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Abstract

We analyze the performance of redundancy in a multi-type job and multi-type server sys-
tem. We assume the job dispatcher is unaware of the servers’ capacities, and we set out to
study under which circumstances redundancy improves the performance. With redundancy an
arriving job dispatches redundant copies to all its compatible servers, and departs as soon as
one of its copies completes service. As a benchmark comparison, we take the non-redundant
system in which a job arrival is routed to only one randomly selected compatible server. Ser-
vice times are generally distributed and all copies of a job are identical, i.e., have the same
service requirement.

In our first main result, we characterize the sufficient and necessary stability conditions of
the redundancy system. This condition coincides with that of a system where each job type
only dispatches copies into its least-loaded servers, and those copies need to be fully served.
In our second result, we compare the stability regions of the system under redundancy to
that of no redundancy. We show that if the server’s capacities are sufficiently heterogeneous,
the stability region under redundancy can be much larger than that without redundancy. We
apply the general solution to particular classes of systems, including redundancy-d and nested
models, to derive simple conditions on the degree of heterogeneity required for redundancy to
improve the stability. As such, our result is the first in showing that redundancy can improve
the stability and hence performance of a system when copies are non-i.i.d..
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1 Introduction

The main motivation of studying redundancy models comes from the fact that both empirical
(1% 25 195 130]) and theoretical ([12, 14, [19, 22, 23| [29]]) evidence show that redundancy might
improve the performance of real-world applications. Under redundancy, a job that arrives to the
system dispatches multiple copies into the servers, and departs when a first copy completes service.
By allowing for redundant copies, the aim is to minimize the latency of the system by exploiting
the variability in the queue lengths and the capacity of the different servers.

Most of the theoretical results on redundancy systems consider the performance analysis when
either FCFS or Processor-Sharing (PS) service policies are implemented in the servers. Under the



assumption that all the copies of a job are i.i.d. (independent and identically distributed) and ex-
ponentially distributed, [3} 5, [14]] show that the stability condition of the system is independent of
the number of redundant copies and that performance (in terms of delay and number of jobs in the
system) improves as the number of copies increases. However, [[12] showed that the assumption
that copies of a job are i.i.d. can be unrealistic, and that it might lead to theoretical results that do
not reflect the results of replication schemes in real-life computer systems. The latter has triggered
interest to consider other modeling assumptions for the correlation structure of the copies of a job.
For example, for identical copies (all the copies of a job have the same size), [3]] showed that under
both FCFS and PS service policies, the stability region of the system with homogeneous servers
decreases as the number of copies increases.

The above observation provides the motivation for our study: to understand when redundancy
is beneficial. In order to do so, we analyze a general multi-type job and multi-type server system.
A dispatcher needs to decide to which server(s) to route each incoming job. We assume that there
is no signaling between the dispatcher and the servers, that is, the dispatcher is oblivious to the
capacities of the servers and unaware of the states of the queues. The latter can be motivated by
(i) design constraints, (ii) (slowly) fluctuating capacity of a server due to external users, or (iii)
the impossibility of exchanging information among dispatchers and servers. The only information
that is available to the dispatcher is the type of job and its set of compatible servers. However,
we do allow signaling between/among servers, which is needed in order to cancel the copies in
redundancy schemes.

In the mathematical analysis we consider two different models: the redundancy model where
the dispatcher sends a copy to all the compatible servers of the job type, and the Bernoulli model
where a single copy is send to a uniformly selected compatible server of the job type. From a dis-
patchers viewpoint, the comparison between these two policies is reasonable under the assumption
that the dispatcher only knows the type of the job and the set of its compatible servers. Hence, we
do not compare analytically the performance of redundancy with other routing policies — such as
Join the Shortest Queue, Join the Idle Server, Power of d, etc. — that have more information on
the state of the system. We hence aim to understand when having redundant copies is beneficial
for the performance of the system in this context. Observe that the answer is not clear upfront as
adding redundant copies has two opposite effects: on the one hand, redundancy helps exploiting
the variability across servers’ capacities, but on the other hand, it induces a waste of resources as
servers work on copies that do not end up being completely served.

To answer the above question, we analyze the stability of an arbitrary multi-type job and multi-
type server system with redundancy. Job service requirements are generally distributed, and copies
are identical. The scheduling discipline implemented by servers is PS, which is a common policy
in server farms and web servers, see for example [16, Chapter 24]. In our main result, we derive
sufficient and necessary stability conditions for the redundancy system. This general result allows
us to characterize when redundancy can increase the stability region with respect to Bernoulli
routing.

To the best of our knowledge, our analytical results are the first showing that, when copies
are non-i.i.d., adding redundancy to the system can be beneficial from the stability point of view.
We believe that our result can motivate further research in order to thoroughly understand when
redundancy is beneficial in other settings. For example, for different scheduling disciplines, dif-
ferent correlation structures among copies, different redundancy schemes, etc. In Section [§ we
investigate through numerics some of these issues, namely, the performance of redundancy when
the scheduling discipline is FCFS and Random Order of Service (ROS), and the performance gap
between redundancy and a variant of Join the Shortest Queue policy according to which each job
is dispatched to the compatible server that has the least number of jobs.

We briefly summarize the main findings of the paper:



» The characterization of sufficient and necessary stability conditions of any general redun-
dancy system with heterogeneous server capacities and arrivals, under mild assumptions on
the service time distribution.

* We prove that when servers are heterogeneous enough (conditions stated in Section [6)),
redundancy has a larger stability region than Bernoulli.

* By exploring numerically these conditions, we observe that the degree of heterogeneity
needed in the servers for redundancy to be better, decreases in the number of servers, and
increases in the number of redundant copies.

The rest of the paper is organized as follows. In Section [2| we discuss related work. Section
describes the model, and introduces the notion of capacity-to-fraction-of-arrivals ratio that plays
a key role in the stability result. Section 4] gives an illustrative example in order to obtain intuition
about the structure of the stability conditions. Section [5]states the stability condition for the re-
dundancy model. Section [6] provides conditions on the heterogeneity of the system under which
redundancy outperforms Bernoulli. The proof of the main result is given in Section[7} Simulations
are given in Section[8] and concluding remarks are given in Section[9] For the sake of readability,
proofs are deferred to the Appendix.

2 Related work

When copies of a job are i.i.d. and exponentially distributed, [5, [14] have shown that redundancy
with FCFS employed in the servers does not reduce the stability region of the system. In this
case, the stability condition is that for any subset of job types, the sum of the arrival rates must be
smaller than the sum of service rates associated with these job types. In [27], the authors consider
i.i.d. copies with highly variable service time distributions. They focus on redundancy-d systems
where each job chooses a subset of d homogeneous servers uniformly at random. The authors
show that with FCFS, the stability region increases (without bound) in both the number of copies,
d, and in the parameter that describes the variability in service times.

In [20], the authors investigate when it is optimal to replicate a job. They show that for so-
called New-Worse-Than-Used service time distributions, the best policy is to replicate as much
as possible. In [13], the authors investigate the impact that scheduling policies have on the
performance of so-called nested redundancy systems with i.i.d. copies. The authors show that
when FCFS is implemented, the performance might not improve as the number of redundant
copies increases, while under other policies proposed in the paper, such as Least-redundant-first
or Primaries-first, the performance improves as the number of copies increases.

Anton et al. [3]] study the stability conditions when the scheduling policies PS, Random Order
of Service (ROS) or FCFS are implemented. For the redundancy-d model with homogeneous
server capacities and i.i.d. copies, they show that the stability region is not reduced if either PS
or Random Order of Service (ROS) is implemented. When instead copies belonging to one job
are identical, [3]] showed that (i) ROS does not reduce the stability region, (ii) FCFS reduces the
stability region and (iii) PS dramatically reduces the stability region, and this coincides with the
stability region of a system where all copies need to be fully served, i.e., A < %. In [28], the
authors show that the stability result for PS in a homogeneous redundancy-d system with identical
copies extends to generally distributed service times. In the present paper, we extend [3 28]
by characterizing the stability condition under PS with identical copies to the general setting of
heterogeneous servers, generally distributed service times, and arbitrary redundancy structures.

Hellemans et al. [[18]] consider identical copies that are generally distributed. For a redundancy-
d model with FCFS, they develop a numerical method to compute the workload and response time



Table 1: The stability condition of redundancy models under different modeling assumptions. In

bold square, the modeling assumptions we consider for the present paper.

Service time
distribution

Homogeneous servers

Heterogeneous servers

i.i.d. copies

identical copies

i.i.d. copies

identical copies

FCFS

Exponential

General red., [14]

Redundancy-d, [3]

General red.,[[14]]

Scaled Bernoulli

Redundancy-d, [27]
(Asymptotic regime)

Exponential Redundancy-d, [3] Redundancy-d, [3]
PS General Redundancy-d, [28] |Redundancy-d, [28] General red.
(Necessary condition) (Light-tailed)

ROS |Exponential Redundancy-d, [3] Redundancy-d, [3]

distribution when the number of servers tends to infinity, i.e., the mean-field regime. The authors
can numerically infer whether the system is stable, but do not provide any characterization of
the stability region. In a recent paper, Hellemans et al. [[17]] extend this study to include many
replication policies, and general correlation structure among the copies.

Gardner at al. [12]] introduce a new dependency structure among the copies of a job, the S&X
model. The service time of each copy of a job is decoupled into two components: one related
to the inherent job size of the task, that is identical for all the copies of a job, and the other one
related to the server’s slowdown, which is independent among all copies. The paper proposes
and analyzes the redundant-to-idle-queue scheme with homogeneous servers, and proves that it is
stable, and performs well.

In Table 1 we summarize the stability results presented above, organized by service policy,
service time distribution, servers’ capacities and redundancy correlation structure. In brackets
we specify the additional assumptions that the authors considered in their respective paper. In
the bold square, we outline the modeling assumptions we consider for the present paper. To the
best of our knowledge, no analytical results were obtained so far for performance measures when
PS is implemented, servers are heterogeneous and copies are identical or of any other non i.i.d.
structure.

