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Abstract
Nowadays the use of container technologies is ubiquitous
and thus the need to make them secure arises. Container
technologies such as Docker provide several options to better
improve container security, one of those is the use of a Sec-
comp profile. Amajor problemwith these profiles is that they
are hard to maintain because of two different factors: they
need to be updated quite often and present a complex and
time consuming task to determine exactly what to update,
therefore not many people use them.

The research goal of this paper is to make Seccomp profiles
a viable technique in a production environment by proposing
a reliable method to generate custom Seccomp profiles for
arbitrary containerized application. This research focused
on developing a solution with few requirements allowing for
an easy integration with any environment with no human
intervention.
Results show that using a custom Seccomp profile can

mitigate several attacks and even some zero day vulnera-
bilities on containerized applications. This represents a big
step forward on using Seccomp in a production environment,
which would benefit users worldwide.

CCS Concepts: • Security and privacy→Virtualization
and security; Software security engineering.
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1 Introduction
Containers are used worldwide in several production en-
vironments. They help developers reduce the time needed
to configure the required application dependencies and li-
braries. Given their worldwide usage the need to secure
these containerized applications increases. Docker [1] is cur-
rently the standard for the container technology industry
and thanks to its huge community new projects to better se-
cure containers often arise. The trend to increase security is
to develop a custom container runtime to substitute RunC [2]
(default container runtime) and better isolate containers in
a lower level manner. Other projects aim to secure the con-
tainer before it is deployed, for example by performing image
scanning which compares the version of the several tech-
nologies against a vulnerability database. This is similar to
security auditing tools, which ensures that a container is
running with the industry best practices and is properly con-
figured.
Docker also provides other security options which have not
been fully embraced by the community, one example is the
Seccomp profile [3]. Where it is possible to create a profile
consisting on several syscalls that either will or will not be al-
lowed to execute in the system. One of the biggest challenges
is that creating and maintaining an up to date Seccomp pro-
file is complex and presents several difficulties. The first one
is knowing which syscalls [4] the containers needs. These
might change when a new update is available, requiring a
periodic check to ensure that all the features work properly.
The absence of periodic checks could cause a self inflected
Denial of Service (DoS).
Seccomp can be very efficient when trying to reduce the

attack vector on a container since the syscalls that a container
can make are only those whitelisted. In other words, in case
a malicious actor gets access to the container, by a Remote
Code Execution (RCE) vulnerability for example, he/she will
be limited to the syscalls that are whitelisted in the profile. If
the malicious actor tries to escalate privileges or attempts a
container breakout through a syscall that was not specified
in the profile, the attack will not go through. This might also
be helpful when dealing with some zero day vulnerabilities
that need syscalls which are not in the Seccomp profile.
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The novelty of our work is to combine the Seccomp se-
curity feature with the Continuous Integration/Continuous
Development (CI/CD) pipeline therefore solving the chal-
lenge of maintaining Seccomp profiles up to date. In order
automatically do this, the first step is to create an easy and
autonomous way of capturing all the syscalls that a container
performs during the unit/integration testing phase. In order
to improve our solution, we made use of fuzzing as a way to
improve coverage. Once a list of used syscalls is available, it
is simply a matter of generating and deploying a new custom
Seccomp profile.

1.1 Related Work
Research has been conducted with the aim of trying to re-
duce the attack vector of containerized applications. We will
start by explaining how AppArmor does this, what are its
drawbacks and how it compares with our work. We will
then focus on the research paper "Can Container Fusion Be
Securely Achieved?" [5], explain what it is about and how
we expanded on their work. At last, we will explore other
container tracing solutions.

AppArmor
AppArmor [6] makes use of a kernel module, which binds its
profile to a program. The profile consists of several capabili-
ties [7] that the program needs in order to run successfully
(whitelisting of capabilities). The administrator must create
an AppArmor profile and bind it to a specific program. There
is a second feature in AppArmor called learning,which as
the name goes it is usually enforced when the administrator
does not know what capabilities are required. This mode
gives access to all capabilities, and logs everything, so when
the work is done the administrator can review which capa-
bilities were called and create a custom profile tailored to a
specific need. This research paper follows the same steps as
the learning feature in AppArmor: allowing all the syscalls
to be performed, logging and reviewing them and finally
generating a new profile. In the case of AppArmor, one ma-
jor disadvantage is that the whole process is not automated
resulting in a slow and hard process to maintain.

