
Dual-Precision Deep Neural Network
Jae Hyun Park
Department of AI

Sungkyunkwan University
Suwon, South Korea

xoxc4565@g.skku.edu

Ji Sub Choi
College of Information and

Communication Engineering
Sungkyunkwan University

Suwon, South Korea
cjs3450@skku.edu

Jong Hwan Ko*
College of Information and

Communication Engineering
Sungkyunkwan University

Suwon, South Korea
jhko@skku.edu

ABSTRACT
On-line Precision scalability of the deep neural networks(DNNs) is
a critical feature to support accuracy and complexity trade-off
during the DNN inference. In this paper, we propose dual-precision
DNN that includes two different precision modes in a single model,
thereby supporting an on-line precision switch without re-training.
The proposed two-phase training process optimizes both low- and
high-precision modes.

Keywords
Deep neural network; weight quantization; dual precision;
precision scalable.

1. INTRODUCTION
Deep Neural Networks (DNNs) require a large number of
parameters and operations to be stored and computed, which act as
a critical challenge of accelerating DNN inference on the edge
devices with limited resources. One of the solutions for this
challenge can be utilizing the quantization method that reduces the
numerical precision of the weight parameters and/or activations,
which determines the accuracy and required compute/memory
resources of the inference. As the accuracy requirement and
available resources can vary due to the nature of dynamic
environment of the edge device applications, a critical feature for
DNN quantization is on-line precision scalability of DNN models,
supporting dynamic trade-off between accuracy and complexity of
the DNN inference.

One solution for this demand is to store two separate DNN models
trained for different target precision (b-bit and (b+1)-bit precision),
and apply either of the two depending on the accuracy/complexity
requirements (Fig. 1(a)). However, this solution requires additional
memory for storing the two DNN models. Another solution can be
transforming a DNN model on-demand for the specific target
precision as in Fig. 1(b). However, the existing precision scaling
methods generally require retraining of the DNN models, which
limits an on-line switch of the model precision. Although post
quantization techniques can be applied to remove the need for re-
training, the accuracy cannot be guaranteed when down-scaling
into the low precision.

In this paper, we propose a new method to train dual-precision
DNNs that can switch between the two precision modes without the
need for re-training. By sharing the common bits (b bits) between
the low- and high-precision weights, the dual-precision DNN
allows dynamic on-line switch between the two precision modes
only with truncation (precision down-scaling) or concatenation
(precision up-scaling) of the last 1 bits. To optimize both precision
modes in a single model, we propose the training process with two
phases - first phase for shared-bit training and second phase for the
entire high-precision training. After applying the proposed training

method, the first b bits and the entire b+1 bits of the weights are
optimized for the low-precision and high-precision modes,
respectively, each showing comparable accuracy to the baseline
models trained for the target precision using the existing
quantization method.

2. RELATED WORK
In recent years, a growing number of studies have proposed
techniques for reducing the bit precision of DNN models.

One line of studies proposed DNN training methods to minimize
accuracy loss under quantization of weights and/or activations.
DNNs such as BinaryConnect [4], BNN [7], and XNOR-Net [16]
have been proposed to quantize weights/activations to 1-bit. TWN
[8,13] added the level zero, and other studies [5,19] have
represented parameters as multiple levels expressed as integers
using the rounding function. To exploit the bell-shaped distribution
of the weights, LogNet [12] represented quantized parameters in
the log domain. Another line of studies [6,21] applied re-training
after	 quantization to compensate accuracy drop. As the above
quantization methods are tightly coupled with the training process,
changing the model precision requires retraining of the model,
otherwise the accuracy drop can be significant [3].

To enable precision down-scaling without training, several studies
have pro- posed post quantization techniques, which mainly focus
on finding the clipping threshold. Sung et al. [18] used L2 error to
optimize fixed-point quantization, and Migacz et al. [15] found the
minimum value using the KL divergence between the original
distribution and the quantized distribution. Banner et al. [1] used
Gaussian and Laplacian distribution to model the prior distribution,
and Zhao et al. [20] divided the channel of filters to reduce the size
of the clip value.

(a) (b) (c)

Figure 1. Solutions for on-line precision switch of a DNN
model on a device. (a) a device contains two separate
models, each trained for the target precision, (b) a device
contains a single model, but re-trained on-demand for the
target precisions, (c) the proposed dual-precision DNN
that contains two different precision modes in a single
model, supporting easy switch between different precision
modes.

Most recently, Liu et al. [14] linearly combined multiple low
precision weights to approximate full weights. Although the post
quantization methods aim to remove the need for re-training after
precision down-scaling, down-scaled DNN models generally show
lower accuracy than the models originally trained for the same
target precision. In addition, to minimize quantization error after
post quantization, those methods require finding and tuning hyper-
parameters, which can be critical overhead in on-line dynamic
switching between different precision modes on the edge devices.

To enable precision switch without additional processing or re-
training, this paper proposes dual-precision DNNs that readily
include two distinct weight precision modes. Unlike the post
quantization methods, the proposed technique achieves comparable
accuracy to the models originally trained for the same precision.

3. DUAL-PRECISION DEEP NEURAL
NETWORK
The proposed method creates dual-precision DNNs by training both
the low- precision (b bits) and high-precision (b+1 bits) parts of the
weights. We propose weight-bit sharing between the two precision
modes, where the b-bit values of the weights in the low-precision
mode are directly used for the b high-order bits of the weights in
the high-precision mode (Fig 2(a)). This bit sharing allows efficient
transition between the two models during inference, realized with
simple appending and removing of the 1 up-scaling bits.

In order to include dual precision modes in each weight element,
we propose the training process as a series of shared bit training
(optimizing both the low- and high-precision weights) and up-
scaling bit training (optimizing the high- precision weights), as
shown in (Fig 2(b)). As we train dual-precision DNNs, each level
of the b-bit low-precision weights are branched out into 2 levels, to
make more index values supported by the high-precision weights
(Fig 2(c)). The following sections describe detailed quantization
and training method for dual-precision DNNs.

3.1 Quantization Method
Quantization of DNN weights is a process of mapping the weights
into different levels, IÎÂ3 based on the number of levels and the
scale sÎÂ1, which are determined by the target precision.
Generally, if two DNN models are individually trained for two
different target precision, there will be no dependencies between

the weight values of the two models. To integrate two precision
modes in a single set of weights, the training method should
maintain dependencies between the values in the weights with the
two precision modes.

To address this, the proposed training method builds the up-scaled
b+1-bit model based on the original b-bit model, while maintaining
the weight levels and values of the b shared bits. This can be
accomplished by branching out each of the existing weight levels
into 2 levels, as shown in (1).

 Ib+1 ← 2 · Ib + λ. (1)

In terms of representation, the proposed method builds high-
precision weights by shifting the shared bits to the left and
appending up-scaling bits at the right (at the least-significant
position), as depicted in Fig 2(a). The up-scaling bits can be
expressed as level parameters, λ, which should be trained by the
proposed training method. For example, if we up-scale by 1-bit,
training process will determine λ as 0 or 1.

In case of the scale s, several studies [1,9,19,20] have obtained
empirical or specific value such as the power-of-2. In this work, we
assume the range represented by the original b-bit precision
weights is equal to that of the up- scaled (b+1)-bit precision weights.
Therefore, we can define the value of the scale in terms of the
interval of the range as shown in (2).

 (2b − 1)slb = (2b+1 − 1)slb+1

	slb+1 = (2b − 1) slb/(2b+1 – 1),
(2)

Where λ is a positive value in the range of [0, 2k−1).

For any quantization method, it is important to properly set the
scale according to the range of the weights, to minimize the loss of
accuracy. The proposed method specifies the scale value depending
on the quantization method – linear quantization.

