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Abstract

We consider a system with N parallel servers where incoming jobs are immediately replicated

to, say, d servers. Each of the N servers has its own queue and follows a FCFS discipline. As

soon as the first job replica is completed, the remaining replicas are abandoned. We investigate

the achievable stability region for a quite general workload model with different job types and

heterogeneous servers, reflecting job-server affinity relations which may arise from data local-

ity issues and soft compatibility constraints. Under the assumption that job types are known

beforehand we show for New-Better-than-Used (NBU) distributed speed variations that no repli-

cation (d = 1) gives a strictly larger stability region than replication (d > 1). Strikingly, this

does not depend on the underlying distribution of the intrinsic job sizes, but observing the job

types is essential for this statement to hold. In case of non-observable job types we show that

for New-Worse-than-Used (NWU) distributed speed variations full replication (d = N) gives a

larger stability region than no replication (d = 1).

Keywords: Parallel-server system, redundancy, stability

1. Introduction

Redundancy scheduling has attracted strong interest as a mechanism to improve the delay

performance in parallel-server systems. In redundancy scheduling an incoming job is replicated

and dispatched to d different servers and as soon as the first of the d replicas finishes service the

remaining replicas are abandoned (’cancel-on-completion’ c.o.c.). Adding replicas increases the

chance for one of the replicas to find a short queue, thus reducing the latency. On the other hand,

adding replicas could cause instability since the same job may be in service at multiple servers,

potentially wasting service capacity. Establishing the stability condition is not straightforward

since the various replicas may have started service at different times. Among the numerous

studies on redundancy scheduling, stability results have remained scarce so far.

Gardner et al. [5] introduce the redundancy-d system and obtain analytical expressions for

the expected number of jobs in the system in the scenario with uniform selection of the servers,

exponential job sizes, i.i.d. replicas and homogeneous servers, i.e., the server speeds of all servers

are equal. From the expressions it is concluded that in this scenario more redundancy is always

better for the expected latency. In terms of stability their main result is that the stability condition
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of the c.o.c. version of redundancy scheduling is λ/Nµ < 1, where λ denotes the arrival rate and

the job sizes are exponentially distributed with parameter µ. Note that this stability condition is

independent of the number of replicas.

In [15] it is shown that in the same scenario with scaled Bernoulli job sizes the stability

condition is asymptotically given by λ/Kd−1 < 1 as K → ∞. Here the job size is either 0

or K with probability 1 − 1/K and 1/K, respectively. Observe that this stability condition is

asymptotically independent of the number of servers.

The contrasting results in [5] and [15] indicate that the stability condition is highly sensitive

to the job size distribution, and for general job size distributions the stability condition remains

unknown. For a discrete-time system with Bernoulli arrivals a lower bound is proved in [12].

While the bound is not always tight, it provides a first result for the necessary stability condition

that depends on the number of servers, the number of replicas and the joint distribution of the job

sizes.

Anton et al. [1] investigate the stability condition in the scenario of homogeneous servers and

exponential job sizes for different service disciplines at each individual server, such as processor

sharing, FCFS and random order of service. For FCFS and identical replicas they prove an

implicit stability condition. Namely, the system is stable if λ/l̄µ < 1 and unstable if λ/l̄µ > 1,

where l̄ is the long-run average number of jobs served in the saturated system, i.e., the system

with an infinite backlog of jobs. Finding a closed-form expression for l̄ remains an open problem.

They also explore the stability condition for heterogeneous server speeds by simulation, showing

that heterogeneity in server speed has a profound impact on the stability condition.

Gardner et al. [4] study the same scenario in the S&X model, where the server speeds (slow-

down factors) at the various servers are independent and identically distributed. No analytical

expression is obtained for either the expected latency or the stability condition. However, sim-

ulation shows that for more variable job size distributions, more redundancy at first decreases

the expected latency, but then hurts badly. The system can even become unstable if the num-

ber of replicas d is too high. A dispatching policy ’Redundancy-to-Idle-Queue’ (RIQ) that only

replicates the job to idle servers is introduced to overcome this problem. Highly accurate ap-

proximations for both the expected latency and the transform of the latency are derived. It is

proved that, in contrast to redundancy-d scheduling, the RIQ policy cannot become unstable as

the number of replicas increases. Stability aspects of redundancy scheduling in a many-server

regime are discussed in [7, 8]. For a recent summary of exact stability condition results we refer

to [16, Table 1].

Further work has focused on comparing the stability conditions and showing that either no

replication (d = 1) or full replication (d = N) is optimal in the scenario of i.i.d. replicas and

homogeneous server speeds. In [11] it is proved that full replication stochastically maximizes

the number of jobs completed jointly across time for NWU job size distributions. No replication

is shown to be optimal for two servers and NBU job size distributions, see Definition 1 below

for the definition of NBU and NWU distributions. In [10] these results are generalized and it

is proved, by a combinatorial argument, that no replication and full replication give the largest

stability region for NBU and NWU job sizes, respectively. In [9] these results are extended

to log-concave and respectively, log-convex complementary cumulative distribution functions.

Note that log-concavity and log-convexity imply NBU and NWU, respectively, but the converse

is not true.

In [20] the single fork-join policy is analyzed. This policy launches n tasks and waits until

(1 − p)n tasks are finished. For the remaining pn straggling tasks there are two options: either

replicate and keep the original task or replicate and kill the original task. Under the assumption
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that there is no queueing of the tasks it is proved that for NBU distributions keeping the original

task gives lower latency while for NWU distributions killing the original task gives lower latency.

The effect of replication in the fork-join model is also analyzed in [13]. Different strategies, such

as no replication, full replication or partial replication, are shown to perform better depending

on the job size distribution. In [19] a scheduling policy, called fewest unassigned tasks first with

low-priority replication, is proposed in case of an NBU distribution, while the earliest due date

first with replication policy is proposed for an NWU distribution.

In this paper we investigate the achievable stability region for c.o.c. redundancy systems

in a quite general workload model, as considered earlier in [14], with multiple job types and

servers that follow a FCFS discipline. Replicas may be assigned to the servers according to

static type-dependent probabilities, instead of uniformly at random. Additionally, we deal with

the complex dynamics arising from potentially different start times as a result of queueing which

may occur when servers are not partitioned in disjoint pools of d servers. Specifically, we allow

for generally distributed job sizes and the server speeds (slowdown factors) for a given job type

are allowed to be inter-dependent and non-identically distributed, reflecting job-server affinity

relations which may arise from data locality issues and soft compatibility constraints that are

increasingly prevalent in data center environments. This workload model also subsumes the

S&X model introduced in [4].

The general nature of the workload model reveals that the optimal degree of replication is

not determined by the distribution of the intrinsic job sizes, but rather by the random variation in

service speeds (or slow down factors) for a given job across the various servers. Also, our set-up

with different job types and heterogeneous servers separates purely random variation in speeds

across servers from systematic differences induced by job-server affinity relations. In particular,

our results are the first to demonstrate that when job types are not explicitly observable, this

uncertainty plays a similar role as purely random variation in speeds, and creates a potentially

strong incentive for replication, even when the speeds for a job of a given type show little or no

variation at all. Conversely, if there is little or no random variation in speeds, and the variabil-

ity primarily arises from fundamental heterogeneity in job characteristics that can be observed

beforehand, then replication provides no gains from a stability perspective.

