skip to main content
10.1145/3430036.3430059acmotherconferencesArticle/Chapter ViewAbstractPublication PagesvinciConference Proceedingsconference-collections
research-article

Context-aware placement of items with gaze-based interaction

Published:08 December 2020Publication History

ABSTRACT

Appropriate product placement significantly influences how viewers easily find their favorites, especially when they try to select products from digital signage displays. This increases the demand for dynamic categorization and optimal placement of items according to the context in which viewers explore their preferred choices. In this paper, we present an approach for optimizing the placement of items by respecting the underlying context in the search for favorites. Our approach starts with formulating the static placement of items as a constrained optimization problem, in which we incorporate design rules that highlight the underlying categorization of the items. We then extend this idea to accommodate dynamic placement according to the context in which users explore their preferred choices. This is accomplished by adaptively adjusting the priority of each item based on the distribution of visual attention obtained by an eye-tracking device. In particular, we construct a context map for understanding the relationship between the items by taking advantage of topic-based text mining techniques. We provide several examples of gaze-based interaction to demonstrate the capability of the proposed approach, which is followed by a discussion on possible directions for future research.

References

  1. G. Andrienko, N. Andrienko, M. Burch, and D. Weiskopf. 2012. Visual Analytics Methodology for Eye Movement Studies. IEEE Transactions on Visualization and Computer Graphics 18, 12 (2012), 2889--2898. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. T. Blascheck, K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf, and T. Ertl. 2014. State-of-the-Art of Visualization for Eye Tracking Data. In EuroVis - STARs. The Eurographics Association, 63--82. Google ScholarGoogle ScholarCross RefCross Ref
  3. D. M. Blei, A. Y. Ng, and M. I. Jordan. 2003. Latent Dirichlet Allocation. Journal of Machine Learning Research 3 (2003), 993--1022.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Burch, A. Kull, and D. Weiskopf. 2013. AOI Rivers for Visualizing Dynamic Eye Gaze Frequencies. Computer Graphics Forum 32, 3pt3 (2013), 281--290. Google ScholarGoogle ScholarCross RefCross Ref
  5. A. T. Duchowski. 2018. Gaze-based interaction: A 30 year retrospective. Computers & Graphics 73 (2018), 59 -- 69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. F. Göbel, P. Kiefer, I. Giannopoulos, A. T. Duchowski, and M. Raubal. 2018. Improving Map Reading with Gaze-Adaptive Legends. In Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications (ETRA '18). Article 29, 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. E. Gomez-Nieto, W. Casaca, D. Motta, I. Hartmann, G. Taubin, and L. G. Nonato. 2016. Dealing with Multiple Requirements in Geometric Arrangements. IEEE Transactions on Visualization and Computer Graphics 22, 3 (2016), 1223--1235. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Hirono, H.-Y. Wu, M. Arikawa, and S. Takahashi. 2013. Constrained Optimization for Disoccluding Geographic Landmarks in 3D Urban Maps. In Proceedings of the 6th IEEE Pacific Visualization Symposium (PacificVis 2013). 17--24. Google ScholarGoogle ScholarCross RefCross Ref
  9. H. Kim, J. Choo, J. Kim, C. K. Reddy, and H. Park. 2015. Simultaneous Discovery of Common and Discriminative Topics via Joint Nonnegative Matrix Factorization. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '15). 567--576. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Kim and H. Park. 2011. Fast Nonnegative Matrix Factorization: An Active-Set-Like Method and Comparisons. SIAM Journal on Scientific Computing 33, 6 (2011), 3261--3281. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Kim, K. Kang, D. Park, J. Choo, and N. Elmqvist. 2017. TopicLens: Efficient Multi-Level Visual Topic Exploration of Large-Scale Document Collections. IEEE Transactions on Visualization and Computer Graphics 23, 1 (2017), 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. Koch and S. Ullman. 1987. Shifts in Selective Visual Attention: Towards the Underlying Neural Circuitry. Springer Netherlands, 115--141. Google ScholarGoogle ScholarCross RefCross Ref