In linear quantization [5,19], the scale value is defined by dividing
the range of weights by the number of levels corresponding bit-
width. The weight values are divided by the scale, then applied by
the Round function, to be represented as the level index. Therefore,
the quantized weights are defined by multiplying the level index
and the scale. For linear quantization qlinear (x; s), the levels I and
scale s are obtained by

(a) (b) (c)

Figure 2. (a) Transition between low-precision and high-precision is implemented by simple appending and removing
operations of the up-scaling bit. (b) A flow chart representing the overall process of the proposed training method. (c) Each
histogram representing indices and scale corresponding to the bit precision. Top represents the original 2-bit low-precision
weights, and bottom represents branched 3-bit high-precision weights.

 qlinear (x; s) := clip(I; n, p) · s (3)
where I = éx/sû, n = −2b-1, p = 2b-1-1, s = max(|x|)/(2b-1-1) for signed
data.

By applying (1) with the levels I and scale s of the original precision
model, the levels Ib+1 and scale sb+1 of the upscaled precision model
can be obtained. The weights of the up-scaled model are obtained
by multiplying Ib+1 with	sb+1.

3.2 Training Method
In order to effectively train dual-precision models, both the added
level parameters λ and the shared b-bit low-precision weights
should be optimized. To address this motivation, we divide the
training process into two phases. In the first phase, hypotheses from
both the low-precision and high-precision weights are combined
into a single hypothesis, which is then used to update the weights.
Weight update is performed in an alternative way, that is, one epoch
updates only the b-bit weights and the other epoch updates the both
low precision b-bit weights and high-precision b+1-bit weights.
The second phase only updates the high-precision weights, based
only on the hypothesis from the high-precision weights.

Algorithm 1 and Algorithm 2 describe the detailed process, each of
which corresponds to the first and second phase explained above,
respectively.

3.2.1 Algorithm 1
Algorithm 1 takes the low-precision weights and high-precision
weights, with the low-precision weight bits are shared by the both
weights. To reflect the errors from the high-precision weights into
the low-precision model updates, the final hypothesis h is
constructed as the regularized average of the hypotheses of the low-
precision weights (hMb) and high-precision weights (hMb+1).

 h = (hMb+hhMb+1)/2, (6)
where hÎÂ1 is an arbitrary positive real value for regularizing the
hypothesis.

The final hypothesis is then compared with the label corresponding
to the training data to calculate the gradient updates. Weight update
is performed differently in odd and even epochs. In odd epochs,
only the shared b-bit low- precision parameters are updated. In even
epochs, on the other hand, 1-bit level parameters λ added in the
high-precision weights are updated as well as the shared b-bit
parameters.

3.2.2 Algorithm 2
Algorithm 2 is to train only the up-scaling bits (1-bit) of the high-
precision weights, by maintaining the low-precision weights
trained during the phase 1. The process in the forward pass is same
as in Algorithm 1. The major difference from Algorithm 1 is that
Algorithm 2 needs only the high-precision model’s hypothesis hMb+1
for training, and the trainable parameters are λ in the high-precision
model.

If the model does not utilize enough levels, the accuracy of the
model cannot be high enough. Therefore, to facilitate level
branching, we apply index normalization. More specifically, the
index parameters are initialized to a normal distribution with a
mean of 0 and a standard deviation of 0.3 (m = 0, σ = 0.3), and the
range of the updated parameters is scaled as same as the range of
the index parameters. By applying this index normalization, we can
initialize the index parameters to be distributed evenly so that the
high-precision weights can achieve better accuracy.

4. EXPERIMENTS

4.1 Experimental Configuration
We performed evaluations with AlexNetBN (AlexNet [10] with
batch normalization) VGG16 [17], using the CIFAR10 and
CIFAR100 datasets [11].

To validate application of linear quantization into the proposed
methods, we applied linear quantization for AlexNetBN with
CIFAR100, CIFAR10 datasets, and VGG16 with CIFAR100
datasets.