The remainder of the paper is organized as follows. In Section 2 we present a detailed model

description and some preliminary results. In Sections 3 and 4 we state and prove the main

theorems for NBU and NWU distributed speed variations, respectively. Section 5 contains con-

clusions and some suggestions for further research.

2. Model description and preliminary results

Consider a system with N parallel servers where jobs arrive as a Poisson process of rate λ.

Each of the N servers has its own queue and follows a FCFS discipline. When a job arrives, mul-

tiple replicas may be assigned to one or more servers according to static type-dependent probabil-

ities. A special case of such a static probabilistic assignment is the celebrated power-of-d policy,

where replicas are assigned to d servers selected uniformly at random (without replacement),

which is the prevalent case considered in the literature.

In case multiple replicas are assigned, the service speeds R1, . . . ,RN for that job on the var-

ious servers may differ. We allow the service speeds R1, . . . ,RN of a generic job to be gov-

erned by some joint distribution F(r1, . . . , rN), reflecting possible server heterogeneity and job-

server compatibility relations. For convenience, we consider the case where the joint distribution
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F(r1, . . . , rN) is discrete, and has mass in a finite number of say M points (r1 j, ..., rN j) with corre-

sponding probabilities p j, j = 1, . . . ,M. This system may equivalently be thought of as having

M job types, where ri j is the service speed of type- j jobs at the i-th server. For notational con-

venience let N = {1, 2, . . . ,N} denote the set of servers andM = {1, 2, . . . ,M} denote the set of

job types.

The intrinsic size of a type- j job is denoted by a generic random variable X j. Moreover,

letting Yi j denote the random speed variation, we assume that Y1 j, . . . , YN j are i.i.d. copies of

some generic random variable S j. These latter variables can be thought of as job sizes in the

standard independent runtime model (taking X j = 1 and M = 1 job types) or slowdown factors

in the S&X model [4] (taking Ri = 1 and M = 1 job types). For a particular job on server i,

i = 1, . . . ,N, with intrinsic size x j, (x jYi j)/Ri represents the processing time. We distinguish two

cases: i) no random speed variation for all job types, i.e., S j ≡ c j with c j ∈ R+ for j = 1, . . . ,M,

so-called identical replicas, ii) random speed variation for all job types and servers, so-called

i.i.d. replicas.

In the remainder of the paper we distinguish between two scenarios referred to as Known job

types and Unknown job types. In both scenarios the design of the assignment policy may involve

knowledge of the type probabilities p j and service speeds ri j. In the Known job types case, the

dispatcher can additionally observe the type identity of each job, and thus knows its service speed

at each of the servers. In contrast, in the Unknown job types case, the dispatcher cannot identify

jobs by type, and thus has no advance knowledge of service speeds of individual jobs.

2.1. Preliminaries

Let p̃i j denote the proportion of type- j jobs that are assigned to server i. For given p̃i j, the sta-

bility condition for d = 1 and known job types, see also [6, 17], is given by λ
∑M

j=1 p̃i j p j
E[X j]E[S j]

ri j
<

1 for all i = 1, . . . ,N. Thus, the achievable stability region is

ΛK =

{

λ ≥ 0|∃ p̃i j ≥ 0 : λ

M
∑

j=1

p̃i j p j

E[X j]E[S j]

ri j

< 1 for all i ∈ N ,

N
∑

i=1

p̃i j = 1 for all j ∈ M

}

,

(1)

where the subscript K refers to the case of known job types. Note that the stability region given

by Equation (1) only depends on the distribution of S j through its mean E[S j] since there is no

replication.

Now we proceed with the case of unknown job types. Let p̃i denote the proportion of jobs

assigned to server i, which must be common to all job types when these cannot be distinguished.

For given p̃i, the stability condition for d = 1 is then given by
∑M

j=1 λp̃i p j
E[X j]E[S j]

ri j
< 1 for all

i = 1, . . . ,N. Thus, the achievable stability region is

ΛU =

{

λ ≥ 0|∃ p̃i ≥ 0 :

M
∑

j=1

λp̃i p j

E[X j]E[S j]

ri j

< 1 for all i ∈ N , p̃1 + · · · + p̃N = 1

}

, (2)

where the subscript U refers to the case of unknown job types.

The stability region for d = N is also known since the system then behaves as an M/G/1

system, see for example [1],

Λ = [0, λ∗), (3)
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with λ∗ =

(

∑M
j=1 p jE[X j]E[min{

Y1 j

r1 j
, . . . ,

YN j

rN j
}

)−1

. Note thatΛ needs no subscript since the stability

region is the same in the cases of known and unknown job types.

In the case of generally distributed job sizes, the next example shows that there is a scenario

in which the stability region for d = 1 is strictly larger than for d = N = 2, both for identical and

i.i.d. replicas.

Example 1. Consider the scenario with N = 2, M = 2 and server speeds (r11, r21) = (1, x) and

(r12, r22) = (x, 1) with probabilities p1 = p2 = 0.5, where x < 1. In case of d = 1 the optimal

static probabilistic assignment is p̃11 = p̃22 = 1 and p̃12 = p̃21 = 0. Thus, the stability conditions

are

λ

2
∑

j=1

p jE[X j]E[S j] < 1, for d = 2 (identical),

λ

2
∑

j=1

p jE[X j]E
[

min
{

Y1 j,
Y2 j

x

}]

< 1, for d = 2 (i.i.d.),

λ ·
1

2
· E[X j]E[S j] < 1, j = 1, 2 for d = 1,

where Y1 j and Y2 j are i.i.d. copies of S j. Moreover observe that

lim
x↓0

E

[

min

{

Y1 j,
Y2 j

x

}]

= E

[

lim
x↓0

min

{

Y1 j,
Y2 j

x

}]

= E[S j],

for every distribution of the speed variation. Thus, if E[X j]E[S j] = 1 for j = 1, 2, then the

stability condition for d = 1 is given by λ < 2 while for d = 2 it is given by λ < 1.

Definition 1. Consider a non-negative random variable S with support denoted by RS and

cumulative distribution function (cdf) FS (x). Let F̄S (x) = 1 − FS (x) denote the complemen-

tary cumulative distribution function (ccdf). Then, S is New-Better-than-Used (NBU) if for all

t1, t2 ∈ RS ,

F̄S (t1 + t2) ≤ F̄S (t1)F̄S (t2). (4)

On the other hand, S is New-Worse-than-Used (NWU) if for all t1, t2 ∈ RS ,

F̄S (t1 + t2) ≥ F̄S (t1)F̄S (t2). (5)

Moreover, S is strictly NBU or strictly NWU when Equation (4) or (5) holds with strict inequality,

respectively, for all values t1, t2 ∈ RS \ {0}.

