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ABSTRACT 
On-line Precision scalability of the deep neural networks(DNNs) is 
a critical feature to support accuracy and complexity trade-off 
during the DNN inference. In this paper, we propose dual-precision 
DNN that includes two different precision modes in a single model, 
thereby supporting an on-line precision switch without re-training. 
The proposed two-phase training process optimizes both low- and 
high-precision modes. 
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1. INTRODUCTION 
Deep Neural Networks (DNNs) require a large number of 
parameters and operations to be stored and computed, which act as 
a critical challenge of accelerating DNN inference on the edge 
devices with limited resources. One of the solutions for this 
challenge can be utilizing the quantization method that reduces the 
numerical precision of the weight parameters and/or activations, 
which determines the accuracy and required compute/memory 
resources of the inference. As the accuracy requirement and 
available resources can vary due to the nature of dynamic 
environment of the edge device applications, a critical feature for 
DNN quantization is on-line precision scalability of DNN models, 
supporting dynamic trade-off between accuracy and complexity of 
the DNN inference.  

One solution for this demand is to store two separate DNN models 
trained for different target precision (b-bit and (b+1)-bit precision), 
and apply either of the two depending on the accuracy/complexity 
requirements (Fig. 1(a)). However, this solution requires additional 
memory for storing the two DNN models. Another solution can be 
transforming a DNN model on-demand for the specific target 
precision as in Fig. 1(b). However, the existing precision scaling 
methods generally require retraining of the DNN models, which 
limits an on-line switch of the model precision. Although post 
quantization techniques can be applied to remove the need for re-
training, the accuracy cannot be guaranteed when down-scaling 
into the low precision. 

In this paper, we propose a new method to train dual-precision 
DNNs that can switch between the two precision modes without the 
need for re-training. By sharing the common bits (b bits) between 
the low- and high-precision weights, the dual-precision DNN 
allows dynamic on-line switch between the two precision modes 
only with truncation (precision down-scaling) or concatenation 
(precision up-scaling) of the last 1 bits. To optimize both precision 
modes in a single model, we propose the training process with two 
phases - first phase for shared-bit training and second phase for the 
entire high-precision training. After applying the proposed training 

method, the first b bits and the entire b+1 bits of the weights are 
optimized for the low-precision and high-precision modes, 
respectively, each showing comparable accuracy to the baseline 
models trained for the target precision using the existing 
quantization method. 

2. RELATED WORK 
In recent years, a growing number of studies have proposed 
techniques for reducing the bit precision of DNN models. 

One line of studies proposed DNN training methods to minimize 
accuracy loss under quantization of weights and/or activations. 
DNNs such as BinaryConnect [4], BNN [7], and XNOR-Net [16] 
have been proposed to quantize weights/activations to 1-bit. TWN 
[8,13] added the level zero, and other studies [5,19] have 
represented parameters as multiple levels expressed as integers 
using the rounding function. To exploit the bell-shaped distribution 
of the weights, LogNet [12] represented quantized parameters in 
the log domain. Another line of studies [6,21] applied re-training 
after	 quantization to compensate accuracy drop. As the above 
quantization methods are tightly coupled with the training process, 
changing the model precision requires retraining of the model, 
otherwise the accuracy drop can be significant [3]. 

To enable precision down-scaling without training, several studies 
have pro- posed post quantization techniques, which mainly focus 
on finding the clipping threshold. Sung et al. [18] used L2 error to 
optimize fixed-point quantization, and Migacz et al. [15] found the 
minimum value using the KL divergence between the original 
distribution and the quantized distribution. Banner et al. [1] used 
Gaussian and Laplacian distribution to model the prior distribution, 
and Zhao et al. [20] divided the channel of filters to reduce the size 
of the clip value. 

 
(a)                                 (b)                           (c) 

Figure 1. Solutions for on-line precision switch of a DNN 
model on a device. (a) a device contains two separate 
models, each trained for the target precision, (b) a device 
contains a single model, but re-trained on-demand for the 
target precisions, (c) the proposed dual-precision DNN 
that contains two different precision modes in a single 
model, supporting easy switch between different precision 
modes. 



