorithm shown in Figure 13 works in the following manner. Each robot constructs
a local grid map over the area 𝐷 using sensors, and updates it using information from other robots
shared via a global grid map. InMapping, the MotionWithScan module provides a pscan sensor,
which is used to read the LIDAR scan of the actual robot. The other ports psn, reached, planner,

path have the same functionality as that in the Motion module. The shared allwrite variable map is
used to construct a shared map of obstacles within the domain 𝐷 , and has type GridMap, which is
a 2-D array representing a grid over 𝐷 . The local variable localMap represents each robot’s local
knowledge of the domain𝐷 , and has the same type as𝐷 . There are three events: NewPoint, LUpdate,
and GUpdate. A robot executing the NewPoint event, finds an unoccupied point to move to using a
user defined function pickFrontierPos and plans a path to it using MotionWithScan.planner. It
then updates its localMap from the shared variable map. The LUpdate event updates the localMap
with scanned sensor data while the robot is in motion, and the GUpdate event updates the shared
map with the updated localMap information corresponding to the scanned data.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

232:22 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

1 using MotionWithScan

2 sensors:

3 Point psn

4 List⟨Point, Scan⟩ pscan
5 bool reached

6 PathPlanner planner

7 actuators:

8 List⟨Point⟩ path
9

10 allwrite:

11 GridMap map

12

13 #omitting initialization

14 local:

15 GridMap localMap

16 Point target

17 bool on_path = True

18 List⟨Grid⟩ obstacles
19

20 GUpdate:

21 pre MotionWithScan.reached

22 eff: atomic:

23 map = merge(map, localMap)
24 on_path = False

25

26 NewTarget:

27 pre !on_path

28 eff:

29 target = pickFrontierPos(map, MotionWithScan.position)
30 obstacles = findObs(map)
31 MotionWithScan.path = MotionWithScan.planner(target, obstacles)
32 if MotionWithScan.path != []:
33 on_path = True

34 else:

35 on_path = False

36 localMap = map

37

38 LUpdate:

39 pre on_path and !MotionWithScan.reached

40 eff:

41 for p, s in MotionWithScan.pscan:

42 localMap = merge(localMap, scanToMap(p, s))

Fig. 13. Koord code for Distributed Mapping Application

Fig. 14. Four cars with a U-shape world in the multi-robot simulator of [Ghosh et al. 2020] (Left). Visualization

of the global map at three different time instances (Right)

A correctness requirement for Mapping is that the detected grid map is consistent with the
ground truth. To express this requirement, we assume the ground truth for all obstacles is a predicate
world, such that world (®𝑥) is true if and only if the position ®𝑥 ∈ 𝐷 is occupied by obstacles. We also
define a quantized domain Q and a quantization function quant : 𝐷 ↦→ Q, which maps a point in 𝐷

to a grid square in Q. We then can express the consistency that, if a grid map 𝑔 marks a grid square
𝑞 ∈ Q occupied (𝑔(𝑞) = OCCUPIED, e.g., grid squares containing any part of the u-shaped obstacle
in Figure 14 (Left)), then there is indeed some obstacles in 𝑞. Formally, we define a function chk as:

chk(𝑔) := ∀𝑞 ∈ 𝑄, (𝑔(𝑞) = OCCUPIED) ⇒ (∃®𝑥 ∈ 𝐷,𝑞 = quant (®𝑥) ∧ world (®𝑥))

The function chk is treated as an uninterpreted function with the constraint mentioned above in
the proof of Mapping. We then formally define the invariant to check the consistency of both local
and shared maps as:

Invariant 4. ⟦Consistent𝑖⟧𝑐 := chk(localMap𝑖) ∧ chk(map)

We omit a detailed presentation of the specific proof obligations, controller assumptions and func-
tion summaries for this case study. The full proof is available in [Ghosh 2020]. Table 3 summarizes
the verification effort of Invariant 4 of theMapping application with different Nsys .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

Koord : A Language for Programming and Verifying Distributed Robotics Application 232:23

Table 3. Summary of semantics based verification for Mapping

Benchmark Nsys 𝑇𝐾 (s) 𝑇𝑉 (s) Valid

Mapping 3 9.23 14.53 !

Mapping 4 9.33 19.25 !

Mapping 5 9.19 24.30 !

Mapping 10 9.31 59.81 !

We also tested theMapping application using the multi-robot simulator from [Ghosh et al. 2020],
and the MIT RACECAR model [Karaman et al. 2017] included in the simulator. Figure 14 shows an
example of the stages of the collaborative map created by four robots of the U-shaped obstacle in
the simulation environment.
While tools such as ROS [Quigley et al. 2009] can be used to implement applications such as

these, without inherent support for distributed coordination, it becomes difficult to program such
applications even for experienced roboticists.Mapping implemented in Koord treats the sensing
of the obstacles in the environment separately from the collaborative map construction. This is
facilitated by the shared variable abstractions provided by Koord, which provides easy integration
with popular robotics platforms through implementations of controller abstractions.