In the case of strictly NWU distributed speed variations, the next example shows that there is

a scenario in which the stability region for d = N = 2 is strictly larger than for d = 1.

Example 2. Consider the scenario with N = 2, M = 1 and server speeds (r11, r21) = (1, 1) with

probability p1 = 1. The stability conditions for d = 1 and d = 2 are

λ ·
1

2
· E[X]E[S ] < 1, for d = 1,

λE[X]E[min{Y1, Y2}] < 1, for d = 2 (i.i.d.),
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where Y1 and Y2 are i.i.d. copies of S . Moreover, by definition of strictly NWU, see for exam-

ple [18, Sec. 1.6],

E[min{Y1, Y2}] <
1

2
E[S ].

Thus the stability region for d = N = 2 is strictly larger than the stability region for d = 1 in

this example.

Observe that G j(d) = dE[min{Y1 j, . . . , Yd j}] is increasing and decreasing in d for NBU and

NWU distributions, respectively, see for example [18, Sec. 1.6]. Here, G j(d) may be interpreted

as the aggregate resource usage for d replicas with equal start times on homogeneous servers

under redundancy c.o.c., and has emerged as a key metric for stability conditions in scenarios

where the servers are partitioned in disjoint pools of d servers, see for instance [9]. We will

extend this notion to scenarios with heterogeneous servers and additionally deal with the complex

dynamics arising from potentially different start times as a result of queueing which may occur

when servers are not partitioned in the above manner.

In the proofs of the main theorems in the next section a property of c.o.c. redundancy systems,

viz., Property 1 below, is needed. Note that this property is valid for all scenarios.

Property 1. The oldest job in the system is served at all servers that it has been replicated to.

3. No replication is best for NBU speed variations

In this section we prove that no replication maximizes stability when the speed variations are

NBU distributed, see Theorem 2. First however we consider the special case where the speed

variation of each job type j, S j, follows a degenerate distribution, see Theorem 1. The proof of

this latter theorem is simpler and gives intuition for the general case with NBU distributed speed

variations. Both theorems rely on the next proposition.

Proposition 1. Assume that ri j > 0 for all i = 1, . . . ,N, j = 1, . . . ,M, and that the system is

stable under a given assignment policy with d > 1 for some arrival rate λ0 > 0. Let τi j be the

long-term fraction of time that server i spends on type- j jobs under this assignment policy with

d > 1. Suppose that

N
∑

i=1

ri jτi j ≥ λ0 p jE[X j]E[S j], (6)

for all j = 1, . . . ,M, and in addition

M
∑

j=1

N
∑

i=1

ri jτi j ≥ λ0(1 + ǫ)

M
∑

j=1

p jE[X j]E[S j] (7)

for some ǫ ≥ 0. Then the system can be stabilized through a suitable probabilistic assignment

policy with d = 1 for all λ ≤ λ0(1 + κǫ), with κ > 0 a fixed constant bounded away from zero,

independent of λ0.
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Proof. The high-level idea of the proof may be outlined as follows. The inequalities in (6) imply

that the weighted fraction of time that the servers collectively spend on type- j jobs under the

policy with d > 1 is no less than the offered load of type- j jobs, i.e., what this weighted fraction

would be without any replication, for each job type j = 1, . . . ,M. This allows us to distribute

the type- j jobs without any replication through suitable assignment probabilities p̃i j in terms of

the ri j and τi j to sustain the same arrival rate λ0 without increasing the load of any of the servers,

thus ensuring stability. Hence, the statement of the proposition follows when ǫ = 0. When ǫ > 0,

the inequality (7) implies that the total weighted amount of time that the servers are collectively

occupied under the policy with d > 1 is strictly larger than the total offered load. This margin

reflects that there is some slack capacity that can be freed up when refraining from replication,

and thus be exploited to accommodate a higher arrival rate than λ0. While there are several

options for dividing the slack capacity, we will simply use assignment probabilities that account

for the amount of slack at each server and its speeds for the various job types, but do not depend

on the job type. Once again, this will not increase the load of any of the servers, but allow us to

support a strictly higher arrival rate.

In order to develop the proof in greater detail, observe that the stability under the given

assignment policy with d > 1 implies that the long-term fraction of time that each server is busy

must be strictly less than unity, i.e.,
∑M

j=1 τi j < 1 for all i = 1, . . . ,N. (For transparency, we

tacitly assume here and in the statement of the proposition that these long-term fractions exist,

and thus implicitly rule out possibly eccentric (e.g. non-stationary) assignment policies. The

proof arguments below could however readily be extended to cover such policies as well, if we

stipulate stability to mean that the limsup values of
∑M

j=1 τi j must be strictly less than unity for

all i = 1, . . . ,N.)

Now consider the system with d = 1 and assignment probabilities

p̃i j =
ri jτi j

∑N
k=1 rk jτk j

.

Then each server behaves as a multi-class M/G/1 queue, and for an overall arrival rate λ ≤ λ0

the load on server i is

λ

M
∑

j=1

p j p̃i j

E[X j]E[S j]

ri j

= λ

M
∑

j=1

p jτi j

E[X j]E[S j]
∑N

k=1 rk jτk j

≤

M
∑

j=1

τi j < 1, ∀i = 1, . . . ,N,

where the last-but-one inequality follows from (6) and the fact that λ ≤ λ0, implying that the

system is stable. This completes the proof in case ǫ = 0.

In order to prove the statement in case ǫ > 0, let

σ j =
λ0 p jE[X j]E[S j]

∑N
i=1 ri jτi j

≤ 1,

representing the offered load of type- j jobs as fraction of the weighted amount of time spent on

these jobs by the servers collectively under the given assignment policy with d > 1, and define

τ̂i j = σ jτi j ≤ τi j,

∆τi j = τi j − τ̂i j = (1 − σ j)τi j,
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and

∆τi =

M
∑

j=1

τi j −

M
∑

j=1

τ̂i j =

M
∑

j=1

∆τi j.

The value of τ̂i j may be interpreted as the fraction of time that server i would need to spend on

type- j jobs if the efforts of all servers for type- j jobs are reduced proportionally to match the

total offered load. With that interpretation in mind, ∆τi j and ∆τi may be thought of as measures

for the slack capacity.

Further introduce

∆ j =

N
∑

i=1

ri jτi j − λ0 p jE[X j]E[S j] =

N
∑

i=1

ri jτi j −

N
∑

i=1

ri jτ̂i j =

N
∑

i=1

ri j∆τi j

representing the slack between the weighted fraction of time that the servers collectively spend

on type- j jobs under the policy with d > 1 and the offered load of type- j jobs,

ri =

∑M
j=1 p jE[X j]E[S j]

∑M
j=1 p jE[X j]E[S j]/ri j

representing the time-average speed of server i when handling jobs of the various types in the

nominal proportions, and

∆λ =

∑N
k=1 rk∆τk

∑M
j=1 p jE[X j]E[S j]

.