  13. K. Kurzhals, F. Heimerl, and D. Weiskopf. 2014. ISeeCube: Visual Analysis of Gaze Data for Video. In Proceedings of the Symposium on Eye Tracking Research and Applications (ETRA '14). 43--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. Lee and H. Seung. 1999. Learning the Parts of Objects by Non-Negative Matrix Factorization. Nature 401 (1999), 788--791. Google ScholarGoogle ScholarCross RefCross Ref
  15. H. Lee, J. Kihm, J. Choo, J. Stasko, and H. Park. 2012. iVisClustering: An Interactive Visual Document Clustering via Topic Modeling. Computer Graphics Forum 31, 3pt3 (2012), 1155--1164. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2012.03108.x Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. X. Liu, Y. Hu, S. North, and H.-W. Shen. 2018. CorrelatedMultiples: Spatially Coherent Small Multiples With Constrained Multi-Dimensional Scaling. Computer Graphics Forum 37, 1 (2018), 7--18. Google ScholarGoogle ScholarCross RefCross Ref
  17. K. Maruyama, S. Takahashi, H.-Y. Wu, K. Misue, and M. Arikawa. 2019. Scale-Aware Cartographic Displacement Based on Constrained Optimization. In 2019 23rd International Conference Information Visualisation (IV). 74--80. Google ScholarGoogle ScholarCross RefCross Ref
  18. W. Meulemans. 2019. Efficient Optimal Overlap Removal: Algorithms and Experiments. Computer Graphics Forum 38, 3 (2019), 713--723. Google ScholarGoogle ScholarCross RefCross Ref
  19. M. Nöllenburg and A. Wolff. 2011. Drawing and Labeling High-Quality Metro Maps by Mixed-Integer Programming. IEEE Transactions Visualization and Computer Graphics 17, 5 (2011), 626--641. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Okoe, S. Alam, and R. Jianu. 2014. A Gaze-enabled Graph Visualization to Improve Graph Reading Tasks. Computer Graphics Forum 33 (06 2014), 251--260. Google ScholarGoogle ScholarCross RefCross Ref
  21. A. R. Gomez and H. Gellersen. 2019. SuperVision: Playing with Gaze Aversion and Peripheral Vision. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). Article 473, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. N. Silva, T. Blascheck, R. Jianu, N. Rodrigues, D. Weiskopf, M. Raubal, and T. Schreck. 2019. Eye Tracking Support for Visual Analytics Systems: Foundations, Current Applications, and Research Challenges. In Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications (ETRA '19). Article 11, 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. G. Strong and M. Gong. 2014. Self-Sorting Map: An Efficient Algorithm for Presenting Multimedia Data in Structured Layouts. IEEE Transactions on Multimedia 16, 4 (2014), 1045--1058. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. H. Y. Tsang, M. Tory, and C. Swindells. 2010. eSeeTrack---Visualizing Sequential Fixation Patterns. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 953--962. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. L. van der Maaten and G. Hinton. 2008. Visualizing Data using t-SNE. Journal of Machine Learning Research 9 (2008), 2579--2605.Google ScholarGoogle Scholar
  26. H.-Y. Wu, S. Takahashi, D. Hirono, M. Arikawa, C.-C. Lin, and H.-C. Yen. 2013. Spatially Efficient Design of Annotated Metro Maps. Computer Graphics Forum 32, 3 (2013), 261--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. V. Yoghourdjian, T. Dwyer, G. Gange, S. Kieffer, K. Klein, and K. Marriott. 2016. High-Quality Ultra-Compact Grid Layout of Grouped Networks. IEEE Transactions on Visualization and Computer Graphics 22, 1 (2016), 339--348. Google ScholarGoogle ScholarCross RefCross Ref
  28. D. C. Zarate, P. L. Bodic, T. Dwyer, G. Gange, and P. Stuckey. 2018. Optimal Sankey Diagrams Via Integer Programming. In 2018 IEEE Pacific Visualization Symposium (PacificVis). 135--139. Google ScholarGoogle ScholarCross RefCross Ref
  29. H. Zhou, X. Yuan, H. Qu, W. Cui, and B. Chen. 2008. Visual Clustering in Parallel Coordinates. Computer Graphics Forum 27, 3 (2008), 1047--1054. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Context-aware placement of items with gaze-based interaction

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            VINCI '20: Proceedings of the 13th International Symposium on Visual Information Communication and Interaction
            December 2020
            205 pages
            ISBN:9781450387507
            DOI:10.1145/3430036

            Copyright © 2020 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 8 December 2020

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate71of193submissions,37%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader