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Abstract

Application software provisioning evolved from monolithic

designs towards differently designed abstractions including

serverless applications. The promise of that abstraction is

that developers are free from infrastructural concerns such as

instance activation and autoscaling. Today’s serverless archi-

tectures based on FaaS are however still exposing developers

to explicit low-level decisions about the amount of memory

to allocate for the respective cloud functions. In many cases,

guesswork and ad-hoc decisions determine the values a de-

veloper will put into the configuration. We contribute tools

to measure the memory consumption of a function in various

Docker, OpenFaaS and GCF/GCR configurations over time

and to create trace profiles that advanced FaaS engines can

use to autotune memory dynamically. Moreover, we explain

how pricing forecasts can be performed by connecting these

traces with a FaaS characteristics knowledge base.

CCS Concepts: • Computing methodologies → Concur-

rent computing methodologies; • Software and its engineer-

ing→ Cloud computing; System modeling languages.
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1 Problem Statement

The provisioning characteristics of a FaaS-based application

are affected by memory use in two ways: First, apart from
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a static per-invocation cost component, most providers in-

clude a duration-utilisation product as complementary cost

component (e.g. 𝐺𝐵 × 𝑠 or 𝐶𝑈 × 𝑠). For compute-intensive

services that run more than just a few seconds and consume

more than the minimum amount of memory, this cost com-

ponent becomes dominant and significant. For instance, in

AWS Lambda, the per-invocation fee is 0.20 USD per million

instances, whereas the duration-utilisation fee is 0.2083 USD

for the same in the minimum execution ( 1
8
𝐺𝐵 ×

1

10
𝑠 × 1𝑀 , us-

east region), and a multiple of that price tag otherwise (not

accounting for free tiers, which slightly favour execution

cost). Pricing in Google Cloud Functions is slightlymore com-

plex by including deployment cost (depending on runtime),

but otherwise the per-invocation fee is 0.40 USD per million

instances, and minimum 0.23 USD or a multiple thereof for

their execution (again without free tiers). Hence, the price

effectiveness of FaaS is depending on not wasting memory

allocation (the 𝐺𝐵 factor) [7]. Accordingly, it is less useful

to target the already fine-grained billing cycles (the 𝑠 factor,

measured typically in 100 ms intervals or even just 1 ms in

Azure Functions) or the practically recessive per-invocation

cost. Second, some providers speed up function execution

when more memory is assigned, leading to an optimisation

problem due to the non-proportionality and runtime depen-

dence of the speedup [5, 6], as well as due to the inability

to decouple desired speed from desired memory allocation,

leading to allocation waste when needing single-instance

performance, and thus to reduced malleability.

FaaS engines and especially commercial FaaS are further-

more subject to three constraints concerning memory which

limit the ability to reduce allocation waste. First, most pro-

viders support only coarse-grained profiles from pre-defined

lists such as <128, 256, 512> MB. Second, most implementa-

tions isolate the function execution with Docker containers

[2], a technology that only recently allowed dynamic alloca-

tion adjustments during the execution, without any known

FaaS API pass-through. This contrasts other virtualisation

technologies that include ballooning, which can be exploited

programmatically [1, 8]. Third, even after deployment, most

FaaS do not systematically trace actual versus declared mem-

ory consumption to propose or enforce reduced waste reduc-

tion, leaving the task to retrieve usage statistics and create

performance models [3] to the function engineer. Our work

attempts to empower the engineer to solve that task.
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Hence, we can devise the problem statement: Cloud func-

tions should for technical reasons allocate all the memory

necessary to perform their work, following the expected

memory utilisation curve over time as close as possible (true

𝑚𝑎𝑙𝑙𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦). They should for economic reasons not allocate

more memory, as it is a costly resource (true 𝑝𝑎𝑦−𝑝𝑒𝑟 −𝑢𝑠𝑒).

The problem is then the conjunction of two subproblems:

knowing the required amount of memory at any point in

time, possibly through speculative means, and enforcing

its timely allocation and deallocation, leading to malleable

units of execution than are microbilled for actual memory

consumption.

An overview table about the different handling of memory

in selected FaaS services is given in Table 1. The table omits

variations such as Lambda@Edge, GCR and GCF Tier Two

that only differ in pricing, not in resource characteristics. No

two memory allocation models and pricing models are alike,

and further differences exist in the proportional coupling

between memory allocation and execution performance (de-

tailed reports are available [4]). These differences underline

the non-trivial nature of the problem.

The paper constructs the solution in stages. First, the over-

all solution approach is presented. Several tracing techniques

and tools with varying precision are then introduced along

with an elaboration on profiling. Afterwards, the autotuning

of containerised function execution and the cost forecasting

are discussed, before concluding the work.

2 Solution Approach

From an applied research perspective, we contribute three

practical tools. The first, functracer, measures the memory

consumption of a containerised function execution over time

to create trace profiles. The second, autotuner, applies the

trace profiles and can be activated in subsequent runs of

functracer to trace the behaviour with memory limits. The

third, costcalculator, simulates the execution in public

FaaS versus advanced adaptive FaaS engines that can exploit

the traces, and calculates the potential economic gains.

3 Memory tracing

3.1 Tracing Method

With functions being stateless microservices, the memory

needs depend primarily on the input data which must be

provided at measurement time. We postulate that given suffi-

cient numbers of traces and the ability to classify input data

into a finite set of profiles, the convex hull of all determined

memory profiles per data input profile can serve as model for

the function’s respective maximum memory consumption.

The determination of the profiles shall be conducted as

manual or automated profiling based on the correlation of

traces and context characteristics. The context involves the

input data and the function configuration. We consider an

extensive discussion of profiling methods out of scope for the

paper, but provide a brief overview about potential strategies

as well as a simple convenience method below.

The tracing method is conceptually shown in Fig. 1. Its

entry point could be a composite application or an individual

function. Given that the majority of publicly known server-

less applications (e.g. from AWS SAR) consist of a single

function, and that more complex applications often involve

mixed technologies (i.e. non-function execution units), our

method targets the single function level. The tracing is non-

intrusive, so that it works with testbeds injecting artificial

input data, as well as, with some restrictions, in production

scenarios where the execution characteristics concerning

memory use are merely recorded without interference. The

restrictions relate to the knowledge of input data, which may

need to be recorded through alternative means. Eventually,

trace files are produced and post-processed, with or without

knowledge about the input data, into execution profiles.

Figure 1.Method to determine containerised function traces

and input data-dependent profiles

The ability to trace differs depending on the interfaces.

In our work, we consider pure Docker container tracing,

OpenFaaS running on Docker (faasd) and Kubernetes (faas-

netes), as well as Google Cloud Functions as representative of

a commercially operated FaaS. To accommodate the evolving

development of Knative, we also cover Google Cloud Run

that serves parallel requests to pre-built containers, a model

that is known from other FaaS such as IBM Cloud Functions.

Fig. 2 shows an exemplary plot of traces from an existing

containerised image scaling function published on Docker

Hub (futils/resize). Each trace (grey line) slightly differs

due to system interference and non-deterministic system

behaviour, as well as measurement discretisation (Δ). Even-

tually, the maximummemory consumption as a hull function
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Table 1.Memory considerations in FaaS, default regions and plans, observed in August 2020

FaaS Memory allocation Increment Execution cost𝐺𝐵 × 𝑠 Performance

AWS Lambda 128 . . . 3008 MB + 𝑛 × 64 0.0000166667 USD implicitly coupled

Google Cloud Functions 128 . . . 2048 MB + 2
𝑛, 𝑛 ≥ 7 0.0000025 USD explicitly coupled 𝐺𝐻𝑧 × 𝑠

Azure Functions 128 . . . 1536 MB + 𝑛 × 128 0.000016 USD decoupled/fixed

IBM Cloud Functions 128 . . . 2048 MB + 𝑛 × 1 0.000017 USD decoupled/fixed

Alicloud Function Compute 128 . . . 3072 MB + 𝑛 × 64 0.000016384 USD decoupled/fixed