Now observe that on the one hand

M
∑

j=1

∆ j =

M
∑

j=1

N
∑

i=1

ri jτi j − λ0

M
∑

j=1

p jE[X j]E[S j] ≥ λ0ǫ

M
∑

j=1

p jE[X j]E[S j],

while on the other hand

M
∑

j=1

∆ j =

M
∑

j=1

N
∑

i=1

ri j∆τi j ≤

N
∑

i=1

∆τi max
j∈M

ri j,

and hence

∆λ ≥

∑N
k=1 rk∆τk

∑N
i=1 ∆τi max j∈M ri j

ǫλ0.

Noting that ri > 0 by virtue of the assumption that ri j > 0 for all i = 1, . . . ,N and j = 1, . . . ,M,

we obtain that

∆λ ≥ κǫλ0,

with κ =
mini∈N ri

maxi∈N , j∈M ri j
> 0.
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Now consider the system with d = 1 and total arrival rate λ0+∆λ, and suppose that a fraction

λ0/(λ0 + ∆λ) of the jobs are assigned according to the probabilities p̃i j, while the remaining

fraction ∆λ/(λ0 + ∆λ) of the jobs are assigned to server i with probability

p̂i =
ri∆τi

∑N
k=1 rk∆τk

.

Then each server behaves as a multi-class M/G/1 queue, and for an overall arrival rate λ ≤

λ0 + ∆λ the load on server i is

λ

M
∑

j=1

p j

(

λ0

λ0 + ∆λ
p̃i j +

∆λ

λ0 + ∆λ
p̂i

)

E[X j]E[S j]

ri j

=
λ

λ0 + ∆λ

M
∑

j=1

p j













λ0

ri jτi j
∑N

k=1 rk jτk j

+ ∆λ
ri∆τi

∑N
k=1 rk∆τk













E[X j]E[S j]

ri j

≤

M
∑

j=1

τi j

λ0 p jE[X j]E[S j]
∑N

k=1 rk jτk j

+

∑N
k=1 rk∆τk

∑M
j=1 p jE[X j]E[S j]

ri∆τi
∑N

k=1 rk∆τk

M
∑

j=1

p jE[X j]E[S j]

ri j

=

M
∑

j=1

τi jσ j + ri∆τi

∑M
j=1 p jE[X j]E[S j]/ri j

∑M
j=1 p jE[X j]E[S j]

=

M
∑

j=1

τ̂i j + ∆τi =

M
∑

j=1

τi j < 1, ∀i = 1, . . . ,N,

where the inequality in the third line follows from the fact that λ ≤ λ0 + ∆λ.

This yields the statement of the proposition for any ǫ ≥ 0.

Remark 1. We now present an example illustrating the role of the assumption that ri j > 0 for

all i = 1, . . . ,N and j = 1, . . . ,M. Consider a system with N = 3 servers, M = 2 job types,

and service speeds (r11, r21, r31) = (1, 0, 0) and (r12, r22, r32) = (1, 1, 1). Assume that p j = 1/2,

E[S j] = 1, E[X j] = 1, j = 1, 2, d = 2, and that all type-1 jobs are assigned to servers 1 and 3

while all type-2 jobs are assigned to servers 2 and 3. We claim that the system is stable for any

λ < 2. In order to see that, observe that the number of type-1 jobs and the number of type-2 jobs

are each individually bounded from above by the number of the jobs in an M/G/1 queue with

load λ/2. Furthermore, type-1 jobs will never complete on server 3, while in case of identical

service times, type-2 jobs will never complete on server 3 before completing on server 2. In other

words, all effort of server 3 goes wasted. Nevertheless, a system with d = 1 cannot be stabilized

for any λ ≥ 2, since type-1 jobs can only be successfully processed by server 1. The wasted effort

of server 3 could however be avoided in a system with d = 1 to sustain an arrival rate of type-2

jobs that is twice as large.

While the assumption that ri j > 0 for all i = 1, . . . ,N may in general not be strictly necessary,

this example demonstrates that it cannot easily be relaxed without creating a need for a tedious

case-by-case analysis to determine whether the system with d = 1 can be stabilized for a higher

overall arrival rate, can only accommodate a larger arrival rate for some of the job types, or

cannot support a higher arrival rate for any job type at all.
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Theorem 1. In the case of known job types, the stability region for d = 1 is strictly larger than

the stability region for d > 1 under the c.o.c. redundancy policy with identical replicas and static

probabilistic assignment (which may depend on the job type) of the d replicas.

Proof. Let τ
(1)

i j
be the fraction of time that server i spends on type- j jobs that it will finish and τ

(2)

i j

be the fraction of time that server i spends on type- j jobs that it will not finish, with τ
(1)

i j
+τ

(2)

i j
= τi j

under a given assignment policy with d > 1 for arrival rate λ.

For the effective component we have

N
∑

i=1

ri jτ
(1)

i j
= λp jE[X j]E[S j], (8)

since

N
∑

i=1

ri jE[T
(1)

i j
] = E[X j]E[S j],

where T
(1)

i j
is the amount of time that server i spends on a type- j job that it will finish, with

τ
(1)

i j
= λp jE[T

(1)

i j
]. This holds because for identical replicas there are no server-dependent slow

downs and whether or not a server will finish a particular job is not influenced by the random

speed variations.

For the wastage component we have by Property 1 that

N
∑

i=1

ri jτ
(2)

i j
≥

N
∑

i=1

min
k∈N

rk jτ
(2)

i j
= min

k∈N
rk j

N
∑

i=1

τ
(2)

i j
≥ min

k∈N
rk j(d − 1)π̄0 j, (9)

where π̄0 j is the fraction of time that the system is non-empty in the limit as time goes to infinity

and the oldest job is of type j. Letting π̄0 be the fraction of time that the system is non-empty

with
∑M

j=1 π̄0 j = π̄0, it follows that

M
∑

j=1

N
∑

i=1

ri jτ
(2)

i j
≥ min

k∈N ,l∈M
rkl(d − 1)π̄0.

We can bound the fraction of time that the system is non-empty as

π̄0 ≥

M
∑

j=1

λp jE[X j]E[S j]
∑N

i=1 ri j

≥
λ
∑M

j=1 p jE[X j]E[S j]

max j∈M

∑N
i=1 ri j

> 0.

Substituting this in Equation (9) gives

M
∑

j=1

N
∑

i=1

ri jτi j ≥ λ

(

1 + (d − 1)
mink∈N ,l∈M rkl

max j∈M

∑N
i=1 ri j

)
M
∑

j=1

p jE[X j]E[S j],

so that Equation (7) holds with ǫ = (d−1)
mink∈N ,l∈M rkl

max j∈M

∑N
i=1 ri j

which is bounded away from zero. Noting

that (8) with in addition τ
(1)

i j
+ τ

(2)

i j
= τi j gives (6), the proof then follows from Proposition 1.
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Remark 2. In Theorem 1 we obtained a lower bound for the wastage component that is strictly

increasing in d, see Equation (9). We can also find an upper bound for the wastage component

M
∑

j=1

N
∑

i=1

ri jτ
(2)

i j
≤ max

k∈N ,l∈M
rkl

(

N −

⌈

N

d

⌉)

π̄∗0 ≤ max
k∈N ,l∈M

rkl

(

N −

⌈

N

d

⌉)

π̄0, (10)

where π̄∗
0

is the fraction of time that all servers are busy and thus π̄∗
0
≤ π̄0. Note that in the special

case of homogeneous server speeds and d = 1, d = N −1 and d = N the lower- and upper bound

for the wastage component coincide. It is therefore natural to conjecture that Theorem 1 extends

to the statement that the stability region is strictly decreasing in d.