8 IMPLEMENTING KOORD: THE CYPHYHOUSE TOOLCHAIN

Per robot

Real or Simulated Vehicle

Platform-specific controller

Compiled Koord code

CyPhyHouse Middleware

Actuator

ROS topics

DSM

Sensor

ROS topics

Shared/Module/Local Variables

Real or Simulated World

Low level sensory & control

Fig. 15. Architecture of the CyPhyHouse toolchain and

the interactions between its components. Each com-

piled Koord program interacts with CyPhyHouse mid-

dleware simply via variables. The CyPhyHouse middle-

ware implements distributed shared memory (DSM)

across agents and the language abstractions over

platform-specific controllers through actuator ROS top-

ics, and obtain (real or simulated) information such as

vehicle positions through sensor ROS topics.

In this section, we discuss the implementation
of the execution engine for Koord language in
our CyPhyHouse3 toolchain [Ghosh et al. 2020].
Figure 15 shows the toolchain, which has the
following components:

• The Koord compiler, which accepts a Ko-
ord program as input and generates an exe-
cutable Python application denoted here as
the compiled Koord program,

• The CyPhyHouse middleware which inter-
faces each instance of the same compiled Ko-
ord program with distributed shared mem-
ory (DSM) and platform-specific controllers,

• Platform-specific controllers implemented in
ROS and deployed to real vehicles,

• The multi-robot simulator, which provides
simulated vehicle models and simulation
worlds in Gazebo for testing and debug-
ging Koord applications.

CyPhyHouse middleware decouples compiled
Koord programs from the platform-specific
controllers and transitively all platform-dependent components. Next, we connect the Koord se-
mantics to the implemented middleware. We then describe the code generation by Koord compiler.
We use the Motion module in Section 5 as an example to describe how we provide a concrete
implementation of the port abstractions that wraps over the ROS-based platform-specific controllers.

3https://cyphyhouse.github.io

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

https://cyphyhouse.github.io

232:24 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

8.1 CyPhyHouse Middleware

The main design rationale behind the CyPhyHouse middleware is modularity, to enable several
replaceable implementations of the main language features, such as shared memory, mutual ex-
clusion, and round synchronization. General interfaces between the control logic and distributed
coordination in the middleware are used to support robots with various controller port abstractions.
This modular design enables the portability of Koord applications across heterogeneous robots.

The CyPhyHouse middleware is deployed to each robot to interface the compiled Koord pro-
grams with platform-specific controllers as well as communication through distributed shared
memory (DSM). More specifically, following the robot semantics in Section 3, the CyPhyHouse
middleware includes interfaces to (1) declare and update the robot configuration, which includes
local context and sensor and actuator ports, and (2) execute selected events in prog turn followed
by env turn in each round, which we discussed in Section 3.3.

1 def __init__(self , ...):

2 self.lvh = dict()

3 self.gvh = GlobalVariableHolder ()

4 self.motion = Motion(vehicle_type)

5 ... # S e t p id , N_sys , e t c .

6

7 def run(self):

8 self.init_vars ()

9 self.gvh.init_barrier.wait()

10

11 while not self.stopped ():

12 self.gvh.round_barrier.wait()

13 self.loop_body ()

14

15 # 𝛿 t ime f o r each i t e r a t i o n

16 DELTA_TIMER.sleep()

17 def init_vars(self):

18 self.gvh.create_ar_var('mypos ',

19 type(pos))

20

21 def loop_body(self):

22 if True: # p r e o f Ta r g e tUpda t e

23 # e f f o f Ta r g e tUpda t e

24 self.gvh['mypos '][self.pid] = \

25 self.motion.psn

26 if not (self.pid == 0 or \

27 self.pid == self.N_sys - 1):

28 self.motion.target = mid_pt(

29 self.gvh['mypos '][self.pid + 1],

30 self.gvh['mypos '][self.pid - 1])

31 return # end e f f o f Ta r g e tUpda t e

Fig. 16. Simplified round-based event execution loop (Line 1-16) and compiled Koord for LineForm in Fig-

ure 3 (Line 17-31).

RobotConfigurations. Recall the robot configuration in Section 3.2, local context 𝐿𝑖 .𝑀 contains
both local variables and local copies of shared variables. In Figure 16, our implementation in
CyPhyHouse middleware splits it into two mappings, lvh (Line 2) and gvh (Line 3), to keep track
of local and shared variables separately for the robot configuration. Such separation effectively
eliminates checking 𝑥 ∈ Keys(𝑆) (e.g., in semantic rules SvarAssign and LvarAssign). The abstract
base class named GlobalVariableHolder for gvh defines required methods including create, read,
and update variable values, and it allows plugging in different DSM algorithms.

Distributed Shared Memory. CyPhyHouse middleware further provides a baseline implemen-
tation of GlobalVariableHolder based on the central-server algorithm for DSM [Protic et al.
1997] with several modifications to follow the Koord semantic rules:

• Each agent maintains its local copy of 𝑆 .
• Following the rule Var-Lookup-rule in Figure 6, reading shared variables values is from this
local copy instead of the real global context 𝑆 .

• Following the rule SvarAssign, each call to the update method of gvh internally updates the
local copy and sends a message to the central server to update the global context 𝑆 .

• Following the rule RobotEnv, all agents read the latest 𝑆 from the central server to update their
local copies before entering the next round.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

Koord : A Language for Programming and Verifying Distributed Robotics Application 232:25

Note that the Koord semantics and this implementation do not permit causally related writes
within a single round because the global context is copied into each robot’s local context only at
the end of the environment transition, and the updated values of shared variables will be from the
last update messages received by the central server. Koord does allow causally related writes across
multiple rounds by using the atomic block construct to enforce mutual exclusion in a round. If an
event is annotated with atomic, then only one robot can execute this event in each round. This is
achieved in the implementation via a lock object for each event with atomic blocks.
Sensor and actuator port names are from predefined Python modules implementing platform-

specific controllers. For instance, psn and target attributes are predefined in Motion. Therefore,
there is no need for an extra variable mapping.

Round-based Event Execution Loop. Each compiledKoord program in Python is conceptually
an application thread which runs on each robot and executes a loop with each iteration representing
a round. The run function in Figure 16 shows the basic structure of this event execution loop.
Before the while loop, every agent executes its initialization function init_vars translated from
the variable declarations and init blocks in Koord. For example, an allread variable mypos is declared
in LineForm, and it is translated to a function call that creates a ‘mypos’ entry in gvh at Line 18.
The init_barrier object ensures that all agents finished their initialization before entering the
while loop. Inside the while loop, all agents are synchronized by the round_barrier object at
Line 12, and execute their loop_body. The loop body is translated from the distributed coordination
logic in the form of conditional blocks controlled through the events’ preconditions. For example,
Figure 16 show the translation of the TargetUpdate event in LineForm. After executing the event,
the timer ensures the agent does not enter the next round before the 𝛿 period.
We skip the details about barrier objects as barrier synchronization is a common technique

in multi-threading; it can be implemented through either shared memory [Hensgen et al. 1988]
or message passing [Cheung and Sunderam 1995]. System parameters such as pid, Nsys , the set
of participants ID, etc., are provided in a global configuration file and deployed with compiled
Koord program to each robot. The fact that robots are aware of the number and identities of all
participating robots does not limit the applicability of Koord in real deployments. In practice,
applications like warehouse management, delivery, agricultural surveillance are all being initially
designed for a fixed set of participants.4

8.2 Code Generation

TheKoord compiler generates Python code for theKoord application using the interfaces provided by
the CyPhyHouse middleware. The Koord compiler has three phases: (1) parsing and syntax checking,
(2) static type checking (recall, all variables and ports are statically typed), and (3) translation
to Python code. Note that the variable holders and event execution loop do not change across
different Koord programs. Koord compiler only has to generate the function body of init_var and
loop_body for a given Koord program.

8.3 Interface with Platform-specific Controllers

In this section, we use the Motion module to illustrate how writing and reading to module ports is
implemented via sending and receiving messages of ROS topics. For instance, the Motion module
in our case studies provides the sensor ports, psn and reached, and the actuator port, target, that
abstract away real implementations. We simply use an abstract base class MotionAutomaton with
psn and target properties with setter and getter methods to represent these port abstractions. To

4https://www.faa.gov/uas/research_development/traffic_management/media/UTM_ConOps_v2.pdf

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

https://www.faa.gov/uas/research_development/traffic_management/media/UTM_ConOps_v2.pdf

232:26 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

run Koord on different kinds of hardware platforms, we then need to implement setter and getter
methods of psn and target for each kind of platform.

In particular, we discuss two different implementations of target property for the two simulated
hardware platforms integrated into CyPhyHouse: the car from MIT RACECAR project [Karaman
et al. 2017] and the drone from the Hector Quadrotor project [Meyer et al. 2012]. To implement
the target property for assigning target waypoints, we have to consider the difference between
the physics and platform-specific control of car and drone, and publish to different ROS topics of
motion-related commands as messages. More specifically, the car has non-holonomic constraints
in steering as we mentioned in Section 6, and hence the maximum angle of turning is limited.
Therefore, setting a new target value internally requires a path planner to generate a path to the
new target with reasonable curvatures, and publishes a sequence of steering messages to follow
the path. In contrast, the drone in [Meyer et al. 2012] has no such constraint. The provided velocity
message can drive the drone in any direction in 3D. Setting a new target value simply publishes
the velocity messages with the desired direction without considering the heading of the drone.

9 RELATED WORK

Early domain specific languages for robotics were proprietary and tied to specific platforms. For
a detailed survey, see [Nordmann et al. 2014]. With the lowering hardware costs and increasing
popularity, there is a growing interest in open and portable frameworks and languages [Bohrer
et al. 2018; Milicevic et al. 2015; Pinciroli and Beltrame 2016; Williams et al. 2003].

Table 4. Comparison of frameworks for programming robotics applications.

Framework/System Dist. Sys Heterogeneous Sim Language Compiler V&V

ROSBuzz [St-Onge et al. 2017] ✓ ✓ ✓ Buzz ✓

PythonRobotics ✓ ✓ Python
PyRobot [Murali et al. 2019] ✓ ✓ Python
MRPT [Blanco-Claraco 2009] ✓ C++
Robotarium [Pickem et al. 2017] ✓ ✓ Matlab
DRONA [Desai et al. 2017] ✓ ✓ P ✓ ✓

Live [Campusano and Fabry 2017] ✓ LPR ✓

Koord ✓ ✓ ✓ Koord ✓ ✓

Robot Operating System (ROS) [Quigley et al. 2009] is the predominant member in this category.
At its core, ROS supports a publish-subscribe-based communication, and the ROS community has
built drivers for numerous hardware components. Our implementation of the Koord abstractions
for the drone and car platforms use ROS just like thousands of other robotics products and projects.
One of the main differences between our approach and others, is that our framework also supports
verification and validation (V&V) of DRAs written in Koord. The table above gives a summary of
robotics languages that have been deployed on hardware.

ROSBuzz [St-Onge et al. 2017] supports the Buzz language, which doesn’t provide abstractions like
Koord for path planning and shared variables. The Live Robot Programming language [Campusano
and Fabry 2017] provides abstractions in terms of nested state machines and allows the program to
be changed while running. It does not support robot ensembles. Programming systems using the
sharedmemory paradigm have been developed for several distributed computing systems [Adve and
Gharachorloo 1996; Calder et al. 2011; DeCandia et al. 2007; Lakshman and Malik 2010; Nitzberg and
Lo 1991]. A position paper [Ghosh et al. 2018] proposed combining shared memory with physical
interactions in a high-level language. Starting from a similar core idea, this paper presents a full
language, develops its formalization, and the proof system that combines those abstractions.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

Koord : A Language for Programming and Verifying Distributed Robotics Application 232:27

P [Desai et al. 2013] and PSync [Drăgoi et al. 2016] are DSLs for asynchronous partially distributed
systems, but they do not support cyber-physical interactions. P has been integrated into the DRONA
framework [Desai et al. 2017] and the latter has very similar objectives to our work. However,
the approaches and solutions are very different. DRONA is a framework for multi-robot motion
planning and so far deployed only on drones. Koord and the underlying middleware aims to be
more general, and multiple applications have been deployed on cars and drones in both simulations
and hardware. The explicit model checker (using Zing) of DRONA relies on manual proofs of their
safe-plan-generator and path-executor, which are analogous to Koord function summaries and
controller assumptions. DRONA’s model checker explores reachable states upto a given depth
(number of transitions from an initial state). Koord proves inductive invariants using our own
symbolic executable semantics. Therefore, when all proof obligations are discharged for a candidate
invariant, Koord proves the invariant holds for all reachable system configurations. Further, while
our Task application implements something similar to the distributed plan generator which is a
built-in feature for DRONA, Koord’s port interfaces allow portability across arbitrary planners.

10 CONCLUSIONS AND FUTURE WORK

Our case studies withKoord demonstrate that DRAs with sensing, actuation, path planning, collision
avoidance, and multi-robot coordination, can be succinct and amenable to formal analysis. A Koord
user only needs to understand Koord’s shared memory semantics, and the sensor and actuator
port abstractions. On the other hand, the hardware engineer will need to validate that the port
abstractions are indeed met by the target hardware platform through testing. The symbolic execu-
tion of Koord programs can partially automate analysis of inductive invariants of the distributed
coordination logic. Distributed robotics applications may have nondeterministic behaviors. We
found that inductive invariants, which were preserved during program transitions across every
event execution by any agent, can be completely verified by our approach.

Further, the Koord Prover allows the user to plug-in reachability analysis to validate/falsify con-
troller assumptions for platform-dependent controllers. We performed case studies on applications
that have been deployed on robots using Koord, and demonstrated how Koord semantics enables
separating formal analyses using the Koord Prover for the distributed coordination and discrete
programming logic, and DryVR for reachability analysis of the platform-dependent controllers.
It is difficult to expect that any language, including controller assumptions, can fully support

growing numbers of vastly different types of robots. To that end, our design on top of K semantics
framework gives a flexible way to extend Koord and tailor it to specific robot types on demand.
Meanwhile, as each new robot type is added to Koord using a sensor and actuator module, the same
framework for formal analysis adapts automatically to verify applications running on them. We
plan to investigate the adaptability of the formal analysis framework further on actual robots with
diverse sensing and actuation capabilities. We also plan to extend our work to include specification
and verification of progress properties under fairness constraints for Koord applications.

ACKNOWLEDGMENTS

The authors were supported in part by research grants from the National Science Foundation under
the Division of Computer and Network Systems (CNS) (award number 1629949 and 1544901) and
Computing and Communication Foundations (CCF) (award number 1846354).