For training, we used batch size of 125, and learning rate of 3e-4,
3e-5, and 4e-3 for the odd and even epochs of the phase 1 and the
phase 2, respectively. We used different η depending on the model,
but it was set to 0.01 in general. As η gets larger, high-precision
model gets better results but low-precision model could not be
trained enough. Regarding the transition point from phase 1 and 2,
we used 50 epochs.

For CIFAR10, we did not apply any data augmentation, but for
CIFAR100, we used data augmentation such as random horizontal
flipping and cropping.

4.2 Results
Table 1 shows the test accuracy values of the proposed dual-
precision DNNs with the two precision modes (n-bit and (n+1)-bit
precision). The performance is compared against the baseline
method, which trains a dedicated DNN model targeted for each bit

(a)

(b)

Figure 3. Demonstration of the proposed training
algorithm. (a) Algorithm 1, (b) Algorithm 2. Two big
squares represent models. The top model is the low-
precision model, and the bottom model is the high-
precision model.

precision. For the proposed method, double arrow (↔) indicates
that a single DNN model can switch between n-bit to n+1 bit
weights. As shown in Table 1, the proposed dual-precision DNNs
achieve comparable performance to the baseline models dedicated
for the target precision. The result shows that the proposed method
is effective for linear quantization method.

Table 1. Top-1 accuracy(%) of 1-bit up-scaled dual-precision
models and baseline models in CIFAR 10.

We also evaluate performance of dual-precision DNNs with
VGG16 with CIFAR100 datasets, as shown in Table 2. As in the
AlexNetBN with CIFAR10 datasets result shown in Table 1, the
proposed DNNs with different model and datasets show similar or
better performance compared to the baseline models. The results
show that the proposed dual-precision DNN models show no
significant accuracy loss, as the models readily include high-
precision as well as low-precision weights trained for each target
precision.

Fig 4(a) represents the test accuracy during the training process of
2-bit/3- bit dual-precision weights in AlexNetBN model for the
CIFAR10 dataset. In this figure, the dotted line indicates the
transition of the training phase from phase 1 to phase 2 (from
Algorithm 1 to Algorithm 2). During the first training phase with
Algorithm 1, there is a fluctuation of the accuracy values of the both
2-bit and 3-bit precision weights. This fluctuation is because of the
fact that the shared 2-bit weights are alternately updated in even
and odd epochs. The accuracy values of the 2-bit weights and 3-bit
weights are close each other because they share the same 2-bit
weight values. However, the accuracy of the 3-bit weights is not
higher than that of the 2-bit weights yet since the additional 1-bit
portion is not fully trained in this phase. In the second phase, on the
other hand, the full 3-bit weights are trained while maintaining 2-
bit weights. Therefore, the accuracy of the 3-bit weights exceeds
that of 2-bit weights, while approaching the accuracy of the
baseline 3-bit precision DNN model.

Fig 4(b) represents the maximum number of index levels in all the
layers of the same DNN model as in Fig 4(a) during the proposed
training process. It shows that level branching according to the
added 1-bit occurs right after the transition to the phase 2. This is
because the phase used η to more focus on the shared 2-bit weights,
creating little influence on index parameters to be updated. In
contrast, when the model is train in phase 2, the almost all the levels
available for the high-precision bits are used to represent the weight
levels, thereby enhancing the accuracy.

Table 2. Top-1 accuracy(%) of 1-bit up-scaled dual-precision
models and baseline models in CIFAR100.

5. CONCLUSION
This work presents a novel training method for training DNN
models targeted for two distinct precision modes in a single model.
We show that the proposed method can train a DNN with two
precision modes, achieving similar accuracy compared to the
baseline models trained for the same precision. The dual-precision
DNN allows easy switch between without any retraining, enabling
efficient trade-off between the accuracy and compute/memory
complexity of the DNN inference.