We proceed with the general case of speed variations that are NBU distributed.

Theorem 2. In the case of known job types, the stability region for d = 1 is larger than or equal

to (respectively, strictly larger than) the stability region for d > 1 with NBU (respectively, strictly

NBU) distributed speed variations and static probabilistic assignment (which may depend on the

job type) of the d replicas.

Proof. Let Ti j be the amount of time that server i spends on an arbitrary type- j job and let τi j

be the fraction of time that server i spends on type- j jobs under a given assignment policy with

d > 1 for arrival rate λ as introduced before.

Let Tawt, j with distribution function FTawt, j
(t) (respectively, T I

awt, j with distribution function

FT I
awt, j

(t)) denote the aggregate weighted amount of time, weighted by the server speeds ri j, in-

vested in the service of an arbitrary type- j job divided by the intrinsic job size (respectively,

under the assignment I, where I denotes an arbitrary set of d servers). We have that T I
awt, j

is

equal in distribution to
∑

i∈I
ri jTi j

X j
(see Figure 1 for a schematic illustration), when server Ii is

available after the weighted amount of time bi of servers I1, . . . , Ii−1, for i = 2, . . . , d and b1 = 0.

Thus, a replica of the job is first served on server I1 and after time b2 server I2 becomes available

to serve another replica of this job, then after time b3 the third server I3 becomes available to

serve yet another replica of this job, etc. Note that server Ii may not necessarily serve this job,

i.e., the job may already be completed before the server is available. The ccdf is

F̄T I
awt, j

(t) =







































































P

(

YI1 j >
rI1 jt

rI1 j

)

for 0 < t < b2,

P

(

YI1 j > b2 +
rI1 j(t−b2)

rI1 j+rI2 j

)

· P

(

YI2 j >
rI2 j(t−b2)

rI1 j+rI2 j

)

for b2 < t <
∑3

l=1(b3 − bl),

...

P

(

YI1 j > b2 +
rI1 j2(b3−b2)

rI1 j+rI2 j
+ · · · +

rI1 j(t−
∑d

l=1(bd−bl))
∑

i∈I ri j

)

· · ·

·P

(

YId j >
rId j(t−

∑d
l=1(bd−bl))

∑

i∈I ri j

)

for
∑d

l=1(bd − bl) < t.

Hence

F̄T I
awt, j

(t) =



































































F̄YI1 j
(t) for 0 < t < b2,

F̄YI1 j

(

b2 +
rI1 j(t−b2)

rI1 j+rI2 j

)

· F̄YI2 j

(

rI2 j(t−b2)

rI1 j+rI2 j

)

for b2 < t <
∑3

l=1(b3 − bl),

...

F̄YI1 j

(

b2 +
rI1 j2(b3−b2)

rI1 j+rI2 j
+ · · · +

rI1 j(t−
∑d

l=1(bd−bl))
∑

i∈I ri j

)

· · ·

·F̄YId j

(

rId j(t−
∑d

l=1(bd−bl))
∑

i∈I ri j

)

for
∑d

l=1(bd − bl) < t,
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and by definition of NBU distributions we get

F̄T I
awt, j

(t) ≥



































































F̄S j
(t) for 0 < t < b2,

F̄S j

(

b2 +
rI1 j(t−b2)

rI1 j+rI2 j
+

rI2 j(t−b2)

rI1 j+rI2 j

)

= F̄S j
(t) for b2 < t <

∑3
l=1(b3 − bl),

...

F̄S j

(

b2 +
rI1 j2(b3−b2)

rI1 j+rI2 j
+ · · · +

rI1 j(t−
∑d

l=1(bd−bl))
∑

i∈I ri j
+ · · ·

+
rId j(t−

∑d
l=1(bd−bl))

∑

i∈I ri j

)

= F̄S j
(t) for

∑d
l=1(bd − bl) < t.

(11)

It then follows that the expected aggregate weighted amount of time invested in the service of a

job is larger than or equal to the mean size of a single job instance, i.e.,

N
∑

i=1

ri jE[Ti j] = E[X j]

∫ ∞

t=0

F̄Tawt, j
(t)dt ≥ E[X j]

∫ ∞

t=0

F̄S j
(t)dt = E[X j]E[S j], (12)

and substituting τi j = λp jE[Ti j] yields Equation (6)

N
∑

i=1

ri jτi j ≥ λp jE[X j]E[S j].

Summing over all the job types gives Equation (7)

M
∑

j=1

N
∑

i=1

ri jτi j ≥ λ

M
∑

j=1

p jE[X j]E[S j]. (13)

Note that at this point, by Proposition 1 with ǫ = 0, it follows that the stability region for d = 1

is larger than or equal to the stability region for d > 1 in the case of NBU distributed speed

variations.

In the case of a strictly NBU distribution Equation (11) is a strict inequality if two or more

servers are serving this particular job, i.e., for t > b2. We proceed by proving that Equation (13)

holds with strict inequality.

Note that we can write Equation (12) as

N
∑

i=1

ri jE[Ti j] = E[X j]

∫ ∞

t=0

F̄Tawt, j
(t)dt ≥ E[X j]

(

∫ ∞

t=0

F̄S j
(t)dt + E[L(d, S j, B)]

)

, (14)

where the latter expectation is with respect to S and where

L(d, S j, b) =

∫ ∞

t=
∑d

l=1(bd−bl)

(

F̄Tawt, j
(t) − F̄S j

(t)
)

dt

denotes the difference between, starting from the time a job is in service at d servers, of the

aggregate weighted amount of time invested in the service of an arbitrary type- j job and the

job size under the distributions of X and B, where B = (B2, . . . , Bd) is the random variable that

12



servers0

age

b5 +
t−

∑5
i=1(b5−bi)

5

b5

b3 = b4

b2

I1 I2 I5

Tol

Tawt

Figure 1: Illustration of the definition of Tawt and Tol in case of homogeneous server speeds.

denotes the weighted amount of time after which the server is available, with 0 ≤ B2 ≤ · · · ≤ Bd

and joint probability density function fB(b2, . . . , bd). Although all jobs that are in service at two

or more servers contribute to the strict inequality of Equation (13), we only consider the job that

is in service at all the d servers. Moreover, by Equation (11) we know that F̄T I
awt, j

(t) > F̄S j
(t)

for all t ≥
∑d

l=1(bd − bl). Note that by Property 1, if the system is non-empty, there is always a

job that is served at all the servers that it has been replicated to. Substituting τi j = λp jE[Ti j] in

Equation (14) and summing over all the job types gives

M
∑

j=1

N
∑

i=1

ri jτi j ≥

M
∑

j=1

(

λp jE[X j]E[S j] + min
k∈N ,l∈M

rklλE[L(d, S j, B)]
)

≥ λ

M
∑

j=1

p jE[X j]E[S j]
(

1 +
mink∈N ,l∈M rklE[L(d,S j ,B)]

p jE[X j]E[S j]

)

. (15)

To prove the strict inequality in Equation (13) we have to show that E[L(d, S j, B)] > 0.