3 Model description

We consider a K parallel-server system with heterogeneous capacities uy, fork =1,..., K. Each
server has its own queue, where Processor Sharing (PS) service policy is implemented. We denote
by S = {1,..., K} the set of all servers.

Jobs arrive to the system according to a Poison process of rate A. Each job is labelled with
a type c that represents the subset of compatible servers to which type-c jobs can be sent: i.e.,
¢ = {s1,...8,}, where n < K, s1,...,8, € S and s; # s, for all i # [. A job is with
probability p. of type c, where ) _.p. = 1. We denote by C the set of all types in the system,
ie,C = {ceP(S) : p.> 0}, where P(S) contains all the possible subsets of S. Furthermore,
we denote by C(s) the subset of types that have server s as compatible server, that is, C(s) = {c €
C : s € c}. For instance, the N-model is a two-server system with jobs of types ¢ = {2} and
c = {1, 2}, see Figure[l]b). Thus, C = {{2},{1,2}},C(1) = {{1,2}} and C(2) = {{2},{1,2}},
with P{2},P{1,2} > 0.

Job sizes are distributed according to a general random variable X with cumulative distribution
function F' and unit mean. Additionally, we assume that

1. F has no atoms.



2. F'is alight tailed distribution in the following sense,

lim sup E[(X — a)l{x_q>}|X >a] =0. ()

r—00 a>0

Remark 1. These technical conditions have been used previously in the literature to prove stochas-
tic stability from fluid limits arguments (see [24] and [26]) in the context of processor sharing net-
works and cannot be avoided easily. However, it can be seen (as observed in [26]) that Equation
(1) also implies
supE[(X —a)|X > a] < ® < o0, (2)
a>0
which is a usual light tail condition (see [11]). Hence, Equations (I)) and (2) though exclude
heavy tail distributions like Pareto, include large sets of distributions as phase type (which are
dense in the set of all distributions on R™), distributions with bounded support, exponential and
hyper-exponential distributions.

We consider two load balancing policies, which determine how the jobs are dispatched to the
servers. Note that both load balancers are oblivious to the capacities of the servers.

* Bernoulli routing: a type-c job is send with uniform probability to one of its compatible
servers in c.

* Redundancy model: a type-c job sends identical copies to its |c| compatible servers. That
is, all the copies of a job have exactly the same size. The job (and corresponding copies)
departs the system when one of its copies completes service.

In this paper, we will study the stability condition under both load balancing policies. We call
the system stable when the underlying process is positive Harris recurrent, and unstable when the
process is transient. A stochastic process is positive Harris recurrent if there exists a petite-set
C for which P(1¢ < o0) = 1 where 7¢ is the stopping time of C, see e.g., [4, (6, 23] for the
corresponding definitions. We note that when the state descriptor is Markovian, positive Harris
recurrent is equivalent to positive recurrent.

We define A\? as the value of A such that the redundancy model is stable if A < A\’ and unstable
if A > A, Similarly, we define A® for the Bernoulli routing system. We aim to characterize
when Af* > M\B| that is, when does redundancy improve the stability condition compared to no
redundancy.

For Bernoulli, A can be easily found. Under Bernoulli routing, a job chooses a server uni-
formly at random, hence, type-c jobs arrive at server s at rate Ap./|c|. Thus, the Bernoulli system
reduces to K independent servers, where server s receives arrivals at rate /\(Zcec(s) %') and has
a departure rate (g, for all s € S. The stability condition is hence,

A < AP =min M L 3)
s€S {ZCEC(S) %

In order to characterize A, we need to study the system under redundancy in more detail.
For that, we denote by N, () the number of type-c distinct jobs that are present in the redundancy
system at time ¢ and N(t) = (N,(t),c¢ € C). Furthermore, we denote the number of copies
per server by My(t) == > cc(s) Ne(t), s € S, and M(t) = (My(t),..., Mg(t)). For the j-
th type-c job, let b.; denote the service requirement of this job, for j = 1,...,N¢(t), ¢ € C.
Let a.;s(t) denote the attained service in server s of the j-th type-c job at time t. We denote by
A.(t) = (acjs(t))js a matrix on Ry of dimension IV.(¢) x |c|. Note that the number of type-c jobs
increases by one at rate Ap., which implies that a row composed of zeros is added to A.(t). When
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Figure 1: From left to right, the redundancy-d model (for K = 4 and d = 2), the N-model, the
W-model and the W' W -model.

one element a.;s(t) in matrix A.(t) reaches the required service b.;, the corresponding job departs
and all of its copies are removed from the system. Hence, row j in matrix A.(¢) is removed. We
further let ¢4 (M (t)) be the capacity that each of the copies in server s obtains when in state M (t),

which under PS is given by, ¢4(M (t)) := N;:S( 77+ The cumulative service that a copy in server s

gets during the time interval (v, t) is

ns(v,t) 1= / _ Gu(M (@))a.

In order to characterize the stability condition, we define the capacity-to-fraction-of-arrivals
ratio of a server in a subsystem:

Definition 1 (Capacity-to-fraction-of-arrival ratio). For any given set of servers S C S and its

associated set of job types C = {ceC : ¢ C S} the capacity-to-fraction-of-arrival ratio of

server s € S in this so-called S-subsystem is defined by ﬁ, where C(s) = CNC(s) is the
ceC(s) e

subset of types in C that are served in server s.

Some common models

A well-known structure is the redundancy-d model, see Figure [I|a). Within this model, each job
has d out of K compatible servers, where d is fixed. That is, p. > 0 for all ¢ € P(S) with |c| = d,
and p. = 0 otherwise, so that there are |C| = (Id() types of jobs. If additionally, p. = 1/ (Ij)
for all ¢ € C, we say that the arrival process of jobs is homogeneously distributed over types.
We will call this model the redundancy-d model with homogeneous arrivals. The particular case
where server capacities are also homogeneous, i.e., ur = p forall k = 1,..., K, will be called
the redundancy-d model with homogeneous arrivals and server capacities.

In [21]] the nested redundancy model was introduced, where for all ¢, ¢’ € C, either i) ¢ C ¢ or
ii) ¢ C coriii) cNc = (. First of all, note that the redundancy-d model does not fit in the nested
structure. The smallest nested system is the so called N-model (Figure [1|b)): thisis a K = 2
server system with types C = {{2},{1,2}}. Another nested system is the W-model (Figure
¢)), that is, K = 2 servers and types C = {{1}, {2}, {1,2}}. In Figure[1]d), a nested model with
K = 4 servers and 7 different jobs types, C = {{1}, {2}, {3}, {4}, {1,2},{3,4},{1,2,3,4}} is
given. This model is referred to as the W/ -model.

4 An illustrative example

Before formally stating the main results in Section [5.1] we first illustrate through a numerical
example some of the key aspects of our proof, and in particular the essential role played by the
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Figure 2: Trajectory of the number of copies per server with respect to time for a K = 4
redundancy-2 system with exponentially distributed job sizes. Figures a) and b) consider ho-
mogeneous capacities p; = 1 for k = 1,...,4 and homogeneous arrival rates per type, p. = 1/6

for all ¢ € C, witha) A = 1.8 and b) A = 2.1. Figures ¢) and d) consider heterogeneous server
capacities [ = (1,2, 4,5) and arrival rates per type p = (0.25,0.1,0.1,0.2,0.2,0.15) for types C,
cywithA=75andd) A = 9.

capacity-to-fraction-of-arrival ratio defined in Definition |1} In Figure [2| we plot the trajectories of
the number of copies per server with respect to time for a K = 4 redundancy-2 system (Figure ]
a)), that is C = {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}. Our proof techniques will rely on
fluid limits, and therefore we chose large initial points. Figures[2]a) and b) show the trajectories
when servers and arrivals of types are homogeneous for A = 1.8 and A = 2.1, respectively.
Figures [2|c) and d) consider a heterogeneous system (parameters see the legend) for A = 7.5 and
A =9, respectively.

The homogeneous example (Figure[2]a) and b)) falls within the scope of [3]]. There it is shown
that the stability condition is A < %. We note that this condition coincides with the stability
condition of a system in which all the d copies need to be fully served. In Figure [2| a) and b),
the value for A is chosen such that they represent a stable and an unstable system, respectively.
As formally proved in [3], at the fluid scale, when the system is stable the largest queue length
decreases, whereas in the unstable case the minimum queue length increases. It thus follows, that
in the homogeneous case, either all classes are stable, or unstable.

The behavior of the heterogeneous case is rather different. The parameters corresponding to
Figures @] ¢) and d) are such that the system is stable in c), but not in d). In Figure Q] C) we see
that the trajectories of all queue lengths are not always decreasing, including the maximum queue
length. In Figure [2] d), we observe that the number of copies in servers 3 and 4 are decreasing,
whereas those of servers 1 and 2 are increasing.

When studying stability for the heterogeneous setting, one needs to reason recursively. First,



assume that each server s needs to handle its full load, i.e., )\%. Hence, one can simply

compare the servers capacity-to-fraction-of-arrival ratios, s/ ZCEC(S) Pe, to see which server is
the least-loaded server and could hence potentially empty first. In this example, server 4 has the
maximum capacity-to-fraction-of-arrival ratio, and, in fluid scale, will reach zero in finite time,
and remain zero, since (a/ Y .ccayPe = 5/(P(1,4y + P24y + P(34y) = 11.11 is larger than
A=T5.