Oracle Functions 128 . . . 1024 MB + 2
𝑛, 𝑛 ≥ 7 0.00001417 USD decoupled/fixed

over time𝑚
𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒
𝑚𝑎𝑥 (𝑡) with explicit discretisation period 𝛿 is

determined (black line). This amount of memory would need

to be configured with dynamic allocation. FaaS characteris-

tics concerning microbilling (temporal, red/green lines) and

memory (spatial, orange/blue lines) are represented as well,

loaded from a knowledge base that encodes the content of

Table 1. The dashed lines refer to the actually needed maxi-

mum memory amount and execution time, and concerning

memory refer to the amount that has to be configured if only

static but fine-grained allocation was possible. The solid lines

refer to the coarse-grained configuration options of the FaaS

provider.
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Figure 2. Convex hull (𝛿 =
1

10
𝑠) for single input profile after

20 traced invocations of containerised image scaling function

Hence, depending on the ability of the FaaS engine, the

maximum is statically configured or the profile over time is

used for dynamic configuration, taking the vertical scaling

time into account. Most functions are executed with an isola-

tion layer that demands a timely pre-allocation of sufficient

memory, thus the configuration needs a slightly modified

(leftshifted) hull to allow for upscaling in advance, while

downscaling happens without shifting (red line). In both

cases, a safety buffer is used which may extend to the next

permissible configuration limit.

The potential gains ś from static coarse-grained alloca-

tion to static fine-grained allocation, and further to dynamic

allocation - differs depending on the function. In the follow-

ing, the technical detail of the tracing per interface (Docker,

OpenFaaS, GCF/GCR) are explained.

3.2 Tracing for Docker

Containerisation of code execution offers a sweetspot in the

trade-off between high enough secure isolation and almost

penalty-less performance. In particular the fast startup of

containers has made them the technology of choice for iso-

lating function instances in multi-tenant environments. The

dominantly used Docker container engine is based on the

containerd runtime, which in turn interfaces with the runc

tool. The runtime coexists as daemon alongside dockerd,

contrasting daemonless approaches such as Podman that

directly interface runc from the command-line. In turn, the

runc tool implements the Open Container Initiative specifi-

cation and controls the operating system commands around

containerisation, such as cgroups. For memory tracing, all of

these layers offer useful information. Recent versions of the

Docker command-line tools offer a convenient high-level

interface to the essential memory configuration, which are

also used in our work. More accurately, we measure a con-

tainer’s lifecycle status, memory consumption and limits in

almost arbitrarily short intervals through a combination of

docker inspect and the sysfs cgroups interfaces, specif-

ically its usage_in_bytes and limit_in_bytes files. The

invocation of docker inspect does consume more time

than the virtual file system read, and can thus be configured

to be performed only every 𝑛th round. This technique works

well even for short-lived functions, yielding measurements

with at least 100 ms precision (Δ <
1

10
𝑠), the equivalent of the

microbilling cycles of most FaaS providers. According to our

observations, only for very short-lived functions (t≪ 100ms)

measurements may fail sporadically but are auto-repeated

until they succeed.

Fig. 3 compares the characteristic hull curves of four typi-

cal functions implemented in public container images. It is

evident that the compression tool would benefit most from

fine-grained allocation, the video transcoding would benefit

little from dynamic allocation, and the benchmark and sleep

would benefit a lot from autotuning, although the bench-

mark to be divided into two execution profiles despite not

having any input data dependency.
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Figure 3. Examples of characteristic trace shapes (𝛿 =

1

10
𝑠,Δ =

1

27
𝑠): (a) recursive directory compression, (b) video

transcoding, (c) multi-stage Linux benchmark, (d) sleep

The downside is that the results do not necessarily trans-

late into an identical consumption when deployed in a shared

FaaS environment, but they offer a first approximation. We

contribute the functracer tool which performs not only

the tracing (based on docker inspect and cgroups), but

also discretisation, hull determination and hull barrelling for

vertical scalers. Further, it performs the plotting of figures

as shown above for further analysis by the serverless ap-

plication provider, and the production of machine-readable

memory profiles in CSV and JSON formats.