REFERENCES

Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared Memory Consistency Models: A Tutorial. Computer 29, 12 (Dec.
1996), 66ś76. https://doi.org/10.1109/2.546611

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

https://doi.org/10.1109/2.546611

232:28 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata. Theor. Comput. Sci. 126, 2 (April 1994), 183ś235.
https://doi.org/10.1016/0304-3975(94)90010-8

Hagit Attiya and Jennifer Welch. 2004. Distributed Computing: Fundamentals, Simulations and Advanced Topics. John Wiley
& Sons, Inc., USA.

Stanley Bak and Parasara Sridhar Duggirala. 2017. HyLAA: A Tool for Computing Simulation-Equivalent Reachability
for Linear Systems. In Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control

(Pittsburgh, Pennsylvania, USA) (HSCC ’17). Association for Computing Machinery, New York, NY, USA, 173ś178.
https://doi.org/10.1145/3049797.3049808

José Luis Blanco-Claraco. 2009. Contributions to Localization, Mapping and Navigation in Mobile Robotics. Ph.D. Dissertation.
Universidad de Málaga, Málaga, Andalusia, Spain. Advisor(s) Javier González-Jiménez and Juan Antonio Fernández-
Madrigal. http://hdl.handle.net/10630/9841

Timo Blender, Thiemo Buchner, Benjamin Fernandez, Benno Pichlmaier, and Christian Schlegel. 2016. Managing a Mobile
Agricultural Robot Swarm for a seeding task. In 42nd Annual Conference of the IEEE Industrial Electronics Society (Florence,
Italy) (IECON ’16). IEEE, New York, NY, USA, 6879ś6886. https://doi.org/10.1109/IECON.2016.7793638

Brandon Bohrer, Yong Kiam Tan, Stefan Mitsch, Magnus O. Myreen, and André Platzer. 2018. VeriPhy: Verified Controller
Executables from Verified Cyber-physical System Models. In Proceedings of the 39th ACM SIGPLAN Conference on

Programming Language Design and Implementation (Philadelphia, PA, USA) (PLDI ’18). ACM, New York, NY, USA,
617ś630. https://doi.org/10.1145/3192366.3192406

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav,
Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar,
Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya
Dayanand, Anitha Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha Manivannan, and Leonidas Rigas. 2011.
Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency. In Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Principles (Cascais, Portugal) (SOSP ’11). ACM, New York, NY, USA,
143ś157. https://doi.org/10.1145/2043556.2043571

Miguel Campusano and Johan Fabry. 2017. Live Robot Programming: The Language, its Implementation, and Robot API
Independence. Science of Computer Programming 133 (Jan. 2017), 1ś19. https://doi.org/10.1016/j.scico.2016.06.002

Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. 2013. Flow*: An analyzer for non-linear hybrid systems. In
Proceedings of the 25th International Conference on Computer Aided Verification (CAV ’13), Natasha Sharygina and Helmut
Veith (Eds.). Springer-Verlag, Berlin, Heidelberg, 258ś263. https://doi.org/10.1007/978-3-642-39799-8_18

Shun Yan Cheung and Vaidy S. Sunderam. 1995. Performance of Barrier Synchronization Methods in a Multiaccess Network.
6, 8 (1995), 890ś895. https://doi.org/10.1109/71.406967

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-
nathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-value Store.
In Proceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles (Stevenson, Washington, USA)
(SOSP ’07). ACM, New York, NY, USA, 205ś220. https://doi.org/10.1145/1294261.1294281

Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and Damien Zufferey. 2013. P: Safe Asynchronous
Event-Driven Programming. SIGPLAN Not. 48, 6 (June 2013), 321ś332. https://doi.org/10.1145/2499370.2462184

Ankush Desai, Indranil Saha, Jianqiao Yang, Shaz Qadeer, and Sanjit A. Seshia. 2017. DRONA: A Framework for Safe
Distributed Mobile Robotics. In Proceedings of the 8th International Conference on Cyber-Physical Systems (Pittsburgh,
Pennsylvania, USA) (ICCPS ’17). Association for Computing Machinery, New York, NY, USA, 239ś248. https://doi.org/10.
1145/3055004.3055022

Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. 2011. Precise and Compact Modular Procedure Summaries for
Heap Manipulating Programs. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design

and Implementation (San Jose, California, USA) (PLDI ’11). Association for Computing Machinery, New York, NY, USA,
567ś577. https://doi.org/10.1145/1993498.1993565

Cezara Drăgoi, Thomas A. Henzinger, and Damien Zufferey. 2016. PSync: A Partially Synchronous Language for Fault-
tolerant Distributed Algorithms. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (St. Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY,
USA, 400ś415. https://doi.org/10.1145/2837614.2837650

Parasara Sridhar Duggirala, Sayan Mitra, and Mahesh Viswanathan. 2013. Verification of Annotated Models from Executions.
In Proceedings of the Eleventh ACM International Conference on Embedded Software (Montreal, Quebec, Canada) (EMSOFT