Whenever, at fluid scale, server 4 is still positive, the other servers might either increase or
decrease. However, the key insight is that once the queue length of server 4 reaches 0, the fluid
behavior of the other classes no longer depend on the jobs that also have server 4 as compatible
server. That is, we are sure that all jobs that have server 4 as compatible server, will be fully
served in server 4, since server 4 is in fluid scale empty and all the other servers are overloaded.
Therefore, jobs with server 4 as compatible server can be ignored, and we are left with a subsystem
formed by servers {1, 2, 3} and without the job types served by server 4. Now again, we consider
the maximum capacity-to-fraction-of-arrival ratio in order to determine the least-loaded server,
but now for the subsystem {1, 2,3}. This time, server 3 has the maximum capacity-to-fraction-
of-arrival ratio, which is 4/(py1 3} + py2,3)) = 10. Since this value is larger than A = 7.5, it is a
sufficient condition for server 3 to empty.

Similarly, once server 3 is empty, we consider the subsystem with servers 1 and 2 only. Hence,
there is only one type of jobs, {1,2}. Now server 2 is the least-loaded server and its capacity-to-
fraction-of-arrival ratio is 2/py; 9y = 8. This value being larger than the arrival rate, implies that
server 2 (and hence server 1, because there is only one job type) will be stable too. Indeed, in
Figures [2| ¢) we also observe that as soon as the number of copies in server 3 is relatively small
compared to that of server 1 and server 2, the number of copies in both server 1 and server 2
decreases.

We can now explain the evolution observed in Figure [2|d) when A = 9. The evolution for
servers 4 and 3 can be argued as before: both their capacity-to-fraction-of-arrival ratios are larger
than A = 9, hence they empty in finite time. However, the capacity-to-fraction-of-arrival ratio of
the subsystem with servers 1 and 2, which is 8, is strictly smaller than the arrival rate. We thus
observe that, unlike in the homogeneous case, in the heterogeneous case some servers might be
stable, while others (here server 1 and 2) are unstable.

Proposition [T] formalizes the above intuitive explanation, by showing that the stability of the
system can be derived recursively.

The capacity-to-fraction-of-arrival ratio allows us now to reinterpret the homogeneous case
depicted in Figure [2| a) and b). In this case, the capacity-to-fraction-of-arrival ratio of all the
servers is the same, which implies (i) that either all servers will be stable, or all unstable, and (i)
from the stability viewpoint is as if all copies received service until completion.

5 Stability condition

5.1 Multi-type job multi-type server system

In this section we discuss the stability condition of the general redundancy system with PS. In
order to do so, we first define several sets of subsystems, similar to as what we did in the illustrative
example of Section 4]

The first subsystem includes all servers, that is S; = S. We denote by £; the set of servers
with highest capacity-to-fraction-of-arrival ratio in the system S; = .S. Thus,

M3
L= {3 €85 s= argmax{}}.
ses5 Zcecpc
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Figure 3: K = 4 server system under redundancy-2. In a) subsystem S1, in b) subsystem .S, and
in ¢) subsystem Ss.

Fori = 2,..., K, we define recursively
S; = S\UjZj Ly,
Ci = {ceC: cCS},
Ci(s) = CinC(s),

Hs
Li = <s€ES; : s=argmax{ =———, ¢ -
{ 3€8; {ZCGCi(§) pc}}

The S;-subsystem will refer to the system consisting of the servers in S;, with only jobs of types
in the set C;. The C;(s) is the subset of types that are served in server s in the S;-subsystem. We
let C; = C. The L; represents the set of servers s with highest capacity-to-fraction-of-arrival ratio
in the S;-subsystem, or in other words, the least-loaded servers in the S;-subsystem. Finally, we
denote by ¢* := argmax;—1, x{C; : C; # (0} the last index i for which the subsystem .5; is not
empty of job types.

Remark 2. We illustrate the above definitions by applying them to the particular example con-
sidered in Section E} The first subsystem consists of servers S; = S = {1,2,3,4} and all
job types, see Figure [3] a). The capacity-to-fraction-of-arrival ratios in the S; subsystem are:
{2.2,3.07,8.8,11.1}, and thus £1 = {4}. The second subsystem is formed by S, = {1,2,3} and
job types that are compatible with server 4 can be ignored, that is, Co = {{1,2},{1,3},{2,3}},
see Figure[3|b). The capacity-to-fraction-of-arrival ratios for servers in the Sz subsystem are given
by {2.8,4.4,10}, and thus L5 = {3}. The third subsystem consists of servers S3 = {1, 2} and job
types that are compatible with servers 3 or 4 can be ignored, that is, C3 = {{1,2}}, see Figure
¢). The capacity-to-fraction-of-arrival ratios for servers in the S3 subsystem are given by {4, 8}.
Hence, £3 = {2}. Then, Sy = {1}, but C4 = 0, so that i* = 3.

The value of the highest capacity-to-fraction-of-arrival ratio in the S;-subsystem is denoted by

M3 . .
CAR; :=max{—=———1}, fori=1,... 7"
T ses: D cec,(s) Pe
Note that CAR; = ﬁ’ for any s € L;.
ceC;(s) F¢

In the following proposition we characterize the stability condition for servers in terms of the
capacity-to-fraction-of-arrival ratio corresponding to each subsystem. It states that servers that
have highest capacity-to-fraction-of-arrival ratio in subsystem .5; can be stable if and only if all
servers in Sq, ..., S;_1 are stable as well. The proof can be found in Section[7]

Proposition 1. For a given © < i*, servers s € L; are stable if \ < CARy, foralll = 1,... 1.
Servers s € L; are unstable if there isanl = 1,...,1 such that A > CAR;.



Corollary 2. The redundancy system is stable if A\ < CAR;, foralli =1,...,1*. The redundancy
system is unstable if there exists an v € {1,...,i*} such that \ > CAR,.

We note that CAR;, I = 1,...,14, are not necessarily ordered with respect to . From the
corollary, we hence obtain that the stability region under redundancy is given by

M= min_ CAR;. 4
i=1,...,i*
We now write an equivalent representation of the stability condition (proof see Appendix).
Denote by R(c) the set of servers where type-c jobs achieve maximum capacity-to-fraction-of-
arrival ratio, or in other words, the set of least-loaded servers for type c:

R(c) :={s: i, st. ce Ci(s) and s € L;}.

Note that there is a unique subsystem S; for which this happens, i.e., R(c) C L; for exactly one
7. We note that for a type-c job, if ¢ contains at least a server that was removed in the 7th iteration,
then R(c) C L;. We further let R := U.ccR(c).

Corollary 3. The redundancy system is stable if \) . seR(c) Pe < M forall s € R. The redun-
dancy system is unstable if there exists an s € R such that Xy, seR(c) Pe > Hs-

From the above corollary, we directly observe that the stability condition for the redundancy
system coincides with the stability condition corresponding to K individual servers where each
type-c job is only dispatched to its least-loaded servers.

5.2 Particular redundancy structures

In this subsection we discuss the stability condition for some particular cases of redundancy:
redundancy-d and nested systems.

Redundancy-d

We focus here on the redundancy-d structure (defined in Section [3)) with homogeneous arrivals,

ie. p. = ﬁ for all ¢ € C.

d
In case the servers capacities are homogeneous, y;, = p for all k£, the model fits in the setting

of [3] where it was proved to be stable if A\d < puK. This would also follow from Corollary
Since arrivals are homogeneous, the arrival rate to each server is Ad/K, thus the capacity-to-
fraction-of-arrival ratio at every server is ©//d. This implies that £, = S, i* = 1 and R(c) = ¢
for all ¢ € C. From Corollary 2] we obtain that the system is stable if \d < pK.

For heterogeneous servers capacities, which was not studied in [3]], we have the following:

Corollary 4. Under redundancy-d with homogeneous arrivals and py < ... < pg, the system is
1—1

stable if foralli = d, ..., K, A (5;3) < ;. The system is unstable if there exists i € {d, ..., K}
. d

(a 1)

K

()

In the homogeneous case, it is easy to deduce that the stability condition, Ad < uK, decreases

as d increases. However, in the heterogeneous case, both the numerator and denominator are non-

monotone functions of d, and as a consequence it is not straightforward how the stability condition
depends on d. This dependence on d will be numerically studied in Section

such that A > ;.
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Nested systems

In this section we consider two nested redundancy systems.

5.2.1 N-model

The simplest nested model is the N-model. This is a K = 2 server system with capacities fi =
{1, po} and types C = {{2},{1,2}}, see Figure[l] (b). A job is of type {2} with probability p
and of type {1, 2} with probability 1 — p. The stability condition is A < A’ where:

H2, 0 S p S %
+
R _
AT =9 /(1 -p), (%) <p< B
p2/p, aEn <p<l

The above is obtained as follows: The capacity-to-fraction-of-arrival ratio of the system is 1 /(1—
p) and pa, respectively for server 1 and server 2. First assume p1/(1 — p) > po. Then £ = {1}
and the second subsystem is composed of server So = {2} and Co» = {{2}}, with arrival rate
Ap to server 2. Hence the capacity-to-fraction-of-arrival ratio of server 2 in the Ss-subsystem is
pa/p. From Corollary [2| it follows that A® = min{u; /(1 — p), u2/p}. On the other hand, if
p1/(1 —p) < pg, then £ = {2}, and Sy = {1}, but Co = (. Thus, \¥ = puy. Lastly, if
p1/(1 —p) = pa, £1 = {1,2}, thus Sy = () and Co = (. Hence, A\ = ps.

We observe that the stability condition A\, is a continuous function reaching the maximum
value A = pq + po at p = po /(1 + po). It thus follows that for p = pio /(1 + p12), redundancy
achieves the maximum stability condition. We note however that in this paper our focus is not on
finding the best redundancy probabilities, but instead whether given the probabilities p. —which
are determined by the characteristics of the job types and matchings — the system can benefit from
redundancy.

