
Self-managed services using MirageOS unikernels
Al Amjad Tawfiq Isstaif

aati2@cam.ac.uk
University of Cambridge

Abstract
Next generation service-based systems will become increas-

ingly finer-grain, larger-scale with heterogeneous perfor-

mance characteristics. These services will need to be orches-

trated across multiple IT infrastructures with application-

specific auto-scaling capabilities to self-adapt to workload

and environment changes. Today's generic autoscalers fail

to address the adaptation needs of such systems and cur-

rent methods for developing effectively application-aware

autoscalers require substantial efforts and are far from prac-

tical. In this PhD project, I propose that distributed tracing

alongside library operating systems (unikernels) can provide

a cost-effective alternative approach to build self-scaling

services. Such services will embody their own auto-scaling

systems that are both generic and application-aware.

CCSConcepts: •Computer systems organization→Cloud
computing.

Keywords: self-scaling, auto-scaling, elasticity, MirageOS,

unikernels, microservices, distributed tracing, lightweight

virtualization

ACM Reference Format:
Al Amjad Tawfiq Isstaif. 2020. Self-managed services using Mira-

geOS unikernels. In 21st International Middleware Conference Doc-
toral Symposium (Middleware ’20 Doctoral Symposium), December
7–11, 2020, Delft, Netherlands. ACM, New York, NY, USA, 3 pages.

1 Background and motivations
MirageOS [15] is a library operating system that allows net-

work applications to be written using high-level source code

and compiled as single-purpose lightweight virtual machines

that run on commodity hypervisors powering today's cloud

platforms. With minimal memory footprints and fast startup

times, unikernels effectively represent an efficient and se-

cure alternative to release individual services compared to

Middleware ’20 Doctoral Symposium, December 7–11, 2020, Delft, Netherlands 
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8200-7/20/12.

traditional virtual machines. However, the end-to-end man-

agement of a unikernel service-based system remains an

independent problem.

Current practices for developing service-based systems are

resulting in autonomous development teams producing large

number of microservices with heterogeneous performance

characteristics [10]. The increasing adoption of function as

a service (FaaS) and serverless cloud computing is only lead-

ing to a finer-grain sizes of these services with even more

fragmented state. Furthermore, traditional data center and

cloud environments will no longer be the single place where

these services will run. With the emerging IT infrastructures

such as of fog and edge, tomorrow's services will need to be

orchestrated across multiple data centers and consolidated

on resource-constrained machines [14].

These various trends associated with the microservices

approach raise the need for application-specific auto-scaling

and orchestration capabilities so that these services would

be able to self-adapt to workload and environment changes.

Building effective generic autoscalers requires the consid-

eration of the diversities of cloud applications in terms of

their workload characteristics and resource requirements.

Today's generic autoscalers fail to effectively address the

adaptation needs of such systems and current methods for

developing specialized autoscalers require substantial efforts

that are not currently adopted in industry [17]. Therefore,

achieving cost-effective autoscaling and orchestrating for

such service-based systems, in both of traditional and emerg-

ing IT infrastructures, is still considered an open research

area [10, 18, 20].

2 Challenges of autoscaling microservice
systems

Autoscaling systems aim to achieve efficient resource alloca-

tion for cloud applications through on-demand acquisition

and release of resources in response to workload changes.

Rule-based auto scaling is the simplest and most widespread

approach to autoscaling [18], where scaling decisions are

triggered based on certain rules that declare thresholds of

scaling indicators specified by the application provider. In

the context of large-scale service-based systems, manually

setting scaling indicators requires extensive experimenta-

tion and profiling of the application under a representative

workload, which is a very costly process even when consid-

ering a modest degree of freedom in terms of workload and

deployment options [2]. Even when such extensive exper-

imentation is possible, statically-set thresholds for scaling

35

This work is licensed under a Creative Commons Attribution International 4.0 License.

DOI:10.1145/3429351.3431748

https://doi.org/10.1145/3429351.3431748
https://doi.org/10.1145/3429351.3431748
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3429351.3431748&domain=pdf&date_stamp=2020-12-22


Middleware ’20 Doctoral Symposium, December 7–11, 2020, Delft, Netherlands Isstaif

indicators are vulnerable to changes in microservice charac-

teristics due to workload changes or new software releases

[4, 5].

Furthermore, since the process of provisioning cloud re-

sources requires some considerable time (e.g. startup time

of a VM), this raises the need for proactive policies that pre-

dict workload change within a sufficient time frame, so that

scaling decisions could take place before a QoS violation

would occur [3]. This also includes estimating the amount

of resources to be acquired or released when such autoscal-

ing decisions are to be triggered. Runtime performance and

workload models form the basis to develop such proactive

policies. However, developing effective model-based self-

adaptive strategies is a non-trivial task and hardly practical

[17]. Recent survey [18] of the literature of auto-scaling

of cloud applications, is dominant by the suboptimal ap-

proach of considering the scaling requirements of a single

service or application tier, with very little number of works

that consider the problem of effectively autoscaling of the

service-based system as a whole.

3 Research proposal
Building on the successes of distributed tracing in addressing

resource management tasks for cloud applications [12, 19,

21], I propose that unikernels extended with appropriate dis-

tributed tracing capabilities represent a promising building

block to address the challenges of developing and deploying

finer-grain and larger-scale service-based systems that self-

adapt to changes in workload and operation environment.

This unique combination will allow to build auto-scaling

management systems that are both generic and application-

aware as well as embodied within the service system. Such

an approach has the potential to provide a practical and

cost-effective alternative to current approaches for building

effective autoscaling systems [17].

To the best of my knowledge, this proposal is the first

attempt to explore the combination of unikernels with appro-

priate distributed tracing to develop efficient self-scaling mi-

croservices. On one side, distributed tracing can help tackle

the problem of dynamic and real-time detection of resource

bottlenecks across the complex and distributed structure of

microservice-based systems in order to trigger effective scal-

ing decisions that resolve these bottlenecks. On the other

side, with the smaller granularity and the faster startup time

of unikernels, resources can be provisioned reactively just-

in-time [13], based on local service-level decisions, and in

fine grains. This may lead to generic reactive autoscaling

policies that are as effective as proactive policies, avoiding

the need for highly specialized performance and workload

models of the underlying system [3].

A distributed tracing model for reactive scaling: In-
creased waiting time is the essential influence of resource

bottlenecks on service requests [7]. As such, resource wait-

ing times on various software and hardware resources along

the request path will represent the fundamental measure-

ments to be collected. The end-to-end distributed tracing

approach to collect such measurements is essential to trigger

efficient QoS-aware scaling decisions based on request-level

metrics (e.g. latency). Throughout a whole system perspec-

tive, dominant waiting times would be identified and re-

solved through a number of reactive fine-grained resource

increments, and resources would be allocated only when

necessary (e.g. when a QoS guarantee is about to be vio-

lated). Additionally, the request-centered approach would

be useful to avoid unncessary scaling decisions due to artifi-

cial bottlenecks in upstream services caused by overloaded

downstream services [19, 21].

Unikernel-based architecture for self-scaling: In ad-

dition to their strong isolation properties, unikernels can be

positioned as an extreme option in the spectrum of emerg-

ing techniques of lightweight virtualization and kernel mini-

mization [16]. All these options can be effective in various

degrees in the development of efficient reactive instanta-

neous autoscaling policies. Compared to the increasingly

popular container-based service mesh microservice architec-

ture [11] (e.g. Istio), it is possible with unikernels to embed

the functionalities of side-car service proxies as well as self-

management logic alongside application code within the

boundaries of the same VM [9]. This philosophy of minimal-

ism and dedpulication introduces an additional architectural

advantage which has the potential to minimize the man-

agement overhead across the control and data paths of the

service-based system. Such an overhead is becoming increas-

ingly relevant with the multiple control and data planes in

today’s data center networking and next generation software-

defined networks [1].

Conclusion: The overall aim of my research is to de-

velop a qualitative understanding of key parameters and

dynamics contributing to an effective instantaneous reactive

self-scaling microservice architecture. This includes study-

ing the implications of various factors including the speed

of bottleneck detection, VM startup time, resource/service

discovery and load balancing as well as the granularity of

resource allocations and duration of cooling down times. A

self-scaling architecture would be mainly evaluated against

an appropriate elasticity benchmark [6] using a set of refer-

ence applications (such as [8]). I plan to start from Mirage

unikernels as an extreme case of lightweight execution units

and compare to a representative spectrum of deployment

options including VMs, containers, and other approaches to

kernel specialization. Based on such an evaluation frame-

work, I will work to identify use cases where the "extreme"

approach of unikernels might be useful, such as next genera-

tion edge or in-network services [20]. Such use cases would

be distinguished with a highly variant and unpredictable

36



Self-managed services using MirageOS unikernels Middleware ’20 Doctoral Symposium, December 7–11, 2020, Delft, Netherlands

workload in addition to the need for high assurance in appli-

cation functionality and self-management logic.

Acknowledgments
I would first like to thank my supervisor Professor Richard

Mortier of the Systems Research Group at the University of

Cambridge for his guidance and valuable support. I would

also like to thank the anonymous reviewers whose comments

and suggestions helped improve and clarify this manuscript.

This work was funded in part by the BT/Huawei Compute

First Networking project.

References
[1] Antichi, G., and Rétvári, G. Full-stack sdn: The next big challenge?

Proceedings of the Symposium on SDN Research (2020).