’13). IEEE, New York, NY, USA, Article 26, 10 pages. https://doi.org/10.1109/EMSOFT.2013.6658604
Chuchu Fan, Bolun Qi, and Sayan Mitra. 2018. Data-Driven Formal Reasoning and Their Applications in Safety Analysis of

Vehicle Autonomy Features. IEEE Design & Test 35, 3 (2018), 31ś38. https://doi.org/10.1109/MDAT.2018.2799804
Chuchu Fan, Bolun Qi, Sayan Mitra, and Mahesh Viswanathan. 2017. DryVR: Data-driven Verification and Compositional

Reasoning for Automotive Systems. In Proceedings of the 29th International Conference on Computer Aided Verification

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/3049797.3049808
http://hdl.handle.net/10630/9841
https://doi.org/10.1109/IECON.2016.7793638
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/2043556.2043571
https://doi.org/10.1016/j.scico.2016.06.002
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1109/71.406967
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/2499370.2462184
https://doi.org/10.1145/3055004.3055022
https://doi.org/10.1145/3055004.3055022
https://doi.org/10.1145/1993498.1993565
https://doi.org/10.1145/2837614.2837650
https://doi.org/10.1109/EMSOFT.2013.6658604
https://doi.org/10.1109/MDAT.2018.2799804

Koord : A Language for Programming and Verifying Distributed Robotics Application 232:29

(Heidelberg, Germany) (CAV ’17). Springer, Cham, Switzerland, 441ś461. https://doi.org/10.1007/978-3-319-63387-9_22
Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine

Girard, Thao Dang, and Oded Maler. 2011. SpaceEx: Scalable Verification of Hybrid Systems. In Proceedings of the 23rd

International Conference on Computer Aided Verification (Snowbird, UT, USA) (CAV ’11). Springer, Berlin, Heidelberg,
379ś395. https://doi.org/10.1007/978-3-642-22110-1_30

David Gauthier, Paul Freedman, Gregory Carayannis, andAlfredMalowany. 1987. Interprocess communication for distributed
robotics. IEEE Journal on Robotics and Automation 3, 6 (1987), 493ś504. https://doi.org/10.1109/JRA.1987.1087141

Mario Gerla, Eun-Kyu Lee, Giovanni Pau, and Uichin Lee. 2014. Internet of Vehicles: From Intelligent Grid to Autonomous
Cars and Vehicular Clouds. In Proceedings of 2014 IEEE world forum on internet of things (Seoul, Korea) (WF-IoT’14). IEEE,
New York, NY, USA, 241ś246. https://doi.org/10.1109/WF-IoT.2014.6803166

Ritwika Ghosh. 2020. Separation of Distributed Coordination and Control for Programming Reliable Robotics. Ph.D. Dissertation.
University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA. Advisor(s) Sayan Mitra. http://hdl.handle.net/
2142/108501

Ritwika Ghosh, Joao P. Jansch-Porto, Chiao Hsieh, Amelia Gosse, Minghao Jiang, Hebron Taylor, Peter Du, Sayan Mitra,
and Geir Dullerud. 2020. CyPhyHouse: A Programming, Simulation, and Deployment Toolchain for Heterogeneous
Distributed Coordination. In Proceedings of 2020 IEEE International Conference on Robotics and Automation (Paris,France)
(ICRA ’20). IEEE, New York, NY, USA, 6654ś6660. https://doi.org/10.1109/ICRA40945.2020.9196513

Ritwika Ghosh, Sasa Misailovic, and Sayan Mitra. 2018. Language Semantics Driven Design and Formal Analysis for
Distributed Cyber-Physical Systems: [Extended Abstract]. In Proceedings of the 2018 Workshop on Advanced Tools,

Programming Languages, and PLatforms for Implementing and Evaluating Algorithms for Distributed Systems (Egham,
United Kingdom) (ApPLIED ’18). ACM, New York, NY, USA, 41ś44. https://doi.org/10.1145/3231104.3231958

Sukumar Ghosh. 2014. Distributed Systems: An Algorithmic Approach (2 ed.). Chapman and Hall/CRC.
Lars Grüne and Jürgen Pannek. 2017. Nonlinear model predictive control: Theory and Algorithms (2 ed.). Springer International

Publishing. 45ś69 pages. https://doi.org/10.1007/978-3-319-46024-6
Ge Guo and Wei Yue. 2012. Autonomous Platoon Control Allowing Range-Limited Sensors. IEEE Transactions on vehicular

technology 61, 7 (Sept. 2012), 2901ś2912. https://doi.org/10.1109/TVT.2012.2203362
Debra Hensgen, Raphael Finkel, and Udi Manber. 1988. Two Algorithms for Barrier Synchronization. Int. J. Parallel Program.

17, 1 (Feb. 1988), 1ś17. https://doi.org/10.1007/BF01379320
Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. 1995. What’s decidable about hybrid automata?. In

Proceedings of the twenty-seventh annual ACM symposium on Theory of computing (Las Vegas, Nevada, USA) (STOC ’95).
Association for Computing Machinery, New York, NY, USA, 373ś382. https://doi.org/10.1145/225058.225162

S. Karaman, A. Anders, M. Boulet, J. Connor, K. Gregson, W. Guerra, O. Guldner, M. Mohamoud, B. Plancher, R. Shin, and J.
Vivilecchia. 2017. Project-based, collaborative, algorithmic robotics for high school students: Programming self-driving
race cars at MIT. In Proceedings of 2017 IEEE Integrated STEM Education Conference (ISEC ’17). IEEE, New York, NY, USA,
195ś203. https://doi.org/10.1109/ISECon.2017.7910242

Michal Kvasnica, Pascal Grieder, Mato Baotić, and Manfred Morari. 2004. Multi-parametric toolbox (MPT). In Proceedings

of the 7th International Workshop on Hybrid Systems: Computation and Control. Springer, Berlin, Heidelberg, 448ś462.
https://doi.org/10.1007/978-3-540-24743-2_30

Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Structured Storage System. SIGOPS Oper. Syst.
Rev. 44, 2 (April 2010), 35ś40. https://doi.org/10.1145/1773912.1773922

Steven M LaValle. 1998. Rapidly-exploring random trees: A new tool for path planning. Technical Report. Ames, IA, USA.
http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf

Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
Johannes Meyer, Alexander Sendobry, Stefan Kohlbrecher, Uwe Klingauf, and Oskar von Stryk. 2012. Comprehensive

Simulation of Quadrotor UAVs Using ROS and Gazebo. In Proceedings of the third International Conference on Simulation,

Modeling, and Programming for Autonomous Robots (Tsukuba, Japan) (SIMPAR ’12), Itsuki Noda, Noriaki Ando, Davide
Brugali, and James J. Kuffner (Eds.). Springer, Berlin, Heidelberg, 400ś411. https://doi.org/10.1007/978-3-642-34327-8_36

Aleksandar Milicevic, Damien Zufferey, and Martin Rinard. 2015. The REACT language for robotics. https://github.com/
aleksandarmilicevic/react-lang

Pieter J Mosterman, David Escobar Sanabria, Enes Bilgin, Kun Zhang, and Justyna Zander. 2014. A Heterogeneous Fleet
of Vehicles for Automated Humanitarian Missions. Computing in Science & Engineering 16, 3 (June 2014), 90ś95.
https://doi.org/10.1109/MCSE.2014.58

Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Alwala, Dhiraj Gandhi, Lerrel Pinto, Saurabh Gupta, and Abhinav Gupta.
2019. PyRobot: An Open-source Robotics Framework for Research and Benchmarking. (2019). arXiv:arXiv:1906.08236

Bill Nitzberg and Virginia Lo. 1991. Distributed Shared Memory: A Survey of Issues and Algorithms. Computer 24, 8 (Aug.
1991), 52ś60. https://doi.org/10.1109/2.84877

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

https://doi.org/10.1007/978-3-319-63387-9_22
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1109/JRA.1987.1087141
https://doi.org/10.1109/WF-IoT.2014.6803166
http://hdl.handle.net/2142/108501
http://hdl.handle.net/2142/108501
https://doi.org/10.1109/ICRA40945.2020.9196513
https://doi.org/10.1145/3231104.3231958
https://doi.org/10.1007/978-3-319-46024-6
https://doi.org/10.1109/TVT.2012.2203362
https://doi.org/10.1007/BF01379320
https://doi.org/10.1145/225058.225162
https://doi.org/10.1109/ISECon.2017.7910242
https://doi.org/10.1007/978-3-540-24743-2_30
https://doi.org/10.1145/1773912.1773922
http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf
https://doi.org/10.1007/978-3-642-34327-8_36
https://github.com/aleksandarmilicevic/react-lang
https://github.com/aleksandarmilicevic/react-lang
https://doi.org/10.1109/MCSE.2014.58
https://arxiv.org/abs/arXiv:1906.08236
https://doi.org/10.1109/2.84877

232:30 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

Arne Nordmann, Nico Hochgeschwender, and SebastianWrede. 2014. A Survey onDomain-Specific Languages in Robotics. In
Proceedings of the 4th International Conference on Simulation, Modeling, and Programming for Autonomous Robot (Bergamo,
Italy) (SIMPAR ’14). Springer International Publishing, Cham, 195ś206. https://doi.org/10.1007/978-3-319-11900-7_17

D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and M. Egerstedt. 2017. The Robotarium: A remotely accessible
swarm robotics research testbed. In Proceedings of 2017 IEEE International Conference on Robotics and Automation

(Singapore) (ICRA ’17). IEEE, New York, NY, USA, 1699ś1706. https://doi.org/10.1109/ICRA.2017.7989200
C. Pinciroli and G. Beltrame. 2016. Buzz: An Extensible Programming Language for Heterogeneous Swarm Robotics. In

Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (Daejeon, Korea) (IROS ’16). IEEE,
New York, NY, USA, 3794ś3800. https://doi.org/10.1109/IROS.2016.7759558

J Norberto Pires and JMG Sá Da Costa. 2000. Object-oriented and distributed approach for programming robotic man-
ufacturing cells. Robotics and Computer-Integrated Manufacturing 16, 1 (2000), 29ś42. https://doi.org/10.1016/S0736-
5845(99)00039-3

André Platzer. 2018. Logical Foundations of Cyber-Physical Systems (1 ed.). Springer International Publishing. https:
//doi.org/10.1007/978-3-319-63588-0

Jelica Protic, Milo Tomasevic, and Veljko Milutinovic. 1997. Distributed Shared Memory: Concepts and Systems. IEEE
Computer Society Press.

Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. 2009.
ROS: an open-source Robot Operating System. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop

on Open Source Robotics (Kobe, Japan). IEEE. http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
Redmond R Shamshiri, CorneliaWeltzien, IbrahimAHameed, Ian J Yule, Tony E Grift, Siva K Balasundram, Lenka Pitonakova,

Desa Ahmad, and Girish Chowdhary. 2018. Research and development in agricultural robotics: A perspective of digital
farming. International Journal of Agricultural and Biology Engineering 11, 4 (2018). https://doi.org/10.25165/j.ijabe.
20181104.4278

Grigore Rosu and Traian Florin Serbanuta. 2014. K Overview and SIMPLE Case Study. Electronic Notes in Theoretical

Computer Science 304 (June 2014), 3ś56. https://doi.org/10.1016/j.entcs.2014.05.002
Giovanni Russo and Jean-Jacques E Slotine. 2011. Symmetries, stability, and control in nonlinear systems and networks.

Physical Review E 84, 4 (Oct 2011), 041929. https://doi.org/10.1103/PhysRevE.84.041929
Hussein Sibai, Navid Mokhlesi, Chuchu Fan, and Sayan Mitra. 2020. Multi-Agent Safety Verification using Symmetry

Transformations. In Proceedings of the 26th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems (Dublin, Ireland) (TACAS ’20). Springer International Publishing, Cham, 173ś190.
David St-Onge, Vivek Shankar Varadharajan, Guannan Li, Ivan Svogor, and Giovanni Beltrame. 2017. ROS and Buzz:

consensus-based behaviors for heterogeneous teams. (2017). arXiv:arXiv:1710.08843
Sebastian Thrun. 2003. Robotic Mapping: A Survey. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1ś35.
Brian C Williams, Michel D Ingham, Seung H Chung, and Paul H Elliott. 2003. Model-Based Programming of Intelligent

Embedded Systems and Robotic Space Explorers. Proc. IEEE 91, 1 (Jan. 2003), 212ś237. https://doi.org/10.1109/JPROC.
2002.805828

Greta Yorsh, Eran Yahav, and Satish Chandra. 2008. Generating Precise and Concise Procedure Summaries. In Proceedings of

the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, California,
USA) (POPL ’08). Association for Computing Machinery, New York, NY, USA, 221ś234. https://doi.org/10.1145/1328438.
1328467

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 232. Publication date: November 2020.

https://doi.org/10.1007/978-3-319-11900-7_17
https://doi.org/10.1109/ICRA.2017.7989200
https://doi.org/10.1109/IROS.2016.7759558
https://doi.org/10.1016/S0736-5845(99)00039-3
https://doi.org/10.1016/S0736-5845(99)00039-3
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-63588-0
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
https://doi.org/10.25165/j.ijabe.20181104.4278
https://doi.org/10.25165/j.ijabe.20181104.4278
https://doi.org/10.1016/j.entcs.2014.05.002
https://doi.org/10.1103/PhysRevE.84.041929
https://arxiv.org/abs/arXiv:1710.08843
https://doi.org/10.1109/JPROC.2002.805828
https://doi.org/10.1109/JPROC.2002.805828
https://doi.org/10.1145/1328438.1328467
https://doi.org/10.1145/1328438.1328467

	Abstract
	1 Introduction
	2 Overview
	2.1 The Koord Language
	2.2 Semantics and Decomposed Verification
	2.3 Koord Compiler, Implementation, and Simulator
	2.4 Engineering Reliable DRAs

	3 The Koord Language
	3.1 Syntax
	3.2 Robot and System Configurations
	3.3 Semantics
	3.4 Synchronization and Consistency

	4 Verifying Koord programs
	4.1 Reachable Configurations
	4.2 Decomposing Invariance Verification
	4.3 Proof Obligations for Inductive Invariants

	5 Case Study: Distributed formation control
	6 Case Study: Distributed delivery
	7 Case study: Distributed Mapping
	8 Implementing Koord: The CyPhyHouse Toolchain
	8.1 CyPhyHouse Middleware
	8.2 Code Generation
	8.3 Interface with Platform-specific Controllers

	9 Related Work
	10 Conclusions and Future Work
	Acknowledgments
	References