Most recently, Liu et al. [14] linearly combined multiple low 
precision weights to approximate full weights. Although the post 
quantization methods aim to remove the need for re-training after 
precision down-scaling, down-scaled DNN models generally show 
lower accuracy than the models originally trained for the same 
target precision. In addition, to minimize quantization error after 
post quantization, those methods require finding and tuning hyper-
parameters, which can be critical overhead in on-line dynamic 
switching between different precision modes on the edge devices. 

To enable precision switch without additional processing or re-
training, this paper proposes dual-precision DNNs that readily 
include two distinct weight precision modes. Unlike the post 
quantization methods, the proposed technique achieves comparable 
accuracy to the models originally trained for the same precision. 

3. DUAL-PRECISION DEEP NEURAL 
NETWORK 
The proposed method creates dual-precision DNNs by training both 
the low- precision (b bits) and high-precision (b+1 bits) parts of the 
weights. We propose weight-bit sharing between the two precision 
modes, where the b-bit values of the weights in the low-precision 
mode are directly used for the b high-order bits of the weights in 
the high-precision mode (Fig 2(a)). This bit sharing allows efficient 
transition between the two models during inference, realized with 
simple appending and removing of the 1 up-scaling bits. 

In order to include dual precision modes in each weight element, 
we propose the training process as a series of shared bit training 
(optimizing both the low- and high-precision weights) and up-
scaling bit training (optimizing the high- precision weights), as 
shown in (Fig 2(b)). As we train dual-precision DNNs, each level 
of the b-bit low-precision weights are branched out into 2 levels, to 
make more index values supported by the high-precision weights 
(Fig 2(c)). The following sections describe detailed quantization 
and training method for dual-precision DNNs. 

3.1 Quantization Method 
Quantization of DNN weights is a process of mapping the weights 
into different levels, IÎÂ3 based on the number of levels and the 
scale sÎÂ1, which are determined by the target precision. 
Generally, if two DNN models are individually trained for two 
different target precision, there will be no dependencies between 

the weight values of the two models. To integrate two precision 
modes in a single set of weights, the training method should 
maintain dependencies between the values in the weights with the 
two precision modes. 

To address this, the proposed training method builds the up-scaled 
b+1-bit model based on the original b-bit model, while maintaining 
the weight levels and values of the b shared bits. This can be 
accomplished by branching out each of the existing weight levels 
into 2 levels, as shown in (1). 

 Ib+1 ← 2 · Ib + λ. (1) 

In terms of representation, the proposed method builds high-
precision weights by shifting the shared bits to the left and 
appending up-scaling bits at the right (at the least-significant 
position), as depicted in Fig 2(a). The up-scaling bits can be 
expressed as level parameters, λ, which should be trained by the 
proposed training method. For example, if we up-scale by 1-bit, 
training process will determine λ as 0 or 1. 

In case of the scale s, several studies [1,9,19,20] have obtained 
empirical or specific value such as the power-of-2. In this work, we 
assume the range represented by the original b-bit precision 
weights is equal to that of the up- scaled (b+1)-bit precision weights. 
Therefore, we can define the value of the scale in terms of the 
interval of the range as shown in (2). 

 (2b − 1)slb  = (2b+1 − 1)slb+1 

	slb+1 = (2b − 1) slb/(2b+1 – 1), 
(2) 

Where λ is a positive value in the range of [0, 2k−1). 

For any quantization method, it is important to properly set the 
scale according to the range of the weights, to minimize the loss of 
accuracy. The proposed method specifies the scale value depending 
on the quantization method – linear quantization. 