6. REFERENCES
[1] Banner, R., Nahshan, Y., Hoffer, E., Soudry, D.: Aciq:

Analytical clipping for integer quantization of neural
networks (2018).

[2] Cai, J., Takemoto, M., Nakajo, H.: A deep look into
logarithmic quantization of model parameters in neural
networks. In: Proceedings of the 10th International
Conference on Advances in Information Technology. pp. 1–8
(2018).

[3] Chung, J., Shin, T.: Simplifying deep neural networks for
neuromorphic architec- tures. In: 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC).
pp. 1–6. IEEE (2016).

[4] Courbariaux,M.,Bengio,Y.,David,J.P.:Binaryconnect:Trainin
gdeepneuralnet- works with binary weights during
propagations. In: Advances in neural information processing
systems. pp. 3123–3131 (2015).

[5] Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.:
Deep learning with limited numerical precision. In:

 (a) (b)
Figure 4. (a) accuracy of the low-precision model and the
high-precision model during the training process, (b) the
maximum number of index levels in each model during
training.

International Conference on Machine Learning. pp. 1737–
1746 (2015).

[6] Han, S., Mao, H., Dally, W.J.: Deep compression:
Compressing deep neural net- works with pruning, trained
quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015).

[7] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R.,
Bengio, Y.: Binarizedneural networks. In: Advances in
neural information processing systems. pp. 4107–4115
(2016).

[8] Hwang, K., Sung, W.: Fixed-point feedforward deep neural
network design using weights+ 1, 0, and- 1. In: 2014 IEEE
Workshop on Signal Processing Systems (SiPS). pp. 1–6.
IEEE (2014).

[9] Jain, S.R., Gural, A., Wu, M., Dick, C.H.: Trained
quantization thresholds for accurate and efficient fixed-point
inference of deep neural networks. arXiv preprint
arXiv:1903.08066 2(3), 7 (2019).

[10] Krizhevsky, A., Sutskever, I., Hinton, G.: ‘2012 alexnet.
Advances In Neural Infor- mation Processing Systems pp. 1–
9 (2012).

[11] Krizhevsky, A., Hinton, G., et al.: Learning multiple layers
of features from tiny images (2009).

[12] Lee, E.H., Miyashita, D., Chai, E., Murmann, B., Wong,
S.S.: Lognet: Energy- efficient neural networks using
logarithmic computation. In: 2017 IEEE Interna- tional
Conference on Acoustics, Speech and Signal Processing
(ICASSP). pp. 5900– 5904. IEEE (2017).

[13] Li, F., Zhang, B., Liu, B.: Ternary weight networks. arXiv
preprint arXiv:1605.04711 (2016).

[14] Liu, X., Ye, M., Zhou, D., Liu, Q.: Post-training quantization
with multiple points: Mixed precision without mixed
precision. arXiv preprint arXiv:2002.09049 (2020).

[15] Migacz, S.: 8-bit inference with tensorrt. In: GPU technology
conference. vol. 2, p. 5 (2017).

[16] Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-
net: Imagenet classification using binary convolutional
neural networks. In: European conference on computer
vision. pp. 525–542. Springer (2016).

[17] Simonyan, K., Zisserman, A.: Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

[18] Sung, W., Shin, S., Hwang, K.: Resiliency of deep neural
networks under quantization. arXiv preprint
arXiv:1511.06488 (2015).

[19] Wu, S., Li, G., Chen, F., Shi, L.: Training and inference with
integers in deep neural networks. arXiv preprint
arXiv:1802.04680 (2018).

[20] Zhao, R., Hu, Y., Dotzel, J., De Sa, C., Zhang, Z.: Improving
neural network quantization using outlier channel splitting.
arXiv preprint arXiv:1901.09504 (2019)

[21] Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental
network quantization: Towards lossless cnns with low-
precision weights. arXiv preprint arXiv:1702.03044 (2017).