3.3 Tracing for OpenFaaS and Kubernetes

Along with OpenWhisk, Fn and Fission, OpenFaaS is widely

considered one of the more popular open source FaaS en-

gines. Its particular appeal is the ability to run atop Kuber-

netes for scale, dubbed faas-netes, as well as standalone for

simple setups or restricted devices, through faasd. While the

latter option runs containers directly through the system’s

Docker daemon, allowing to re-use our functracer tool,

the former option abstracts containers through pods, run-

ning them via a containerd shim directly in another runc

namespace. To avoid too many redirections, it is possible

to directly retrieve usage statistics through the Kubernetes

metrics-server which is deployed in the kube-system

namespace, in parallel to the function pods that run in the

openfaas-fn namespace. Information is delivered in struc-

tured JSON format on memory use and limits, caching and

shared memory, as well as on other resources like CPU usage

and throttling. On the downside, by default the information

delivered via the metrics-server log is updated only every

5 s, rendering it unsuitable for precisely determining the

memory hull of short-lived cloud functions with dynamic

allocation behaviour. Although there is also an emerging

metrics-serverAPI, it is barely documented, requires com-

plex authentication and has been considered unsuitable at

present as interface to memory usage statistics.

3.4 Tracing for Google Cloud Functions/Cloud Run

While OpenFaaS tracing already approximates the mem-

ory consumption of a container in a cloud function context,

many deployments rely on public FaaS. We consider Google

Cloud Platform (GCP) as representative environment. On

GCP, there are two serverless compute offerings: Google

Cloud Functions (GCF), which accepts function code in var-

ious programming languages, produces containers and ex-

ecutes them, and Google Cloud Run (GCR), which accepts

and executes pre-built containers.

Tracing and monitoring for both is implemented through

Stackdriver, and offered publicly as Cloud Monitoring with a

number of predefined resourcemetrics. Themetric of interest

for GCF is function/user_memory_bytes. The monitoring

API requires authentication, making this tracing technique

less convenient to set up. Furthermore, the memory con-

sumption data is represented as aggregated value distribu-

tion around a mean value covering multiple instances. For

GCF, it is only sampled every 60 s and only retrievable with

a delay of 240 s, almost defying the possibility to create

meaningful allocation profiles.

In GCR, there are two metrics ś container/memory/-

utilizations and container/memory/allocation_time.

The utilisations measurement is in alpha stage and delays by

60 s, whereas the more mature allocation time measurement

delays by 180 s. The sampling frequency for both is 60 s. This

is not much better than in GCF regarding the applicability

to short-lived functions.

To be able to exploit CloudMonitoringmetrics for function

profiling at least heuristically, hundreds of invocations have

to be measured and the maximum memory consumption

measured at any sampling point determines the lower bound

for the function memory configuration. One advantage GCR

has over GCF is that although the range is the same, 1 MB

stepping is allowed, leading to more fine-grained matching

of configured versus actual maximum memory use.

3.5 Profiling Techniques

A typical use case for FaaS is image processing in web appli-

cations, often performed asynchronously. We investigated

the processing with tracing on Pixelfed, a free social network

to share photos similar to Unsplash, Instagram or Flickr. To

create meaningful traces, a clustering (binning) of the input

data needs to happen. This uses either upfront knowledge,

such as the fixed size of avatar (profile) pictures and the usu-

ally much larger size of user-uploaded content, or derives the

binning via machine learning from a set of training traces.

To demonstrate learned binning, we downloaded 20 ran-

domly selected avatar pictures and 20 content pictures for

image processing. In total, 11 are in PNG format and 29 in
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JPEG format, with an average size ratio of 1:10.8 between

avatar and content pictures, largely confirming the hypothe-

sis. Their sizes overlap however, with the five largest avatar

pictures exceeding the sizes of the smallest content picture,

making a learned binning technique or explicit avatar/con-

tent profile division subject to false positives. Fig. 4 shows the

corresponding memory traces, which underline the inability

to strictly separate two bins of input data to the processing

function.
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Figure 4. Overlay of 40 image processing memory traces

with two desired input profiles

The file size then remains the only relevant input for the

binning. When correlating file size to maximum amount of

memory needed, the result looks like in Fig. 5. The takeaway

for the engineer configuring the cloud functions and under-

standing if static profiling is applicable is that two function

profiles should be deployed, one for avatar pictures with a

safe upper bound of 4 MB (if the FaaS provider allows such

small values), and one with a presumed upper bound of 64

MB in need of further profile refinements due to the largely

uncorrelated memory requirements. As mentioned before, a

precise profiling is out of scope but would include additional

context information about image formats, source compres-

sion levels and content analysis, or deep profiling based on

correlation between function variables and memory needs.