In linear quantization [5,19], the scale value is defined by dividing 
the range of weights by the number of levels corresponding bit-
width. The weight values are divided by the scale, then applied by 
the Round function, to be represented as the level index. Therefore, 
the quantized weights are defined by multiplying the level index 
and the scale. For linear quantization qlinear (x; s), the levels I and 
scale s are obtained by 
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Figure 2. (a) Transition between low-precision and high-precision is implemented by simple appending and removing 
operations of the up-scaling bit. (b) A flow chart representing the overall process of the proposed training method. (c) Each 
histogram representing indices and scale corresponding to the bit precision. Top represents the original 2-bit low-precision 
weights, and bottom represents branched 3-bit high-precision weights. 



 

 qlinear (x; s) := clip(I; n, p) · s  (3) 
where I = éx/sû, n = −2b-1, p = 2b-1-1, s = max(|x|)/(2b-1-1) for signed 
data. 

By applying (1) with the levels I and scale s of the original precision 
model, the levels Ib+1 and scale sb+1 of the upscaled precision model 
can be obtained. The weights of the up-scaled model are obtained 
by multiplying Ib+1 with	sb+1. 

3.2 Training Method 
In order to effectively train dual-precision models, both the added 
level parameters λ and the shared b-bit low-precision weights 
should be optimized. To address this motivation, we divide the 
training process into two phases. In the first phase, hypotheses from 
both the low-precision and high-precision weights are combined 
into a single hypothesis, which is then used to update the weights. 
Weight update is performed in an alternative way, that is, one epoch 
updates only the b-bit weights and the other epoch updates the both 
low precision b-bit weights and high-precision b+1-bit weights. 
The second phase only updates the high-precision weights, based 
only on the hypothesis from the high-precision weights. 

Algorithm 1 and Algorithm 2 describe the detailed process, each of 
which corresponds to the first and second phase explained above, 
respectively. 

3.2.1 Algorithm 1 
Algorithm 1 takes the low-precision weights and high-precision 
weights, with the low-precision weight bits are shared by the both 
weights. To reflect the errors from the high-precision weights into 
the low-precision model updates, the final hypothesis h is 
constructed as the regularized average of the hypotheses of the low-
precision weights (hMb ) and high-precision weights (hMb+1 ). 

 h = (hMb+hhMb+1)/2,  (6) 
where hÎÂ1 is an arbitrary positive real value for regularizing the 
hypothesis. 

The final hypothesis is then compared with the label corresponding 
to the training data to calculate the gradient updates. Weight update 
is performed differently in odd and even epochs. In odd epochs, 
only the shared b-bit low- precision parameters are updated. In even 
epochs, on the other hand, 1-bit level parameters λ added in the 
high-precision weights are updated as well as the shared b-bit 
parameters. 

3.2.2 Algorithm 2 
Algorithm 2 is to train only the up-scaling bits (1-bit) of the high- 
precision weights, by maintaining the low-precision weights 
trained during the phase 1. The process in the forward pass is same 
as in Algorithm 1. The major difference from Algorithm 1 is that 
Algorithm 2 needs only the high-precision model’s hypothesis hMb+1 
for training, and the trainable parameters are λ in the high-precision 
model. 

If the model does not utilize enough levels, the accuracy of the 
model cannot be high enough. Therefore, to facilitate level 
branching, we apply index normalization. More specifically, the 
index parameters are initialized to a normal distribution with a 
mean of 0 and a standard deviation of 0.3 (m = 0, σ = 0.3), and the 
range of the updated parameters is scaled as same as the range of 
the index parameters. By applying this index normalization, we can 
initialize the index parameters to be distributed evenly so that the 
high-precision weights can achieve better accuracy. 

4. EXPERIMENTS 

4.1 Experimental Configuration 
We performed evaluations with AlexNetBN (AlexNet [10] with 
batch normalization) VGG16 [17], using the CIFAR10 and 
CIFAR100 datasets [11]. 

To validate application of linear quantization into the proposed 
methods, we applied linear quantization for AlexNetBN with 
CIFAR100, CIFAR10 datasets, and VGG16 with CIFAR100 
datasets. 