[2] Avritzer, A., Ferme, V., Janes, A., Russo, B., Schulz, H., and Hoorn,

A. V. A quantitative approach for the assessment of microservice ar-

chitecture deployment alternatives by automated performance testing.

In ECSA (2018).

[3] Bauer, A., Herbst, N., Spinner, S., Ali-Eldin, A., and Kounev, S.

Chameleon: A hybrid, proactive auto-scaling mechanism on a level-

playing field. IEEE Transactions on Parallel and Distributed Systems 30
(04 2019), 800 – 813.

[4] Gan, Y., and Delimitrou, C. The architectural implications of cloud

microservices. IEEE Computer Architecture Letters 17 (2018), 155–158.

[5] Gotin, M., Lösch, F., Heinrich, R., and Reussner, R. H. Investi-

gating performance metrics for scaling microservices in cloudiot-

environments. In ICPE ’18 (2018).
[6] Herbst, N., Krebs, R., Oikonomou, G., Kousiouris, G., Evangelinou,

A., Iosup, A., and Kounev, S. Ready for rain? a view from spec research

on the future of cloud metrics. ArXiv abs/1604.03470 (2016).
[7] Jiang, D., Pierre, G., and Chi, C. Autonomous resource provisioning

for multi-service web applications. In WWW ’10 (2010).
[8] Kistowski, J., Eismann, S., Schmitt, N., Bauer, A., Grohmann, J.,

and Kounev, S. Teastore: A micro-service reference application for

benchmarking, modeling and resource management research. 2018
IEEE 26th International Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems (MASCOTS) (2018),
223–236.

[9] Koleini, M., Oviedo, C., McAuley, D., Rotsos, C., Madhavapeddy, A.,

Gazagnaire, T., Skejgstad, M., and Mortier, R. Fractal: Automated

application scaling. ArXiv abs/1902.09636 (2019).
[10] Kratzke, N., andQuint, P.-C. Understanding cloud-native applica-

tions after 10 years of cloud computing - a systematic mapping study.

J. Syst. Softw. 126 (2017), 1–16.
[11] Li, W., Lemieux, Y., Gao, J., Zhao, Z., and Han, Y. Service mesh:

Challenges, state of the art, and future research opportunities. 2019
IEEE International Conference on Service-Oriented System Engineering
(SOSE) (2019), 122–1225.

[12] Mace, J., Bodík, P., Fonseca, R., and Musuvathi, M. Retro: Targeted

resource management in multi-tenant distributed systems. In NSDI
(2015).

[13] Madhavapeddy, A., Leonard, T., Skjegstad, M., Gazagnaire, T.,

Sheets, D., Scott, D., Mortier, R., Chaudhry, A., Singh, B., Ludlam,

J., Crowcroft, J., and Leslie, I. Jitsu: Just-in-time summoning of

unikernels. In NSDI (2015).
[14] Madhavapeddy, A., Mortier, R., Crowcroft, J., and Hand, S. Mul-

tiscale not multicore: efficient heterogeneous cloud computing. In

Proceedings of the 2010 ACM-BCS Visions of Computer Science Confer-
ence (2010).

[15] Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D., Singh, B.,

Gazagnaire, T., Smith, S., Hand, S., and Crowcroft, J. Unikernels:

library operating systems for the cloud. In ASPLOS ’13 (2013).
[16] Manco, F., Lupu, C., Schmidt, F., Mendes, J., Kuenzer, S., Sati, S.,

Yasukata, K., Raiciu, C., and Huici, F. My vm is lighter (and safer)

than your container. Proceedings of the 26th Symposium on Operating
Systems Principles (2017).

[17] Mendonça, N., Garlan, D., Schmerl, B., and Cámara, J. Generality

vs. reusability in architecture-based self-adaptation: the case for self-

adaptive microservices. In ECSA ’18 (2018).
[18] Qu, C., Calheiros, R., and Buyya, R. Auto-scaling web applications

in clouds: A taxonomy and survey. arXiv: Distributed, Parallel, and
Cluster Computing (2016).

[19] Suresh, L., Bodík, P., Menache, I., Canini, M., and Ciucu, F. Dis-

tributed resource management across process boundaries. Proceedings
of the 2017 Symposium on Cloud Computing (2017).

[20] Vaqero, L., Cuadrado, F., El-khatib, Y., Bernabé, J., Srirama, S.,

and Zhani, M. F. Research challenges in nextgen service orchestration.

Future Gener. Comput. Syst. 90 (2019), 20–38.
[21] Zhou, H., Chen, M., Lin, Q., Wang, Y., She, X., Liu, S., Gu, R., Ooi,

B. C., and Yang, J. Overload control for scaling wechat microservices.

Proceedings of the ACM Symposium on Cloud Computing (2018).

37


	Abstract
	1 Background and motivations
	2 Challenges of autoscaling microservice systems
	3 Research proposal
	Acknowledgments
	References