4 Autotuning

Autotuning here refers to the ability to dynamically adjust

the memory allocation for containers as isolation layer for

cloud functions. This brings advantages for FaaS-based soft-

ware engineers, but also for FaaS providers due to the in-

creased container packing density. Fig. 6 visualises schemat-

ically how a host can execute more containers in parallel if

it is known in advance that one will release memory that

another one will need, so that the sum of all function-level

memory needs at a time is less than the available memory.
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Figure 5. Correlated processing characteristics with file size-

based input profiles

Figure 6. Dense scheduling of containers with memory au-

totuning ś schematic

Autotuning has been implemented in the autotuner tool

which is based on docker update. It runs standalone in pro-

duction, but can also be hooked into functracer to produce

plots. Fig. 7 shows how the recorded convex upscaling hull

is replayed to adjust memory dynamically (grey line). The

amount of wasted memory (difference to blue line) is small

and could be reduced further by future work. The initial

crossing of the blue line over the grey line is due to initially

granting infinite memory to the container which is automat-

ically converted to 0 bytes to maintain plot readability and

avoid large memory allocation when the default is always

suitable.

Future work plans for autotuning include the interfacing

with commercial FaaS management APIs to facilitate the au-

tomatic function reconfiguration when behavioural changes

are detected, for instance in a continuous deployment and

integration scenario.

5 Cost calculation

For an application engineer, a key concern is less the amount

of compute resources wasted due to them being mostly

hidden, but rather the unnecessary cost associated to the

non-optimised application delivery in FaaS. Our tool, named

costcalculator, re-uses the trace files to perform a mone-

tary analysis. It parses the continuously community-curated
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Figure 7. Autotuning with upscaling hull (perceived risk of

underallocation around 𝑡 = 0.12𝑠 explained in text)

FaaS Characteristics and Constraints dataset to get declara-

tive pricing information about providers. A sample output

for the image processing function used as example in the

previous graphs specifically for a comparison with running

the same function on AWS Lambda looks as follows:

The function used 772 MB of memory and was allocated 832

MB by AWS.

The total cost for AWS Lambda for 1 million requests per

month would be 28.63 EUR.

The net cost would be 26.58 EUR , and the overhead cost

2.05 EUR.

The price increases 7.71% due to wasted memory , and 0.00%

due to wasted computation time.

0 milliseconds of computation time are being wasted.

60 MB of memory are being wasted.

The overhead for static allocation is always between 0%

and 50%, whereas when taking dynamic autotuning into

account, it is much higher and can reach above 90%, which

is significant from a cost or revenue perspective.

6 Conclusions

We have explained how to systematically reduce costly mem-

ory overallocation in cloud function execution in two stages.

First, applicable to current FaaS, by tracing memory con-

sumption and configuring the minimum possible alloca-

tion that fits the maximum required amount of memory

over time per function instance. Second, applicable to next-

generation FaaS, by dynamically adjusting the memory allo-

cation through means of vertical container resource scaling.

Both stages free up memory on the host and therefore reduce

cost not only for the cloud function provider, but also for the

FaaS provider who can afford a higher deployment density.

Our approach is limited by having to combine coarse-

grained resource metrics from FaaS with fine-grained but not

necessarily representative metrics from the Docker engine.

To overcome this limitation, we expect that future FaaS and

cloud monitoring services offer simple interfaces to capture

more precise resource utilisation metrics with short intervals.

Resources

All tools are available at https://doi.org/10.5281/zenodo.3911303

and https://github.com/serviceprototypinglab/lambda-docker-

measurements. Reference datasets of traces and profiling are

available at https://doi.org/10.5281/zenodo.4095480.
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