Let Tol(d, S j, b) denote the overlap in the service of an arbitrary type- j job, see Figure 1 for

a visual interpretation, then

E[Tol(d, S j, B)] =

∫ ∞

b2=0

· · ·

∫ ∞

bd=0

Tol(d, S j, b) fB(b2, . . . , bd)db2 · · · dbd, (16)

where

Tol(d, S j, b) =

∫ ∞

t=
∑d

l=1(bd−bl)

1

d
· F̄Tawt, j

(t)dt.

Since λE[Tol(d, S j, B)] ≥ π̄0, we can get a lower bound for the expected overlap

E[Tol(d, S j, B)] ≥
π̄0

λ
≥

1

λ

M
∑

j=1

λp jE[min{Y1 j, . . . , Yd j}]
∑N

i=1 ri j

≥
E[min{Y1 j, . . . , Yd j}]

max j∈M

∑N
i=1 ri j

.
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Observe that from this lower bound and Equation (16) it follows that there exists τ(δ) < max{RS j
}

such that P(Bd < τ(δ)) ≥ δ, otherwise E[Tol(d, S j, B)] is too small. Using this we can write

E[L(d, S j, B)] ≥ P(Bd < τ(δ)) · E[L(d, S j, B)|Bd < τ(δ)]

≥ δE[L(d, S j, B)|Bd < τ(δ)]

≥ δ

∫ ∞

t=(d−1)τ(δ)

(

F̄Tawt, j
(t) − F̄S j

(t)
)

dt =: δI(δ) > 0.

Hence,

M
∑

j=1

N
∑

i=1

ri jτi j ≥ λ

M
∑

j=1

p jE[X j]E[S j]
(

1 +
mink∈N ,l∈M rklδI(δ)

p jE[X j]E[S j]

)

.

Now the proof follows by Proposition 1, with ǫ = min j∈M
mink∈N ,l∈M rklδI(δ)

p jE[X j]E[S j]
which is bounded away

from zero.

Remark 3. We obtained a lower bound for E[L(d, S j, B))] which is strictly increasing in d, see

Theorem 2, but have no meaningful upper bound for this expression. Nonetheless, it would be

natural to conjecture that Theorem 2 extends to the statement that the stability region is strictly

decreasing in d.

Remark 4. In Theorems 1 and 2 we restricted ourselves to static probabilistic assignment of the

d replicas. This restriction could probably be relaxed to dynamic assignments policies. Think for

example of an assignment policy that replicates the job to, say, d̃ servers, where d̃ is a realization

from some underlying distribution which may depend on the job type.

In the next subsection we show, by providing counterexamples, that the assumptions in The-

orems 1 and 2, i.e., known job types and static probabilistic type-dependent assignment, are in

fact necessary.

3.1. Necessary assumptions

In this section we analyze the stability region in cases where the assumptions in Theorems 1

and 2 do not all hold.

Example 3. Consider the scenario of Example 1, i.e., N = 2, M = 2 and server speeds

(r11, r21) = (1, x) and (r12, r22) = (x, 1) with probabilities p1 = p2 = 0.5, where x < 1. How-

ever, in this scenario the job types are unknown. In case of d = 1, unknown job types implies

that both servers are equivalent, thus the optimal static probabilistic assignment is in that case

p̃1 j = p̃2 j = 0.5 for j = 1, 2. The stability conditions, see also Equation (2), are

λ

2
∑

j=1

p jE[X j]E[S j] < 1, for d = 2 (identical),

λ

2
∑

j=1

p jE[X j]E

[

min

{

Y1 j,
Y2 j

x

}]

< 1, for d = 2 (i.i.d.),

λ

2
∑

j=1

p jE[X j]E[S j]

(

0.5 +
0.5

x

)

< 1, for d = 1,
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where Y1 j and Y2 j are i.i.d. copies of S . Note that E
[

min
{

Y1 j,
Y2 j

x

}]

≤ E[S j], and that 0.5+ 0.5
x
> 1

for x < 1.

The above example shows that Theorems 1 and 2 do not hold when job types cannot be dis-

tinguished.

Random job assignment:

To achieve the largest stability region with no replication we allowed for static probabilistic

assignment of jobs. Example 3 illustrates that Theorems 1 and 2 do not hold when we restrict

the assignment probabilities of jobs in case of no replication to be uniform.

3.2. No replication may be best for NWU speed variations

Example 1 already showed that even for NWU speed variations, in this specific scenario, no

replication gives a larger stability region than full replication. However, Example 2 showed that

in the scenario with homogeneous server speeds full replication gives a larger stability region.

From both examples we conclude that in the case of known job types and NWU distributed speed

variations the number of replicas that achieves the largest stability region heavily depends on the

server speeds. Loosely speaking, full replication or no replication gives the largest stability

region if the server speeds within a job type are balanced and unbalanced, respectively.

4. Full replication is best for NWU speed variations

In this section we prove that full replication gives a larger stability region than no replication

when the speed variations are NWU distributed and job types cannot be observed, see Theorem 3.

We also discuss the possible extensions of this statement, replacing no replication by an arbitrary

number of replicas, in Conjectures 1 and 2.

We first introduce some useful notation. Consider K =
(

N

d

)

probabilities, where each prob-

ability corresponds to assigning a job to one of the
(

N

d

)

possible combinations of d servers. Let

s
i ⊂ {1, . . . ,N} denote the set of servers corresponding to the i-th probability. Without loss of

generality, we suppose that p̃1 corresponds to the set of servers s
1 = {1, . . . , d}, p̃2 corresponds

to the set of servers s
2 = {1, . . . , d − 1, d + 1} and finally p̃K corresponds to the set of servers

s
K = {N − d + 1, . . . ,N}, with

∑K
i=1 p̃i = 1.

For brevity, we further define γi =
∑M

j=1 p jE[X j]γi j, with

γi j =
∑

h:i∈sh

p̃h
∑

h∗:i∈sh∗ p̃h∗
θi jh,

and

θi jh = E















min















Y1 j

rsh
1

j

, . . . ,
Yd j

rsh
d

j





























,

representing the expected execution time per unit size for a type- j job assigned to the set of

servers sh ∋ i if all d replicas were to start at the same time. Thus, γi may be interpreted as a
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proxy for the load associated with an arbitrary job assigned to server i. In case the random speed

variation S j is exponentially distributed, the expression for θi jh reduces to

θ̂i jh =
E[S j]

∑d
l=1 rsh

l
j

,

and we will add a hat to the coefficients γi in that case accordingly and informally refer to these

as the exponential load values. For d = 1, the expression for γi j simplifies to E[S j]/ri j, yielding

γ̃i =

M
∑

j=1

p jE[X j]
E[S j]

ri j

,

which is in fact the exact load in that case. For d = N, the values of γi j are all equal to

θ j = E[min

{

Y1 j

r1 j

, . . . ,
YN j

rN j

}

],

and hence the values of γi are all equal to

γ0 =

M
∑

j=1

p jE[X j]θ j,

which is also the exact load since all the N replicas are guaranteed to start at the same time.

Finally note that in case the random speed variation S j is exponentially distributed, the expression

for θ j simplifies to

θ̂ j =
E[S j]
∑N

i=1 ri j

,

yielding

γ̂0 =

M
∑

j=1

p jE[X j]
E[S j]
∑N

i=1 ri j

.

In the next theorem we prove that full replication gives a (strictly) larger stability region than

no replication when the speed variations are (strictly) NWU distributed.

Theorem 3. In the case of unknown job types, the stability region for d = N is larger than or

equal to (respectively, strictly larger than) the stability region for d = 1 with NWU (respectively,

strictly NWU) distributed speed variations and static probabilistic assignment (which cannot

depend on the job type) of the d replicas.

Proof. For d = 1, the stability condition is maxi∈N p̃iγ̃i < 1 for some probabilities p̃i, see (2).

For d = N, the stability condition is γ0 < 1, see (3). For all NWU distributed speed variations,

see for example [18, Sec. 1.6], we have

θ j = E

[

min

{

Y1 j

r1 j

, . . . ,
YN j

rN j

}]

≤
E[S j]
∑N

i=1 ri j

= θ̂ j,

and hence γ0 ≤ γ̂0, which is a strict inequality in the case of a strictly NWU distribution.

The remainder of the proof follows as a special case of Lemma 1 stated below, noting that

γ̂i

∑

h:i∈sh p̃h = p̃iγ̃i when d = 1.
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Lemma 1 establishes a fundamental algebraic inequality for the exponential load values

which will be of key importance throughout the remainder of this section as well.

Lemma 1. For all choices of the probabilities p̃k, k = 1, . . . ,K, we have

γ̂0 ≤ max
i∈N
γ̂i

∑

h:i∈sh

p̃h. (17)

Proof. If we minimize the right-hand side in Equation (17) by setting

γ̂1

∑

h:1∈sh

p̃h = · · · = γ̂N

∑

h:N∈sh

p̃h,

then it follows that this term is equal to

d
1
γ̂1
+ · · · + 1

γ̂N

=
d
∏N

k=1 γ̂k
∑N

l=1

∏

k,l γ̂k

= γ̂i

∑

h:i∈sh

p̃h.

Note that for d = 1 we can get an explicit expression for the probabilities since we have a system

of N equations with N unknowns, i.e., p̃i =

∏N
k=1,k,i γ̂k

∑N
l=1

∏

k,l γ̂k
. For d > 1 we have K unknowns which

makes the system of equations underdetermined. Thus, Equation (17) is equivalent to

γ̂0 ≤
d

1
γ̂1
+ · · · + 1

γ̂N

⇔
d

γ̂0

≥
1

γ̂1

+ · · · +
1

γ̂N

. (18)

We can rewrite the right-hand side of the expression to

1

γ̂1

+ · · · +
1

γ̂N

=
1

∑

h:1∈sh
p̃h

∑

h∗ :1∈sh
∗ p̃h∗

(
γ̂01

xh1
+ · · · +

γ̂0M

xhM
)
+ · · · +

1
∑

h:N∈sh
p̃h

∑

h∗ :N∈sh∗ p̃h∗
(
γ̂01

xh1
+ · · · +

γ̂0M

xhM
)
,

where γ̂0 j = p jE[X j]
E[S j]
∑N

i=1 ri j
and xl j =

∑d
i=1 r

sl
i

j

∑N
i=1 ri j

for l = 1, . . . ,K and j = 1, . . . ,M. The above

expression is concave in xi j when fixing the values
∑N

i=1 ri j, j = 1, . . . ,M, and is therefore maxi-

mized for xl1 = · · · = xlM for all l = 1, . . . ,K, for which the expression is equal to d
γ̂0

.

Extending Theorem 3 to all values of 1 ≤ d ≤ N is challenging. One of the key difficulties is

that the various replicas do not necessarily start at the same time as a result of queueing, making

it impossible to determine the exact load values when d is strictly between 1 and N. Establishing

suitable lower bounds for the load values would provide a potential way to circumvent that issue.

The next lemma presents a possible path in that direction by showing that the minimum expected

aggregate weighted load is achieved when all replicas start at exactly the same time.

Lemma 2. For any number of replicas and NWU distributed job sizes the expected aggregate

weighted amount of time invested in the service of a job is minimized when all the replicas start

at exactly the same time. Specifically, for each job type j,

∑

i∈sh

ri jE[Ti j] ≥
∑

i∈sh

ri jθi jh.
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Proof. Observe that for NWU distributions, Equation (11) changes to

F̄T I
awt, j

(t) =











































































































F̄YI1 j
(t) ≥ F̄YI1 j

(

rI1 jt
∑

i∈I ri j

)

· · · F̄YId j

(

rId jt
∑

i∈I ri j

)

for 0 < t < b2,

F̄YI1 j

(

b2 +
rI1 j(t−b2)

rI1 j+rI2 j

)

· F̄YI2 j

(

rI2 j(t−b2)

rI1 j+rI2 j

)

≥ F̄YI1 j

(

rI1 jt
∑

i∈I ri j

)

· · · F̄YId j

(

rId jt
∑

i∈I ri j

)

for b2 < t <
∑2

l=1(b3 − bl),

...

F̄YI1 j

(

b2 +
rI1 j2(b3−b2)

rI1 j+rI2 j
+ · · · +

rI1 j(t−
∑d

l=1(bd−bl))
∑

i∈I ri j

)

· · · F̄YId j

(

rId j(t−
∑d

l=1(bd−bl))
∑

i∈I ri j

)

≥ F̄YI1 j

(

rI1 jt
∑

i∈I ri j

)

· · · F̄YId j

(

rId jt
∑

i∈I ri j

)

for
∑d

l=1(bd − bl) < t.

By definition of NWU distributions,

∑

i∈I

ri jE[Ti j] =

∫ ∞

t=0

F̄T I
awt, j

(t)dt ≥

∫ ∞

t=0

F̄YI1 j

(

rI1 jt
∑

i∈I ri j

)

· · · F̄YId j

(

rId jt
∑

i∈I ri j

)

dt

=
∑

i∈I

ri jE

[

min

{

YI1 j

rI1 j

, . . . ,
YId j

rId j

}]

=
∑

i∈I

ri jθi jh, (19)

with s
h = I. This implies that the minimum expected aggregate weighted amount of time invested

in the service of a job is achieved when all replicas start at exactly the same time.