5.2.2 W-model

The W-model is a K = 2 server system with capacities i = {p1, po} and types C = {{1}, {2}, {1,2}},
see Figure|l|c). A job is of type {1} with probability p¢;y, type {2} with probability poy and of
type {1, 2} with probability p; o1. W.l.o.g., assume (1 — pyay)/p1 > (1 — pg1y)/pa, that is, the
load on server 1 is larger than or equal to that on server 2. The stability condition is then given by:

\E p2/(L=pay), ppy < 285
11/Pi1ys Py 2 it

if (1 = pgay)/pm > (1 = pg1y)/pa. And,

M=o /(1= pp1y)

if (1 — pgay)/p1 = (1 — pg1y)/pe. Similar to the N-model, the above can be obtained from
Corollary When pgiy = p1/(p1 + p2), maximum stability M = 111 + po is obtained.

6 When does redundancy improve stability

In this section, we compare the stability condition of the general redundancy system to that of the
Bernoulli routing. Each job type has its own compatible servers, denoted by c. Hence, given the
compatible servers and the arrival rates of each type of jobs, we study whether redundancy can
improve the stability condition.
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From Corollary [2| it follows that A = min;—; -+ CAR;. Together with (3]), we obtain the
following sufficient and necessary conditions for redundancy to improve the stability condition.

Corollary 5. The stability condition under redundancy is larger than under Bernoulli routing if
and only if
. s . Ms
o omin {s—} > min{=——-}.
i=1,...,i*,s€L; ZCECi(S) Pe seS ZCEC(S) %

From inspecting the condition of Corollary[5] it is not clear upfront when redundancy would be
better than Bernoulli. In the rest of the section, by applying Corollary|[5|to redundancy-d and nested
models, we will show that when the capacities of the servers are sufficiently heterogeneous, the
stability of redundancy is larger than that of Bernoulli. In addition, numerical computations allow
us to conclude that the degree of heterogeneity needed in the servers in order for redundancy to be
beneficial, decreases in the number of servers, and increases in the number of redundant copies.

6.1 Redundancy-d

In this section, we compare the stability condition of the redundancy-d model with homogeneous
arrivals to that of Bernoulli routing. From (3)), we obtain that

B . Hi .
= —— =K .
A dz-:f%i%{zcec@ pc} i ®

K

From Corollary 4|, we obtain that A = min,—q, . K { (S‘ﬂ) ) ,ul}. The following corollary is
d—1

straightforward.

Corollary 6. Let i1 < ... < pg. The system under redundancy-d and homogeneous arrivals has
a strictly larger stability condition than the system under Bernoulli routing if and only if

Kupp < min (5) 1hi
i=d,... K (;:11) e

The following is straightforward, since (Zl:ll) is increasing in .

Corollary 7. Assume 1 < ... < px and homogeneous arri-vals. The system under redundancy-
d has a larger stability region than the Bernoulli routing if p1d < pg.

Hence, if there exists a redundancy parameter d such that p1d < g, then adding d redundant
copies to the system improves its stability region. In that case, the stability condition of the system
will improve by at least a factor f—dl.

In Table 2] we analyze how the heterogeneity of the server capacities impacts the stability
of the system. We chose i, = p*~1, k = 1,..., K, so that the minimum capacity equals 1.
Hence, for Bernoulli, \® = K. Under redundancy we have the following: For ;1 = 1 the system
is a redundancy-d system with homogeneous arrivals and server capacities, so that A\ = K/d,
[3]. Thus, A® < AP in that case. For i > 1, that is, heterogeneous servers, we can apply
Corollary [2in order to find A%, that is, use Equation (#). More precisely, we create recursively
the ¢* subsystems, calculate C AR; for each ¢ = 1,... 4", so that AR = min;—;__;+ CAR;. We
denote by u* the value of 1 for which the stability region of the redundant system coincides with
that of Bernoulli routing, i.e., the value of y such that \® = \B. For ;1 < p* (the area on the
left-hand-side of the thick line in Table[2)), Bernoulli has a larger stability region, while for 1o > y*
(the area on the right-hand-side of the thick line in in Table 2, redundancy outperforms Bernoulli.
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First, we observe that, for a fixed d, p* decreases as K increases, and is always less than
u = 2. Therefore, as the number of servers increases, the level of heterogeneity that is needed
in the servers in order to improve the stability under redundancy decreases. Second, for fixed K,
we also observe that p* increases as d increases. This means that as the number of redundant
copies d increases, the server capacities need to be more heterogeneous in order to improve the
stability region under redundancy. Finally, focusing on the numbers in bold, we observe that when
the number of servers K is large enough and the servers are heterogeneous enough (large (), the
stability region increases in the number of redundant copies d.

Table 2: The maximum arrival rates A® and A” in a redundancy-d system with homogeneous

arrivals and capacities pj, = 1.

p=1{p=12[p=14[p=2]p =3[ u~

K =3 [Red-2] 15 2.16 294 6 9 (141
BR 3 3 3 3 3

K =4 |Red-2| 2 3.45 5.48 12 I8 T1.26
BR 4 4 4 4 4

K =5 |Red-2| 25 5.18 9.14 20 30 TI.I9
BR 5 5 5 5 5

K =10[|Red-2| 5 2239 | 41.16 | 90 [ 135 [I1.08
BR 10 10 10 10 10

K =4TRed-3] 1.33 T 2.30 3.65 [10.66] 36 [I.44
BR 4 4 4 4 4

K =5 |Red-3| 1.66 | 3.45 6.40 [26.66] 90 [I.31
BR 5 5 5 5 5

K =10|Red-3] 3.33 | 17.19 [ 60.23 | 320 [ 1080 [1.13
BR 10 10 10 10 10

In Table (3] we consider linearly increasing capacities on the interval [1, M], that is p; =
1+ % (k—1),fork =1,..., K. Inthe area on the right-hand-side of the thick line, redundancy
outperforms Bernoulli. For this specific system, the following corollary is straightforward.

Corollary 8. Under a redundancy-d system with homogeneous arrivals and capacities i, =
14 %(k — 1), fork = 1,..., K, the redundancy system has stability condition: \* = %,
for d > 1, while \® = K. Hence, the redundancy system outperforms the stability condition of

the Bernoulli routing if and only if M > d.

Simple qualitative rules can be deduced. If M > d, redundancy is a factor M /d better than
Bernoulli. Hence, increasing M, that is, the heterogeneity among the servers, is significantly
beneficial for the redundancy system. However, the stability condition of the redundancy system
degrades as the number of copies d increases.

6.2 Nested systems
6.2.1 N-model

The stability condition of the /N-model with Bernoulli routing is given by the following expression:

Qmin{:ula:HQ}a itp=0

_ +
A= 2m/(-p),  if0<p< ()
2n/(Lp), i (M) <p<i.

The above set of conditions is obtained from the fact that under Bernoulli routing, A\ = min{2u /(1—
p),p2/(p+ 3(1 — p))}. Note that AP is a continuous function with a maximum pq + po at the

point p = ﬁj;ﬁ; Now, comparing A? to A® as obtained in Section leads to the following:
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Table 3: The maximum arrival rates A and A? in a redundancy-d system with homogeneous
arrivals and capacities pg = 1 + %(k —1).

M=1]M=2[M=3M=4]M =6
K =3 [Red-2| 15 3 73 6 9
BR | 3 3 3 3 3
K =1 [Red-2| 2 7 6 8 1Y)
BR | 4 4 4 4 4
K =5 [Red-2| 25 3 75 10 15
BR | 5 5 5 5 5
K =10|Red-2| 5 T0 3 20 30
BR | 10 10 10 10 10
K =4 [Red3] 133 | 2.66 7 333 3
BR | 4 4 4 4 4
K =5 [Red-3] 1.66 | 333 5 666 | 10
BR | 5 5 5 5 5
K =10[Red3[ 333 [ 666 | 10 | 1333 20
BR | 10 10 10 10 10

Corollary 9. Under an N-model, the stability condition under redundancy is larger than under

+
Bernoulli routing under the following conditions: If s < pq, then p € ((2“2_“1> ). If

2p2+p
H2—2p1 \+ 2p2—p
p2 > iy, then p € (0, (B25)T) U (G520, 1),

From the above we conclude that if p; is larger than 2u5, then redundancy is always better
than Bernoulli, independent of the arrival rates of job types. For the case us > p1, we observe
that for uo large enough, redundancy will outperform Bernoulli.

6.2.2 TV-based nested systems

We consider the following structure of nested systems: W (see Figure|l|c) ), WW (Figure|l|d))
and WWWW. The latter is a K = 8 server system that is composed of 2 WW models and an
additional job type ¢ = {1,...,8} for which all servers are compatible. For all three models, we
assume that a job is with probability p. = 1/|C| of type c.

In Table 4, we analyze how heterogeneity in the server capacities impacts the stability. First
of all, note that \® = K. For redundancy, the value of A\¥ is given by (@), which depends on the
server capacities. In the table, we present these values for different values of the server capacities.
In the upper part of the table, we let p, = p*~! for k = 1,..., K. We denote by ;* the value of
p for which A = AB. We observe that as the number of servers duplicate, the 11* decreases, and
is always smaller than 1.5. So that, as the number of servers increases, the level of heterogeneity
that is needed in order for redundancy to outperform Bernoulli decreases too.

In the second part of the table we assume i = 1+ %(k‘ —1)fork=1,..., K. We observe
that when M > K the stability condition under redundancy equals A* = |C|, which is always
larger than A\® = K. However, as the number of servers increases, the maximum capacity of the
servers, M, needs to increase M in order for redundancy to outperform Bernoulli.

7 Proof of Proposition

In this section, we prove that the condition in Proposition [1]is sufficient and necessary for the
respective subsystem to be stable. As we observe in Section ] there are two main issues concern-
ing the evolution of redundancy systems with heterogeneous capacities. First of all, the number
of copies in a particular server decreases, only if a certain subset of servers is already in steady
state. Secondly, for a particular server s € .5, the instantaneous departure of that server might
be larger than us due to copies leaving in servers other than s. This makes the dynamics of the
system complex. In order to prove Proposition |1} we therefore construct upper and lower bounds
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Table 4: The maximum arrival rates A’ and A\? in nested systems.

*

Uk = [ p=1|p=12p=14|{p=2] un
K=2 W-model I.5 1.8 2.10 3 1.33
BR 2 2 2 2
K=1 WW -model 2.33 4.03 490 7 .19
BR 4 4 4 4
K=38 WWWW-model| 3.75 8.64 10.5 I5 .17
BR 8 8 8 8
pe =1+ 2= (k—1) M=1M=2[M=4|M=6/M=38
K=2 W-model 1.5 3 3 3 3
BR 2 2 2 2 2
K=1 W -model 2.33 4.66 7 7 7
BR 4 4 4 4 4
K=38 WWWW-model| 3.75 7.14 10.7T T 1285 I5
BR 8 8 8 8 8

of our system for which the dynamics are easier to characterize. Proving that the upper bound
(lower bound) is stable (unstable) directly implies that the original system is also stable (unstable).
This will be done in Proposition [I2]and Proposition [I3] All proofs of this section can be found in
Appendix B.

Sufficient stability condition

We define the Upper Bound (U B) system as follows. Upon arrival, each job is with probability p.
of type c and sends identical copies to all servers s € c. In the UB system, a type-c job departs
the system only when all copies in the set of servers R (c) are fully served. We recall that the
set R(c) denotes the set of servers where a type-c job achieves maximum capacity-to-fraction-of-
arrivals ratio. When this happens, the remaining copies that are still in service (necessarily not in
a server in R(c)) are immediately removed from the system. We denote by NY2(t) the number
of type-c jobs present in the UB system at time ¢.

We note that the UB system is closely related to the one in which copies of type-c jobs are only
sent to servers in R(c). However, the latter system is of no use for our purposes as it is neither an
upper bound nor a lower bound of the original system.

We can now show the first implication of Proposition [I] that is, we prove that A\ < C ARy,
foralll = 1,...,4, implies stability of the servers in the set £;. We do this by analyzing the UB
system for which stability of the servers £; follows intuitively as follows: Given a server s € £
and any type ¢ € C(s), it holds that R(c) C £;(c). Hence, a server in £ will need to fully serve
all arriving copies. Therefore each server s, with s € L1, behaves as an M/G/1 PS queue, which
is stable if and only if its arrival rate of copies, A > ceCy(s) Per is strictly smaller than its departure
rate, (5. Assume now that forall [ = 1,...,7 — 1 the subsystems .5; are stable and we want to
show that servers in £; are stable as well. First of all, note that in the fluid limit, all types c that do
not exist in the S;-subsystem, i.e., ¢ ¢ C;(s), will after a finite amount of time equal (and remain)
zero, since they are stable. For the remaining types c that have copies in server s € L;, i.e., s € ¢
with s € £;, it will hold that their servers with maximum capacity-to-fraction-of-arrivals ratio are
R(c) C L;. Due to the characteristics of the upper-bound system, all copies sent to these servers
will need to be served. Hence, a server s € L£; behaves in the fluid limit as an M/G/1 PS queue
with arrival rate A ) | ceCi(s) Pe and departure rate ps. In particular, such a queue is stable if and

only if A Eceoi(s) De < fs-

Proposition 10. For i < i*, the set of servers s € L; in the UB system is stable if A\ <
CARy, foralll=1,...,1.

In the following, we prove that U B provides an upper bound on the original system. To do
so, we show that every job departs earlier in the original system than in the U B system. In the
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statement, we assume that in case a job has already departed in the original system, but not in
the UB system, then its attained service in all its servers in the original system is set equal to its
service requirement b.;.

Proposition 11. Assume N.(0) = NYB(0) and a.j5(0) = agf(O),for all ¢, j, s. Then, N.(t) <
NYB(t) and a.;s(t) > achf(t), forallc,j,sandt > 0.

Together with Proposition[I0] we obtain the following result for the original system.
Proposition 12. For a given i < i*, servers s € L; are stable if \ < CARy, foralll =1,... 1.

Remark 3. In [3]], the authors show that for the redundancy-d system with homogeneous arrivals
and server capacities, the system where all the copies need to be served is an upper bound. We
note that this upper bound coincides with our upper bound (in that case £; = S). Nevertheless,
the proof approach is different. In [3], see also [28], the proof followed directly, as each server
in the upper bound system behaved as an M/G/1 PS queue. In the heterogeneous server setting
studied here, the latter is no longer true. Instead, it does apply recursively when considering the
fluid regime: In order to see a server as a PS queue in the fluid regime, one first needs to argue that
the types that have copies in higher capacity-to-fraction-of-arrivals servers are 0 at a fluid scale.

Remark 4. We note that the light-tail assumption on the service time distribution, see Section[3] is
an assumption needed in order to prove Lemma|[I8](see Appendix B for more details).

Necessary stability condition

In this section we prove the necessary stability condition of Proposition|I| Let us first define
t:=min{l=1,...,i" : A\ > CAR;}.

We note that for any ¢ < ¢, A < CAR;. Hence, the servers in £;, with i < . are stable, see
Proposition [I0] We are left to prove that the servers in .S, cannot be stable. In order to do so, we
construct a lower-bound system.

In the S, subsystem, the capacity-to-fraction-of-arrivals ratios are such that for all s € S,,
ws/ (O c€C,(5) pe) < CAR,. We will construct a lower bound (LB) system in which the resulting
capacity-to-fraction-of-arrivals ratio is C AR, for all servers s € S,. We use the superscript LB in
the notation to refer to this system, which is defined as follows. First of all, we only want to focus
on the S, system, hence, we set the arrival rate pZ” = 0 for types ¢ € C\C,, whereas the arrival
rate for types ¢ € C, remain unchanged, i.e., p“® = p.. The capacity of servers s € S, in the
LB-system is set to

WP = s O _ > pe),

ZCECL(g) Pe c€C.(s)

where § € £,. Additionally, in the LB-system, we assume that each copy of a type-c job receives
the same amount of capacity, which is equal to the highest value of ul?/MLB(t), s € c. We
therefore define the service rate for a job of type c by

LB/ LB MLB
LB (2B (1) =mx{M%)} ©)

where ¢ € C, (instead of ¢s(-) for a copy in server s in the original system). The cumulative
amount of capacity that a type-c job receives is

t
0B (0, 4) = / LB (NEB(2))dz, for ¢ € C,.
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Proposition 13. In the LB-system, the set of servers s € S, is unstable if \ > CAR,.
We now prove that LB is a lower bound for the original system.

Proposition 14. Assume N.(0) = NFB(0), for all c. Then, N(t) >g NEB(t), for all c € C and
t>0.

Combining Proposition [I3]with Proposition[T4] we obtain the following result for the original
system.

Proposition 15. Servers s € S; are unstable if there isanl = 1,...,i such that A > CAR,.

Remark 5. In the special case of redundancy-d with homogeneous arrivals and server capacities,
[3] used a lower bound that consisted in modifying the service rate obtained per job type, as in (6).
This lower bound coincides with our lower bound, since with homogeneous arrivals and servers
it holds that u%? = p, = p. The difficulty when studying heterogeneous servers in a general
redundancy structure, as we do in this paper, lies in the fact that the load received in each server
is different. In order to show that the fluid limit of the server with the minimum number of copies
is increasing (in the lower bound), we need to adequately modify the server capacities in order to
make sure that the capacity-to-fraction-of-arrival rates in each of the servers is equal.

8 Numerical analysis

We have implemented a simulator in order to assess the impact of redundancy. In particular, we
evaluate the following:

» For PS servers, we numerically compare the performance of redundancy with Bernoulli
routing (in Section 6 this was done analytically for the stability conditions).

* We compare redundancy to the Join the Shortest Queue (JSQ) policy according to which
each job is dispatched to the compatible server that has the least number of jobs (ties are
broken at random). In a recent paper, [7], it was shown that JSQ — with exponential ser-
vice time distributions — combined with size-unaware scheduling disciplines such as FCFS,
ROS or PS, is maximum stable, i.e., if there exists a static dispatching policy that achieves
stability, so will JSQ.

* We compare the performance between PS, FCFS and Random Order of Service (ROS),
when the service time distribution is exponential and bounded Pareto.

Our simulations consider a large number of busy periods (10°%), so that the variance and confidence
intervals of the mean number of jobs in the system are sufficiently small.

Exponential service time distributions: In Figure ] we consider the 7¥/-model with expo-
nential service time distributions. We set pyyy = 0.35 and py9y +py1 2y = 0.65, and vary the value
of py1,23. We consider either i = (1,2) or ji = (2,1), The only redundant job type is {1, 2}, thus
as py1 2} increases, we can observe how increasing the fraction of redundant jobs affects the per-
formance. We also note that when py; 5) increases, the load in server 1 increases as well, whereas
the load in server 2 stays constant. In Figure [ a) and b) we depict the mean number of jobs under
redundancy, Bernoulli routing and JSQ when the server policy is PS. In Figure 4| c) we plot A%,
AP and A/ using the analysis of Section 5.2.2. and [7]], respectively.

We observe from Figure 4] a) and b) that when i = (1,2), redundancy performs better than
Bernoulli routing. This difference becomes larger as py oy increases. This is due to the fact that the
redundancy policy does better in exploiting the larger capacity of server 2 than Bernoulli, which
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becomes more important as py; 9y increases. In addition, we note that for redundancy, Bernoulli
and JSQ, the mean number of jobs increases as py; gy increases. The reason for this is that as
P{1,2) increases, the load on server 1 increases. Since server 1 is the slow server, this increases the
mean number of jobs.