For training, we used batch size of 125, and learning rate of 3e-4, 
3e-5, and 4e-3 for the odd and even epochs of the phase 1 and the 
phase 2, respectively. We used different η depending on the model, 
but it was set to 0.01 in general. As η gets larger, high-precision 
model gets better results but low-precision model could not be 
trained enough. Regarding the transition point from phase 1 and 2, 
we used 50 epochs. 

For CIFAR10, we did not apply any data augmentation, but for 
CIFAR100, we used data augmentation such as random horizontal 
flipping and cropping. 

4.2 Results 
Table 1 shows the test accuracy values of the proposed dual-
precision DNNs with the two precision modes (n-bit and (n+1)-bit 
precision). The performance is compared against the baseline 
method, which trains a dedicated DNN model targeted for each bit 
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Figure 3. Demonstration of the proposed training 
algorithm. (a) Algorithm 1, (b) Algorithm 2. Two big 
squares represent models. The top model is the low-
precision model, and the bottom model is the high-
precision model. 



precision. For the proposed method, double arrow (↔) indicates 
that a single DNN model can switch between n-bit to n+1 bit 
weights. As shown in Table 1, the proposed dual-precision DNNs 
achieve comparable performance to the baseline models dedicated 
for the target precision. The result shows that the proposed method 
is effective for linear quantization method. 

Table 1. Top-1 accuracy(%) of 1-bit up-scaled dual-precision 
models and baseline models in CIFAR 10. 

We also evaluate performance of dual-precision DNNs with 
VGG16 with CIFAR100 datasets, as shown in Table 2. As in the 
AlexNetBN with CIFAR10 datasets result shown in Table 1, the 
proposed DNNs with different model and datasets show similar or 
better performance compared to the baseline models. The results 
show that the proposed dual-precision DNN models show no 
significant accuracy loss, as the models readily include high-
precision as well as low-precision weights trained for each target 
precision. 

Fig 4(a) represents the test accuracy during the training process of 
2-bit/3- bit dual-precision weights in AlexNetBN model for the 
CIFAR10 dataset. In this figure, the dotted line indicates the 
transition of the training phase from phase 1 to phase 2 (from 
Algorithm 1 to Algorithm 2). During the first training phase with 
Algorithm 1, there is a fluctuation of the accuracy values of the both 
2-bit and 3-bit precision weights. This fluctuation is because of the 
fact that the shared 2-bit weights are alternately updated in even 
and odd epochs. The accuracy values of the 2-bit weights and 3-bit 
weights are close each other because they share the same 2-bit 
weight values. However, the accuracy of the 3-bit weights is not 
higher than that of the 2-bit weights yet since the additional 1-bit 
portion is not fully trained in this phase. In the second phase, on the 
other hand, the full 3-bit weights are trained while maintaining 2-
bit weights. Therefore, the accuracy of the 3-bit weights exceeds 
that of 2-bit weights, while approaching the accuracy of the 
baseline 3-bit precision DNN model. 

Fig 4(b) represents the maximum number of index levels in all the 
layers of the same DNN model as in Fig 4(a) during the proposed 
training process. It shows that level branching according to the 
added 1-bit occurs right after the transition to the phase 2. This is 
because the phase used η to more focus on the shared 2-bit weights, 
creating little influence on index parameters to be updated. In 
contrast, when the model is train in phase 2, the almost all the levels 
available for the high-precision bits are used to represent the weight 
levels, thereby enhancing the accuracy. 

Table 2. Top-1 accuracy(%) of 1-bit up-scaled dual-precision 
models and baseline models in CIFAR100. 

5. CONCLUSION 
This work presents a novel training method for training DNN 
models targeted for two distinct precision modes in a single model. 
We show that the proposed method can train a DNN with two 
precision modes, achieving similar accuracy compared to the 
baseline models trained for the same precision. The dual-precision 
DNN allows easy switch between without any retraining, enabling 
efficient trade-off between the accuracy and compute/memory 
complexity of the DNN inference. 
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