Container Fusion
In previous work [5], a new idea has been presented, called
container fusion, which happens when there are two differ-
ent containers and one needs some privileged access on the
sibling container. The access is given based on the least privi-
lege principle [8] meaning that it will only have the required
permissions to perform the needed actions therefore limit-
ing the visibility and accessibility of the core container. The
containers are isolated using a number of known techniques
such as: granting access to the core container with the help
of namespaces [9], capabilities, a custom Seccomp profile
and hardware restrictions using control groups [10]. In order
to successfully define the capabilities and syscalls required

to the custom Seccomp profile, they manually determine the
capabilities needed by studying the container. Afterwards
they review the syscalls that each capability would allow and
removed the ones that were not required, and finally could
deploy the container with these custom profiles. Looking at
the conclusion they propose an automated way of determin-
ing capabilities in a sandboxed environment as future work,
this is where we expand on their research by automatically
generating a custom Seccomp profile.

Tracing Solutions
Nowadays there are several container tracing solutions, most
of them work on a high level with metrics such as: central
processing unit (CPU) usage, memory utilization, network
input and output among others. These solutions range from
the Docker engine itself, cAdvisor [11] which creates a hook
onto the Docker Daemon and gathers metrics for all of the
running containers.

Tracing solutions capable of gathering low level informa-
tion are quite scarce. The main tool for this is Sysdig Inspect,
an open source tool capable of tracing system calls, page
faults, errors, threads among others. Another low level trac-
ing solutions is called Tracee, and even tough it is still at
an experimental stage the fact that it is open source might
accelerate its development process. Tracee is capable of trac-
ing syscalls, arguments, namespaces and other actions per-
formed by a container.

2 Architecture Overview
Our proposal is to help the community embrace the bene-
fits of having reliable Seccomp profiles. We aim to remove
Seccomp’s main hurdles: the hassle to configure profiles and
the difficulties to keep them up to date. Seccomp profiles
require knowledge about the syscalls needed by a container,
therefore the process starts by implementing a solution to
trace every syscall performed by a given container.

In order to easily maintain the Seccomp profiles our trac-
ing solution will be integrated with the Continuous Inte-
gration/Continuous Development (CI/CD) pipeline, as it is
considered a best practice and a lot of companies are migrat-
ing to this environment where it is possible to consistently
build and test if the application works as expected. In our
research we decided to create a new step in the pipeline.
As such, whenever a new feature is added, our tracing solu-
tion will capture all the syscalls that are generated by the
unit/integration tests and create an updated Seccomp profile
as previously described.

Successfully integrating with the CI/CD pipeline requires
the tracing solution to already be running in the system.
Therefore whenever new code gets pushed into the repos-
itory, this will trigger the continuous integration pipeline
where Docker will build a container with that application and
run the unit/integration tests, this represents the first three
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stages from figure 1. Since our tracing solution is already
running, all the syscalls generated by the unit/integration
tests will be captured and a Seccomp profile will be gener-
ated based on them. The final stage in figure 1 represents
the deployment of the container with the custom Seccomp
profile. This workflow is illustrated in figure 1.

Figure 1. Proposal Workflow

The base architecture of the tracing solution consists of
two components: the Container Tracing and the Container
Exit Check. Obviously in order to capture the syscalls a Test-
ing Container needs to exist, but note that this is decoupled
from our tracing solution as seen in figure 2. The Testing
Container represents the containerized application that will
be traced and later deployed with a custom Seccomp profile.
This workflow will start as soon as a new Testing Con-

tainer is spawned, since it will start to generate syscalls from
a different namespace thereby alerting the Container Tracing.
Which is responsible for capturing syscalls from containers,
and writing them into an output file. In order to know when
the container has exited the Container Tracing performs a
unary gRPC [12] call to the last component, the Container
Exit Check. This last component must check when a specific
container has finished its execution and then respond to the
gRPC call. This check is not done inside the Container Trac-
ing since it creates significant overhead, for this reason only
we decided to have a separate component responsible for
this task. When all this is completed, the Container Tracing
will take the capture files and generate a JSON Seccomp file
whitelisting the syscalls that were traced. Upon completion,
it is possible to move onto the last stage of our workflow
and deploy the container assigning it the custom Seccomp
profile. This architecture is illustrated in figure 2.
It may be difficult to fully cover the needed syscalls in

more complex containers as there is always the possibility
of a false negative occurring (a syscall that is not in the pro-
file but should be). To respond to this challenge, a fuzzing
solution is proposed in an attempt to increase the coverage
of needed syscalls. Fuzzing should only be an option when

Figure 2. Tracing Solution Architecture

the unit/integration testing does not provide sufficient cov-
erage on all of the functionalities that the container has. In
the case of a container having unit/integration tests for all
of the use cases then fuzzing is not recommenced since it
might explore unwanted syscall paths. The fuzzing solution
is based on Docker, where it is possible to use general con-
tainers capable of fuzzing web servers, sockets, APIs as well
as the possibility of using a container created by the user
to a specific technology. A configuration file is required to
specify each fuzzing container as well as options for their
creation.

3 Implementation
In this section we will explain in detail how our proposal is
implemented. We start by describing how our tracing solu-
tion works, in other words, the process of capturing syscalls
from a container and generate a new Seccomp profile based
on them. We follow by explaining how it is possible to inte-
grate the previously described solution with the CI pipeline
and how this removes the hassle of configuring each profile.
We finish with a break down about how fuzzing integrates
with this whole process and when it is recommended to use.

3.1 Capture syscalls and generate a Seccomp profile
One of the first problems we encountered, was having a reli-
able method of capturing the syscalls. The solution here pro-
posed is to make use of eBPF [13] tracing capabilities which
creates a kernel hook on a given syscall. Tracing syscalls
used by the container happens when a syscall is called, caus-
ing our eBPF program to also be called. Finally there must
be a check to determine from what namespace the syscall
came from. Since we are only interested in capturing the
Testing Container syscalls, in order not to clutter the output
all the syscalls performed from the host and by the Container
Tracing itself will be ignored.

Our BCC program will create a kernel hook for each
syscall in the system and then write the syscall called to the
specific output file. The file with the captured data has sev-
eral parameters: the time on which the syscall was called, the
process that called it, the namespace and finally the syscall
itself. There is the possibility of adding more parameters,
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these will provide more information about the environment
in order to facilitate any type of data analysis.
One of the advantages of using eBPF is that it provides

flexibility on which container technology to use. Since the
syscalls are being captured at a kernel level this approach
works on Docker, Podman [14] and even other container
technologies that have not been yet developed. Nonetheless,
there is the possibility of having any method do this and
in case another tracing technology is preferred the output
should be a file with one syscall per line. This can easily
be accomplished with a tool such as Strace as long as the
arguments used by the syscall are erased.
The last part to successfully capture all the syscalls from

a container is to know when to stop. For this, the Container
Tracing sends a unary gRPC call to the Container Exit Check.
This communication is done using a Protobuf, with a string
specifying the Docker container identifier. Using this infor-
mation the Container Exit Check can make use of the Docker
Software Development Kit (SDK) for Python and check the
status for that specific container, once the status is "exited" it
can respond to the gRPC call. Once the call is answered, the
Container Tracing will no longer expect syscalls from that
namespace and can start generating the custom Seccomp
profile. To generate a Seccomp profile we take the capture
file and compile a list of syscalls with no duplicates, once this
is done we simply whitelist those and set a default action to
block all the syscalls that were not mentioned.
Once all has been implemented, it is possible to start to

trace containers and generate a custom Seccomp profiles
for our needs. These profiles can be used when running a
new container, simply specifying the profile location in the
–security-opt seccomp flag using the Docker command line
interface. As a proof of concept we took a vulnerable Apache
container with an RCE vulnerability in Apache-Struts, CVE-
2018-11776 [15], we traced the syscalls and generated a cus-
tom profile. Once the container with the custom profile was
deployed, it was concluded that it was no longer possible to
exploit the RCE vulnerability.

Requirements
In order to set up this environment, a few requirements
must be installed in the system. The Container Tracing is the
easiest to set up, since it only requires Docker to be installed.
We provide a Dockerfile with all the dependencies needed,
an important note is that in case you are using eBPF as a
tracing method Linux 4.1 or above is necessary.
Regarding the Container Exit Check you need Python3

and some custom Python packages such as: Docker SDK and
gRPC are necessary. The Docker SDK is used to check the
status of a container and the gRPC is needed to answer the
gRPC call from the Container Tracing.