In the opposite case, i.e., ji = (2,1), the mean number of jobs is non-increasing in py; 9y.
This is because as py; 2) increases, the load on server 1 increases. Since server 1 is now the fast
server, this has a positive effect on the performance (decreasing mean number of jobs). However,
as py1,2) gets larger, the additional load (created by the copies) makes that the performance can be
negatively impacted. This happens for A = 2, where the mean number of jobs under redundancy is
a U-shape function. We furthermore observe that in the ji = (2, 1) case, redundancy outperforms
Bernoulli for any value of py; 9y when A = 1.5. However, when A = 2, Bernoulli outperforms
redundancy when pyy 9y > 0.49. This is due to the additional load, generated under redundancy,
that becomes more pronounced as py; 2y becomes larger.

We also observe in Figure {4} that under both ji = (1,2) and i = (2,1), JSQ outperforms
redundancy. For small values of p(; 9y the difference is rather small, however it becomes larger as
P{1,2) increases due to the additional load that redundancy creates. However that this improvement
does not come for free, as JSQ requires precise information of the queue lengths at all times.

In Figure [ ¢), we observe that redundancy consistently has a larger stability region than
Bernoulli in the /i = (1,2) case and for py; 9y € [0,0.5) in the i = (2,1) case. We let N
be the value of \ such that JSQ is stable if A\ < A\’ and unstable if A > \7. Using [7]],

2 = max min .
Pes>0.3 Pes=pc 5 D DPes
We observe that the stability condition under redundancy coincides on a large region with that
of JSQ, which, in view of the results of [7], implies that redundancy is in that region maximum
stable.

In Figure [5 we simulate the performance of the W model for different values of po, while
keeping fixed p'= (pf1}, P2}, P{1,2y) and 1 = 1. In Figurea) we plot the mean number of jobs
and we see that for both configurations of p, the performance of the redundancy with PS, Bernoulli
and JSQ improve as 9 increases. The gap between redundancy and Bernoulli is significant in both
cases. The reason can be deduced from Figure b), where we plot AE B and A/, with respect
to f12. We observe in Figure [5]a) that redundancy and JSQ converge to the same performance as
o grows large. Intuitively, we can explain this by observing that for very large values of i, with
both redundancy and JSQ, all jobs of type py; 2} get served in server 2. We observe in Figure |§] b)
that the stability conditions with redundancy and JSQ are very similar.

Mean number of jobs
Mean number of jobs

Figure 4: W-model with pg1y = 0.35, proy = 1 —py1} — py1,2)- @) and b) depict the mean number
of jobs under redundancy with PS (o), Bernoulli routing ([J) and JSQ (x) for A = 1.5 and A\ = 2.
¢) depicts the stability regions A%, A\Z and A7.
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General service time distributions: In Figure [6|a) we investigate the performance of redun-
dancy with PS for several non-exponential distributions. In particular, we consider the following
distributions for the service times: deterministic, hyperexponential, and bounded Pareto. With the
hyperexponential distribution, job sizes are exponentially distributed with parameter 11 (u2) with
probability g (1 — ¢q). For Pareto the density function is %, for k < x < §. We choose the
parameters so that the mean service time equals 1. Namely for the hyperexponential distribution
parameters are ¢ = 0.2, u; = 0.4 and py = 1.6, and for the bounded Pareto distribution are
a =0.5,¢ =6and k = 1/G. In Figure E] a), we plot the mean number of jobs as a function
of A for the N, W, WW, and redundancy-2 (K = 5), and redundancy-4 (K = 5) models. The
respective parameters p are chosen such that the system is stable for the simulated arrival rates.
We observe that for the five systems, performance seems to be nearly insensitive to the service
time distribution, beyond its mean value.

Markov-modulated capacities: In Figure [6]b) we consider a variation of our model where
servers’ capacities fluctuate over time. More precisely, we assume that each server has an ex-
ponential clock, with mean e. Every time the clock rings, the server samples a new value for S
from Dolly(1,12), see Table |S|and sets its capacity equal to 1/S. The Dolly(1,12) distribution is a
12-valued discrete distribution that was empirically obtained by analyzing traces in Facebook and
Microsoft clusters, see [1}[12].

In Figure[6]b) we plot the mean number of jobs for a K = 5 server system with redundancy-
2 and redundancy-4, and for the W-model under redundancy, and we compare it with Bernoulli
routing. Arrival rates are equal for all classes. It can be seen that with Bernoulli routing, both
redundancy-2 and redundancy-4 become equivalent systems, and hence their respective curves
overlap. The general observation is that in this setting with identical servers, Bernoulli routing
performs better than redundancy. Further research is needed to understand whether with heteroge-
neous Markov-modulated servers, redundancy can be beneficial.

Table 5: The Dolly(1,12) empirical distribution for the slowdown [[1]]. The capacity is set to 1/.S.

S 1 2 3 4 5 6 7 8 9 10 11 12
Prob [ 0.23]0.14]0.09|0.03]0.08 | 0.10 | 0.04 | 0.14 [ 0.12 | 0.021 | 0.007 | 0.002

FCFS and ROS scheduling discipline: The stability condition under FCFS or ROS and
identical copies is not known. An exception is the redundancy-d model with homogeneous arrivals
and server capacities for which [3]] characterizes the stability condition under ROS, FCFS and PS.
There it was shown that ROS is maximum stable, i.e., the stability condition is A < pK, and that
under FCFS the stability condition is A < Zj, where ¢ is the mean number of jobs in service in a

b~ === === B-—————8-—————B-———

2 iy,
— 5= (0.5,0.25,0.25), A = L.
- 5= (0.35,0.3,0.35), A\ = 1.5

a) b)

Figure 5: W-model with fixed parameters p'and ;11 = 1: a) depicts the mean number of jobs under
redundancy (o), Bernoulli routing ([J) and JSQ (), and b) depicts the stability regions AR \B
and \”7.
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Figure 6: Mean number of jobs in the system with respect to A: a) Non-exponential service times
and models N, W, WW, and redundancy-2 (K = 5), and redundancy-4 (K = 5) models.
We chose ji = (1,2) for the N and W model, i = (1,2,4,6) for the WW model, and ji =
(1,2,4,6,8) for redundancy-d. b) Markov modulated server capacities in the W, and redundancy-
2 (K = 5), and redundancy-4 (K = 5) models.

so-called associated saturated system. In addition, it was shown that for this specific setting, the
stability region under PS is smaller than under FCFS and ROS.

In Figure|/|a) and b) we consider a W-model and compare the performance for the different
policies PS, FCFS and ROS. We take exponentially distributed service times. We plot the mean
number of jobs with respect to p¢q oy, with pg1y = 0.35and pyoy = 1—pg13 —pr1,23- In Figurea)
we set A = 1, and in Figure[7]b) we set A = 2. The stability condition under PS is given in Figure[4]
c).

In the case of fi = (1,2), we observe that FCFS always outperforms ROS. Intuitively we
can explain this as follows. Since pyyy is kept fixed, as py; 9} increases, the load in server 1
increases. With FCFS, it is more likely that both servers work on the same copy, and hence that
the fast server 2 “helps” the slow server 1 (with high load). With ROS however, both servers tend
to work on different copies, and the loaded slow server 1 will take a long time serving copies
that could have been served faster in the fast server 2. On the other hand, with i = (2,1) and
sufficiently large py; 21, ROS outperforms FCFS. In this case, the loaded server 1 is the fast server,
and hence having both servers working on the same copy becomes ineffecient, which explains that
the performance under ROS becomes better. As a rule of thumb, it seems that for a redundancy
model, if slow servers are highly loaded, then FCFS is preferable, but if fast servers are highly
loaded, then ROS is preferable.

From Figures [7| a) and b) we further observe that for all values of p(; oy, FCFS and ROS
outperform PS, and that the gap increases when ) increases. In Figure[7|c) we consider exponential
and bounded Pareto (with a = 0.5 and ¢ = 15) service time distributions and plot the mean
number of jobs for different values of o, when A = 1.5, = (0.35,0.4,0.25) and p; = 2. As
before, with exponentially distributed service times, FCFS and ROS slightly outperform PS. In the
case where jobs have bounded Pareto distributed service times, PS outperforms both FCES and
ROS. This seems to indicate that as the variability of the service time distribution increases, PS
might become a preferable choice over FCFS and ROS in redundancy systems. Additionally, under
PS we observe that the mean number of jobs is nearly insensitive to the service time distribution.

The main insight we obtain from Figure [7|is that the stability and performance of heteroge-
neous redundancy systems strongly depends on the employed service policy in the servers. We
leave the stability analysis of other scheduling policies (such as FCES or ROS) for future work as
they require a different proof approach.
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Figure 7: Mean number of jobs with redundancy combined with PS, FCFS, and ROS. a) and b) for
the W model with respect to py; 2y and exponentially distributed service times, with p;;y = 0.35
and proy = 1 — pr1y — pyi2)- @ A =1, b) A = 2. ¢) For the W model under exponentially and
bounded Pareto (o« = 0.5, ¢ = 15) distributed service times, and with respect to o, for A = 1.5,
P =(0.35,0.4,0.25) and p; = 2.

9 Conclusion

With exponentially distributed jobs, and i.i.d. copies, it has been shown that redundancy does not
reduce the stability region of a system, and that it improves the performance. This happens in spite
of the fact that redundancy necessarily implies a waste of computation resources in servers that
work on copies that are canceled before being fully served. The modeling assumptions play thus a
crucial role, and as argued in several papers, e.g. [12]], the i.i.d. assumption might lead to insights
that are qualitatively wrong.

In the present work, we consider the more realistic situation in which copies are identical, and
the service times are generally distributed. We have shown that redundancy can help improve the
performance in case the servers capacities are sufficiently heterogeneous. To the best of our knowl-
edge, this is the first positive result on redundancy with identical copies, and it illustrates that the
negative result proven in [3] critically depends on the fact that the capacities were homogeneous.

We thus believe that our work opens the avenue for further research to understand when re-
dundancy is beneficial in other settings. For instance, it would be interesting to investigate what
happens in case servers implement other scheduling policies. It is also important to consider other
cross-correlation structures for the copies, in particular the S& X model recently proposed in the
literature. Another interesting situation is when the capacities of the servers fluctuate over time.
Other possible extension is to consider the cancel-on-start variant of redundancy, in which as soon
as one copy enters service, all the others are removed. For conciseness purposes, in this paper we
have restricted ourselves to what we considered one of the most basic, yet interesting and relevant
setting.
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Proof of Corollary 3|
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Let us consider s € R. Let i be such that s € £;, which is unique since {£;}!_, is a partition
of R. We will show that for this s and ¢, it holds that CAR; = % Hence, together with

. c:seR(c) Pe
Corollary [2] this concludes the result.

First, note that CAR; = Z"is()p. Hence, we need to prove that cheR(c) Pe =D cec, (s) Pe>
ceC;(s) Fe . g

or equivalently, {c : s € R(c)} = Ci(s).

For any ¢ € C(s), R(c) = L;(c) with [ < i. We note that C;(s) = C(s)\{c € C(s) : R(c) =
L;(c) with [ < i}. Therefore, for s € £;,Ci(s) ={c€C :s€c,ce i, se€ Li(c)} ={ce
C :s € R(c)}. The last equality holds by definition of R(c). O

Proof of Corollary (4}
The stability condition of such a system is given by Corollary 2] We note that each server

s € S receives C(s) = (5:11) different job types, that is, by fixing a copy in server s, all possible
K

combinations of d — 1 servers out of KX — 1. Thus, £ = arg maxsesl{(,(gﬂ)l),us} =K, Sy =
d—1

K-1
S — {K} and condition A (E‘gi) < pK.
d
We note each server s € S; receives ('%‘:11) different job types, fori = 1,...,7* and thus, the
maximum capacity-to-fraction-of-arrivals ratio in the subsystem with servers S;, only depends on
the capacities of servers in S, that is £; = arg maxgeg, {45 }. Additionally since, 11 < ... < pr,

one obtains that £L;, = K — ¢+ 1, forv = 1,..., K — d + 1. The associated conditions are
K—i+1
)\( it ) < pr—iy1 fori = 1,..., K — i+ 1. This set of conditions is equivalent to that in
d
Corollary [ O

B Proofs of Section

We first introduce some notation: We denote by E.(t) = max{j : U, < t} the number of
type-c jobs that arrived during the time interval (0,¢) and by U,; the instant of time at which the
Jjth type-c job arrived to the system. We recall that b.; denotes its service realization. We denote
by b’ the residual job size of the mth eldest type-c job in server s that is already in service at
time 0.

Sufficient stability condition

Proof of Proposition 10|

We now prove the stability of the UB system. For that, we first describe the dynamics of the
number of type-c jobs in the UB system, denoted by NY 5 (t). We recall that a type-c job departs
only when all the copies in the set of servers R(c) are completely served. We let nmé") (v,t) =
minger () {ns(v,t)} be the minimum cumulative amount of capacity received by a copy in one of
its servers R(c) during the interval (v, t). Therefore,

NP (0) c(t)

E
NYB(1) = 1 ({33 € R() : Vs > ns(0,8)}) + Y 1 (bcj > n;”g’g(ch,t)) .
J

m=1 =1

We denote the number of type-c copies in server s by M, ;{? (t). We note that for a type-c job
in server s there are two possibilities:

* if s € R(c), the copy of the type-c job leaves the server as soon as it is completely served.
The cumulative amount of capacity that the copy receives during (v, t) is ns(v, t).
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» If s ¢ R(c), the copy of the type-c job in server s leaves the system either if it is completely
served or if all copies of this type-c job in the servers R(c) are served. We note that for any
5€R(c),5€ Ly, withl < i.

Hence, the number of type-c jobs in server s € L; is given by the following expression. If
s € R(c),

MIE(0) Ee(t)
Ms[{cB(t) = Z (b/cms > ns(oat)) + 1 (bcj > ﬁs(ch,t))
m=1 j=1
and if s ¢ R(c),
MZE(0)
MP(t) = 1({35 € R(¢) © Byns > 0s(0,8)} NbLg > s(0,1))
m=1

+ 1 bcg > UR(C),S(UCj7t)) ’

min

where 7z () s (v, t) = max{ny R(c )(v, t),ns(v,t)}. The first terms in both equations correspond to
the type-c jobs that where already in the system by time ¢ = 0, the second terms correspond to the
type-c jobs that arrived during the time interval (0, ¢).

In the following we obtain the number of copies per server. Before doing so, we need to
introduce some additional notation. Let D(s) = {c € C(s) : R(c) C Li(c)} be the set of types
in server s for which the set of servers where these types receive maximum capacity-to-fraction-
of-arrivals ratio is R(c) C L;(c). If s € L;, then, by definition, D'(s) # () if | < iand {D'(s)}i_,
forms a partition of C(s). Furthermore, D*(s) = C;(s), for all s € L;. Therefore, for a server
s € L;, the number of copies in the server is given by the following expression:

MUB Z MUB Z Z MUB Z MUB

ceC(s) =1 ceDl(s) ceCi(s)

The first term of the RHS of the equation corresponds to the type-c jobs in server s that have
R(c) € Li(c). The second term of the RHS corresponds to type-c jobs in server s that have
R(c) C Li(c). Parti-cularly, we note that in the UB system, M7 (t) < 3 () NP (2), since
copies might have left, while the job is still present.

In order to prove the stability condition, we investigate the fluid-scaled system. The fluid-
scaling consists in studying the rescaled sequence of systems indexed by parameter r. For r > 0,
denote by MCU D7 (t) the system where the initial state satisfies M, JB(0) =rmYB(0), forallc e C

and s € S. We define,
Mch(rt) MSUB(rt)

UB
MEE (1) = -

, and MYBT(t) =

In the following, we give the characterization of the fluid model.

Definition 2. Non-negative continuous functions mY )

the functional equations

= 5 [0 0 G mn00) ([ 1P Gime0) )]

are a fluid model solution if they satisfy

=1 ceDl(s)
+ [m - G0.0) + e [ (= Flate.0)s]. )
ceCi( r=
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fors € Liandi=1,...,i* where G(-) is the distribution of the remaining service requirements,
F(-) the service time distribution of arriving jobs, and

(0, 1) = / | 0B () do,

=min t — B t
7773(0)(’” ) = sg;g(lc){n (v, 1)},

TR (e),s (0, 1) = max{E(% (v, 1), 75 (v, 1) }.
The existence and convergence of the fluid limit to the fluid model can now be proved.

Proposition 16. The limit point of any convergent subsequence of (MUB7 (t);t > 0) is almost
surely a solution of the fluid model (7).

Proof of Proposition[I6] The proof is identical to the the proof of Theorem 5.2.1 in [10] (which
is itself based on Lemma 5 in [13]]). We only need to ensure that nmzn)(v, t) and g c),s(v, 1) are
decreasing in v and continuous on v € [1)s(t) + ¢, t], where ¥4(t) = sup(v € [0,¢] : ms(u) = 0).

Let us verify that 777"{%”) (v,t) and 7z s(v,t) are decreasing and continuous on v. We note
that the function 7,(-,¢) that gives the cumulative service that a copy in server s received during
time interval (-,¢), is a Lipschitz continuous function, increasing for ¢ < 7, and non decreasing
for t > 75, where 7, = inf{t > 0 : M(t) = 0}.

If nmz”)(v t) = 05, (v,t) and Ng(c),s(v,t) = Ns,(v,t) for all v € [0,) and some 51,52 € S,
then both nmzn) (v,t) and fr(e) s(v,t) are decreasing and continuous on v, since by definition
fjs(v, t) is decreasing and continuous on v for all s € S.

Let us assume that for vy € [0,¢) is such that ﬁ%zn) (v,t) = 7z (v,t) for v < vy and
ngé’g) (va,t) = 7z (vo,t), for some 3',3% € R(c). We first verify that 77%2?) (v,t) is continu-
ous on v = vg. Since, 71 (v, t) and 752 (v, t) are continuous on v = vy, then

lim "777322) (.’E, t) = Nz (’U, t) = Nz2 (Ua t) lim 7772(?) (‘7; t)

T~ =g zt =g

Therefore, we conclude that 77%%2) (x,t) is continuous on v € [0,t). Analogously, one can verify

that 7 ‘mzn) (x,t) is continuous on v € [0, ).
We now verify that 7 ’mzn) (x,t) is decreasing on v € [0,¢). Let us consider 0 < t; < vy <
ty < t. Then for nm(m)(v, t),

77”7215”) (t1,t) = Nz (t1,t) < Mz (ta, t) < Mz2(te,t) = ﬁ%(ig) (ta, 1),

where the first inequality holds since 7j;1 (v, t) is decreasing on v. We conclude that ﬁgén) (v,t) is
decreasing v.
Let us verify that 7jg () s(v,) is decreasing on v. W.l.o.g. we assume that there exists vg €
[0, ), such that g (¢ s(v, ) = 77%%?) (v,t) for v < vg and g (), s(v,t) = 7s(v,t) for t > v > .
Then,
ﬁR(c),s(tlv ) U%En) (tlv t) < ﬁs(tb t) < ﬁs(t27 t) = ﬁR(c),s(t% t)

where the first inequality holds since 731 (v, ) is decreasing on v. We conclude that g (.) s (7, t)
is decreasing v. O

We now give a further characterization of the fluid model (7).
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Proposition 17. Let i < i* and assume A Zcecl(s) Pe < psforalll <i—1ands € L. Then,
there is a time T > 0, such that for t > T and for s € Uf;%ﬁl, mSUB(t) = 0andfors e L;

t

m{P(t) = [msU,cB(O)(l—G(ns(OJ)))+>\pc/ (1= F(7s(x,t))dz |,  (8)

ceCi(s) z=0

Hi(0,1) = / | Gualii(a))ds

and s (m(x)) = m

with

Proof of Proposition[I7 For simplicity in notation, we remove the superscript U B throughout
the proof.
First assume s € £1. Since D° = (), from Equation (7)), we directly obtain

ma) = 3 [meel0) (1 G(i:(0,1))) —}—)\pc/ (1= F(fs(z,1)))da] , V> 0.
ceCi(s) z=0

This expression coincides with the fluid limit of an M /G /1 PS queue with arrival rate
A ceCi(s) Pe and server speed 5. Since A > ) Pe < fhs, We know that there exists a 75 such
that ms(t) = 0, for all t > 7.

The remainder of the proof is by induction. Consider now a server s € £; and assume there
exists a time 7" such that my(t) = 0, forall t > T and s € Ué;llﬁj. Thus, for ¢ > T, also

ms,(t) = 0forall s € Ué-;llﬁj, c€DI(s),j=1,...,1—1. We consider server s € £;. From
its drift is then given by:

ms(t) = i Z ms(t) +
J=1c€Di(s)

= ¥ |- cmon) e [ 0= Foe).
c€Cy(s) =0

CECl

M ()
ceCy(s)

for all ¢ > T. Now note that ¢, (m(t)) = miit) = m(t)), where the

Ms _
ZCEC (s) ms C(t) - ¢S l(
second equality follows from the fact that m, () = 0 for all for all s € Ul 1L, c € DI(s),
j=1,...,1—1

To finish the proof, (8) coincides with the fluid limit of an M /G /1 system with PS, arrival rate
A cec,(s) Pe and server speed fi;. Hence, if I < 4, the standard PS queue is stable, and we are
sure that it equals and remains zero in finite time. a

Below we prove that the U B system is Harris recurrent. Note that the concept of Harris
recurrence is needed here since the state space is obviously not countable, (as we need to keep
track of residual service times). We first establish the fluid stability, that is, the fluid model is 0
in finite time. The latter is useful, as we can use the results of [24]] that establish that under some
suitable conditions, fluid stability implies Harris recurrency, see the lemma below.

Lemma 18. [f the fluid limit is fluid stable, then the stochastic system is Harris recurrent.

Proof of Lemma[I8]In [24], the authors consider bandwidth sharing networks (with processor
sharing policies), and show that under mild conditions, the stability of the fluid model (describing
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the Markov process of the number of per-class customers with their residual job sizes) is sufficient
for stability (positive Harris recurrence).

Our system, though slightly different from theirs satisfies the same assumptions, and as a
consequence their results are directly applicable to our model.

More precisely, given the assumptions on the service time distribution, our model satisfies
the assumptions given in [24, Section 2.2] for inter-arrival times and job-sizes. (In particular
exponential inter-arrival times satisfy the conditions given in [24, Assumption 2.2.2].) O

Equation (8)) coincides with the fluid limit of an M /G /1 PS system with arrival rate
/\Zceci(s) pe and server speed ps. If A < C ARy, or equivalently )\Zceci(s) Pe < s, for all
l=1,...,4, Equation (8) equals zero in finite time. Hence, from Lemma|[I8|we conclude that for
servers s € L;, the associated stochastic number of copies in server s is Harris recurrent, as stated
in the corollary below. O

Proof of Proposition [11]

We assume that both systems are coupled as follows: at time ¢ = 0, both systems start at the
same initial state N.(0) = NYB(0) and a.js(0) = agjf(O) for all ¢, j, s. Arrivals and service
times are also coupled. For simplicity in notation, we assume that when in the original system a
type-c copy reaches its service requirement b, the attained service of its d — 1 additional copies is
fixed to b and the job remains in the system until the copy of that same job in the U B system is
fully served at all servers in R(c).

We prove this result by induction on ¢. It holds at time ¢ = 0. We assume that for v < ¢ it
holds that N.(t) < NYB(t) and a.js(t) > aCUjf(t) for all ¢, j, s. We show that this inequality
holds for ¢ .

We first assume that at time ¢, it holds that N,(t) = NY5B(t) for some ¢ € C. The inequality
is violated only if there is a job for which the copy in the U B system is fully served at all servers
R(c), but none of the copies in the original system is completed. That means, there exist a j such
that a.;s(t) < agj%(c) (t) = b; for all s € c. However, this can not happen, since by hypothesis
acjs(t) > aCUj]f(t) forall s € c.

We now assume that at time ¢, a;s(t) = agjf (t) for some ¢, j, s. There are now two cases. If
this copy (and job) has already left in the original system, then a.;s(t) = acjs(tT) = be;j and hence
acjs(tT) > agjf (t1). If instead the copy has not left in the original system, then by hypothesis it
holds that N,.(t) < NYB(t) and thus, M(t) < MYB(t) and TRGIETEI0]
the copy in the original system has a higher service rate at time ¢ than the same copy in the UB

system. Hence, ac;s(t+) < alZ(t). 0

. That means that

Necessary stability condition

Proof of Proposition [13]
In order to show that the LB system is unstable, we investigate the fluid-scaled system. For
r > 0, denote by NZP7 () the system where the initial state satisfies N2Z(0) = rnl(0), for all
¢ € C. We write for the fluid-scaled number of jobs per type
NELBr (1) = NeP(rt)

r

In the following we give the characterization of the fluid model.
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Definition 3. Non-negative continuous functions n%5 )

the functional equations

are a fluid model solution if they satisfy

nEB(t) =0, ceC\C

C

B (1) = nlB(0) (1 - G (722(0,1))) + Ape ( /

t 1—F (qk8(z,t)) dx > ceC
=0

where G(-) is the distribution of the remaining service requirements of initial jobs, F'(-) the service
time distribution of arriving jobs and

7P (v,t) / OEB (AL (z))dx, with ¢ € C,.

The existence and convergence of the fluid-scaled number of jobs NLB, () to the fluid model
B (t) can be proved as before The statement of Proposmonﬁ 16} indeed directly translates to the
process N L5 ™(t), since n~B (v, t) is both decreasing and continuous in v. Therefore, it is left out.

Next, we characterize the fluid model solution 7725 in terms of m2B(t) = 3 cec(s) ™ nkB(t).
We show that if the initial condition for all servers is such that m%252(0)/utB = a(0) forall s € S,,
then mEB(t)/pukB = a(t) for all s € S,, where a(t) is given below.

Lemma 19. Let us assume that the initial condition is such that ntP(0) = 0 for all ¢ € C\C, and
for ¢ € C,, nEB(0) are such that mEP(0)/utP = a(0) for all s € S,. Let

(1) = a1 = G 0.) + i [ (1= P )de, ©
where kP fx , OEB (a(x))dx, with 952 (a(t)) = ﬁ

Then, nCLB( ) =0forallt > 0andc € C\C, and

Bty kP = at),
forallt > 0ands € S,.

Proof of Lemma[I9 From Definition [3] we obtain that for each server s € S,,

msLB(t) LB
LB = IB Z
ILI/S /’LS CEC( )
LB 0 A . t ~
S [”LLQ (-G @)+ 20 ([ 1-Ftwn)a))|.
ceC.(s) s s r=

We recall that «(t) is defined as

a(t) = a(0) (1 -G (757(0,1))) + CQRL (/:0 1—F (75" (z,1)) da:) :

We let the initial condition be such that ;7(0) = «(0) for all s € S, and we will prove by
contradiction that for all ¢ > 0,
LB
t
m;Lé ) = «(t), foralls € S,.
S
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Let us assume that ¢ is the first time such that there exists § € S, such that a(tg) # mLP (to)/ukP.

Since 3- .cc,(s) "if](go) = mif,__go) = a(0) and 3 cc,(s) B = 1/CAR,, this implies that there

exist ¢ € C and t1, 0 < v < t; < tg such that 7~ (v,tl) + nc B(v,t1). However, since
alt) = mEB()/ukB for all t < to, this implies that ¢.(7i(t)) = 1/a(t) for all t < ty and

ceC(s), and hence 728 (v,t) = nEB (v, t), forall t < t;. We have hence reached a contradiction,
which concludes the proof. O

We note that Equation (9) corresponds to the fluid limit of an M /G/1 system with PS, arrival
rate A\/C AR, and server speed 1. Assuming A > C'AR,, it follows that the fluid limit «(¢), and
hence mLP(t),s € S,, diverges. Now, by using similar arguments as in Dai [8], the fact that the
limit diverges implies that the correspon-ding stochastic process can not be tight, and hence cannot

be stable. O
Proof of Proposition [14]
The number of type-c jobs in the system is given by N2B(t) = 0, for ¢ € C\C,, and for ¢ € C,,
NEB(0) Ee(t)
NP () = L (bems > ncP0,6) + 3 1 (bes > 1" (Uej 1)
m=1 j=1

We note that for all ¢ € C\C, the result is direct since pZ® = 0 for all ¢ € C\C,. Then, let us
consider ¢ € C,. For any N and N'B such that N > N the following inequalities hold:

bWy = P ts(Peec, sy Pe)  (Dcee,(s) Pels/ (Xcec, (s) Pe)
° Ms  (Xeee,(s)P)Ms  Dcecsyeuts) Ne T 2cec,(s) NV

. (Xcec, (s) Petts/ (X cec, (s) Pe) - CAR, x (Zceci(;) Pe) - max{ u%’i}
ZCQCL(S) Ne ZCECL(S) N sce | Mg
_ ¢LB (NLB)'

The second last inequality holds since CAR, > us/ (ZCGCL(S) pe) forall s € S, and N*B < N,
for all ¢ € C,. We note that 3 .. (o NJP = M5 (t). It follows from straight forward sample-
path arguments that N3 (¢) < N, ( ) forallt > 0 and c € C,. ]
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