Now observe that if E[Ti j] ≥ θi jh for all i ∈ I = s
h, then similar arguments as in Theorem 3

and Lemma 1 would yield that the stability region for d = N is larger than for any 1 < d < N as

well. Unfortunately, these detailed inequalities cannot be deduced from the aggregate weighted

inequalities in (19) without further conditions. This leads to the next conjecture, which is also

illustrated in Figure 2 for Weibull(λw = 1.128, k = 2) (NBU), exponential and Weibull(λw =

0.5, k = 0.5) (NWU) distributed speed variations.

Conjecture 1. For (strictly) NWU distributed speed variations and unknown job types, the load

at server i of the system with 1 < d < N replicas, denoted by γ̄i, is bounded by γ̄i ≥ (>)γi, for all

i = 1, . . . ,N.

In Figure 2 it can be seen that Conjecture 1 cannot be extended to NBU distributed speed

variations, i.e., for the NBU Weibull distribution the stability condition of the original system

(the expected latency is depicted with a solid lime green line) seems tighter than the stability

condition in the system where all the d replicas were to start at the same time (dashed lime green

line).

Conjecture 2. In the case of unknown job types, the stability region for d = N when the job

types are unknown is larger than or equal to (respectively, strictly larger than) the stability

region for 1 ≤ d < N with identical servers and NWU (respectively, strictly NWU) distributed

speed variations where replicas are assigned to d servers selected uniformly at random (without

replacement).
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Figure 2: Expected latency for the scenario of Example 3 with N = 3 servers, d = 2 replicas and rslow = 0.5 for various

distributions for the speed variation with E[S j] = 1 and E[X j] = 1 for j = 1, 2. Assignment p̃k =
1
3

, for k = 1, 2, 3,

which is optimal. The dashed lines represent the stability condition for the load at server i equal to γi , for i = 1, 2, 3.

Conjecture 2 is supported by the observation that Conjecture 1 implies

max
i∈N
γ̄i

∑

h:i∈sh

p̃h ≥ max
i∈N
γi

∑

h:i∈sh

p̃h,

while Lemma 1 gives γ̂0 ≤ maxi∈N γ̂i

∑

h:i∈sh p̃h. If Conjecture 1 is true, it would thus suffice to

establish the equivalence relation

1

γ1

+ · · · +
1

γN

≤
d

γ0

⇔
1

γ̂1

+ · · · +
1

γ̂N

≤
d

γ̂0

. (20)

For identical servers with uniform selection of the servers we have that

γ = γ1 = · · · = γN =

M
∑

j=1

p jE[X j]
∑

h:i∈sh

θi jh

d
,

γ̂ = γ̂1 = · · · = γ̂N =

M
∑

j=1

p jE[X j]
∑

h:i∈sh

θ̂i jh

d
.

Substituting these in Equation (20) gives

N

γ
≤

d

γ0

⇔
N

γ̂
≤

d

γ̂0

,

or equivalently

γ

N
≥
γ0

d
⇔
γ̂

N
≥
γ̂0

d
.

If we look at the difference, we get
(

γ̂

N
−
γ

N

)

−

(

γ̂0

d
−
γ0

d

)

. (21)
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Now observe that
γ̂

N
=
γ̂0

d
and therefore the term in Equation (21) simplifies to

γ0

d
−
γ

N
.

The last expression is negative since for NWU distributions, see for example [18, Sec. 1.6], we

have

Nθ j ≤ d
∑

h:i∈sh

θi jh

d
,

for all j = 1, 2, . . . ,M.

In the next subsection we will show that even for NBU distributed speed variations full repli-

cation may give the largest stability region when job types cannot be observed. This demonstrates

that unpredictability in speeds induced by uncertainty in job types can create a strong rationale

for replication, even when the random speed variations do not. More specifically, we give exam-

ples illustrating that the number of replicas that yields the largest stability region depends on the

server speeds.

4.1. Full replication may be best for NBU speed variations

In Section 3 we proved that the stability region is largest for d = 1 when the speed variations

are NBU and job types can be distinguished. We now show that the complete opposite may be

true when job types cannot be observed. More specifically, we will prove that even with NBU

random speed variations in some scenarios full replication gives the largest stability region when

the uncertainty in the systematic speed variations is sufficiently significant in some suitable sense.

Consider the scenario where job type j, for j = 1, . . . ,N, is fast on server j, i.e., server speed

rfast, and slow on the other servers, i.e., server speed rslow (see Example 3 with N = 2 servers,

rfast = 1 and rslow = x). We refer to this scenario as the FS (Fast-Slow) scenario.

Theorem 4. In the case of unknown job types, the stability region for d = N is larger than the

stability region for d < N in the FS scenario with NBU distributed speed variations and static

probabilistic assignment (which cannot depend on the job type) of the d replicas, when the ratio
rslow

rfast
= x ↓ 0.

Proof. Note that the stability region for d = N, given by Equation (3), does not depend on the

value of x. Now, for d < N, the probability of assigning all replicas of a type- j job to slow servers

is strictly larger than 0. For the expected service requirement of this job, denoted by E[B∗
j
], it

follows that E[B∗
j
] ≥

E[X j]E[min{Y1 j ,...,Yd j}]

x
.

In Figure 3 (right) it can be seen that for rslow sufficiently large d = 1 gives the largest

stability region in the special case of Weibull(λw = 1.128, k = 2) distributed speed variations,

which belongs to the class of NBU distributions. As stated in Theorem 4 for rslow sufficiently

small we observe that d = N = 3 gives the largest stability region.

In [2] a similar result for the processor-sharing discipline is proved. For this discipline it

is shown that redundancy can improve the stability of the system with identical replicas if the

servers are sufficiently heterogeneous when the assignment probabilities are restricted to be uni-

form.
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Figure 3: Expected latency for the scenario of Example 3 with N = 3 servers and rrslow = 0.1 (left) and rrslow = 0.5

(right), where the speed variations are Weibull(λw = 1.128, k = 2) (NBU) distributed and E[X] = 1.

5. Conclusion and suggestions for further research

We have proven that for c.o.c. redundancy scheduling with identical replicas, general job

size distributions and suitable type-dependent assignment probabilities the stability region for

d = 1 is strictly larger than the stability region for d > 1. Moreover, we established that the

same statement holds in case of i.i.d. replicas and NBU distributed speed variations. For both

identical and i.i.d. replicas a critical assumption is that the job types can be observed. In case

of non-observable job types the stability region for d = N is larger than or equal to the stability

region for d = 1 when the speed variations are NWU distributed. Under the conjecture that the

stability region increases in the latter case when all replicas start at the same time, we extended

the above-mentioned statement, i.e., we showed that for identical servers the stability region for

d = N is larger than or equal to the stability region for all d < N.

In case the type identities of jobs are unknown, it may be possible to learn them, and for

further research we intend to analyze the stability region when we are able to learn the job types;

cf. [3] where a learning framework is proposed to answer these questions for a different model.

Ultimately, we hope to quantify the performance loss in terms of the stability region when the job

types are unknown beforehand and explore how decreasing the uncertainty about the job types

can increase the stability region.
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