3.2 Pipeline Integration
This proof of concept was done using GitLab CI/CD pipe-
line [16]. The first step is to configure GitLab runner. This is
responsible for creating a container, running the unit/inte-
gration tests and sending the results back to GitLab. In order
to set up the GitLab Runner there are two options: locally and
remotely. The remote option makes use of GitLabs shared
runner hence, all of the process will happen on their servers,
since our solution requires the capture of syscalls generated
this is not a feasible option. Therefore the pipeline integra-
tion must be done locally. Start by installing GitLab-Runner
on the system, setting up the runner using the flag register
and supplying the gitlab-ci token for the project. The last
step would be to create a file named .gitlab-ci.yml in the root
of the repository. This file is where the pipeline is defined.

Figure 3. CI/CD Integration

From figure 3 it is clear that GitLab Runner and our tracing
solution are running simultaneously, representing long term
containers in the architecture, while the testing container
is completely mutable and can be created and destroyed
according to the pipeline.

This process results in a fully automatic environment that
traces syscalls on new commits and generates a Seccomp
profile based on those syscalls.

Requirements
One underlying requirement here is that whichever CI/CD
technology is chosen it must have an option to perform
the unit/integration tests inside a container. If this option is
absent, all the syscalls will be generated by the host and will
not be traced. Most of the CI/CD technologies have what
is called a shell executor, which executes commands in a
shell such as:Docker build and Docker run. Below is a generic
example on what a .gitlab-ci.yml file would look like in order
to build and run a container
bu i l d_ image :

s c r i p t :
− Docker b u i l d − t c o n t a i n e r .
− Docker run c on t a i n e r

3.3 Fuzzing
As previously stated fuzzing should only be done as a last
resort when the unit/integration tests alone are unable to
cover all the functionalities of the application.
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The implementation is based on a configuration file named
conf.json where the user can configure a custom fuzzing con-
tainer, define domains/IPs to fuzz and use a file with known
inputs that will be mutated in order to see how the applica-
tion responds to malformed inputs. Our solution provides
some general fuzzing containers, which have several entry
points depending on the type of technology you want to fuzz.
Since the fuzzing is done on a wordlist base it is important
that it is rich enough in order to generate new syscalls paths,
the user can even create a custom grammar to achieve a
more complete fuzzing solution. All the containers defined
in the conf.json file will be executed sequentially.

Figure 4. Fuzzing Solution Workflow

The workflow depicted in figure 4, shows how the fuzzing
solutions works. An initial configuration is provided, which
will fuzz a general webserver as well as some Transmission
Control Protocol (TCP) connections such as sockets. The
user can blindly deploy the fuzzing solution and in case any
of defined vectors are available, it will fuzz the container.
It is however recommended that the user provides a cus-
tom wordlist, either one for that specific technology or a
more general one (good examples can be found from the
SecLists repository [17]). Besides the default fuzzing contain-
ers the user can add custom containers to the configuration
file thereby enabling new entrypoints for other technologies
and protocols. Fuzzing should be conducted with caution
to make sure unwanted code paths are not explored. This
entails understanding the container and protocols that are
being fuzzed as well as the type of wordlist that is being used.

Requirements
Since several containers are being deployed to perform fuzzing
it is only required that Docker and the Docker SDK for
Python are installed in order to communicatewith theDocker
Daemon.

4 Evaluation
In this section, the security posture of our proposed solution
is evaluated. Starting by identifying some of the drawbacks,
followed with an overhead analyses during the continuous
integration phase. Finally understanding what steps to take

in order to determine how a current Seccomp profile behaves
to a specific vulnerability.

Drawbacks
In order to successfully synchronize the Seccomp profile

with the application, extensive and reliable unit/integration
tests are required. In the best case scenario they will cover
all of the application functionalities including how the appli-
cation responds to malformed inputs. If this is not the case
the user might get overconfident about the profile therefore
having a false sense of security. In the case of having an
incomplete profile the consequences will be that some func-
tionalities of the application will not work as expected or in
the worst case, not work at all resulting in a self-inflicted
DoS, hence the need for strong unit/integration tests.

Fuzzing
When the application does not have a complete set of

unit/integration tests a fuzzing solution is proposed. How-
ever fuzzing does not guarantee that the full length of needed
syscalls will be covered. Therefore if the user relies com-
pletely on the fuzzing solution and does not try to implement
effective unit/integration tests it can result in a self-inflicted
DoS. Fuzzing should be seen as a complement to the tests
where high entropy inputs are supplied to the several func-
tionalities.
Overhead

During the continuous integration phase, all syscalls per-
formed by the containers will be traced, thereby creating
some overhead. Container benchmark tests took place in
order to better understand how much this phase will be
affected. These are divided into CPU intensive operations,
network throughput and disk I/O.
These benchmarks were performed ten times for each

type, all the tests were conducted on google cloud with an
n1-standard-1 machine which has 1vCPU and 3,75 GB of
memory with Docker version 19.03.8. The average of the col-
lected results as well as the standard deviation are presented
in the following table.

Type W/ Tracing Sol.
(s)

W/O Tracing Sol.
(s)

CPU 50.726 𝜎=0.4877 25.501 𝜎=0.4307
Network 60,318 𝜎=0.1856 30.434 𝜎=0.5475
I/O 20.92 𝜎=0.2786 17.82 𝜎=0.4717

Table 1. Overhead table

It can be concluded that while tracing syscalls, both the
CPU and network intensive task will be approximately 2x
slower, on the other hand, disk I/O does not present signifi-
cant overhead.

Mitigation
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In the case of our current Seccomp profile having syscalls
that can be used to exploit a container, the currently pro-
posed solution identifies the dangerous syscalls and offers
the option to remove them from the Seccomp profile. Remov-
ing a syscall from a Seccomp profile should be done with
extra caution since it may damage some functionalities. In
order to prevent this, all the functionalities should be tested
beforehand to ensure that everything is working as expected.
In order to successfully mitigate a vulnerable Seccomp

profile, firstly it is necessary to trace the syscalls from a
working proof of concept of the vulnerability. Using our
tracing solution described in section 4.1, it is possible to trace
and generate a Seccomp profile based on the syscalls used by
the proof of concept. Secondly it is necessary for the user to
determine which syscalls are needed by the container, which
can be done with the help of the unit/integration tests or by
the user manually interacting with each needed functionality.
This results in two temporary profiles, one that maps the
syscalls used by the exploit and the other maps syscalls
needed by the application. It is then possible to use our
program to checkwhich syscalls are in the profile of the proof
of concept and which are not in the other profile. The syscalls
returned will be the ones used by the exploit, removing these
syscalls from our profile is a temporary mitigation measure
to the vulnerability and should be a last resort solution.

Using the previously described Apache container with an
RCE vulnerability (CVE-2018-11776) the exploit was anal-
ysed and a group of dangerous syscalls was identified. Re-
moving these syscalls from the Seccomp profile resulted in
mitigating the vulnerability. Several tests using containers
with different vulnerabilities were conducted, such as: CVE-
2019-11043 [18] and CVE-2016-10033 [19] which resulted
in not only mitigating the vulnerability but also having a
better understanding of the exploit. We provide an example
on how this works in practice. Where poc.json represents a
Seccomp profile mapping the syscalls from the proof of con-
cept container and usecase.json maps the syscalls required
for the container to run normally.
python3 mit . py −poc poc . j s on −useC
us e c a s e . j s on
Vu ln e r ab l e s y s c a l l s : s t a t f s v f o rk s e l e c t
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6 Conclusion
Correctly using a custom Seccomp profile is arguably a more
secure approach as it limits the attack surface of a container.
We have demonstrated that this can be achieved and incor-
porated within the CI/CD pipeline thereby removing the

hassle of maintaining these profiles up to date. Results have
showed that using a custom Seccomp profile can mitigate
several vulnerabilities that require syscalls which are not
present in the profile.

We believe that bringing attention to a new way of using
these profiles is the first step to having amore secure environ-
ment by making Seccomp a viable technique. At the moment
the cost of using our solution is approximately 2x slower.
But this overhead is only relevant in the unit/integration
tests therefore only this phase is affected.
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