
Algorithm Simulation with Automatic Assessment

Ari Korhonen and Lauri Malmi
Department of Computer Science and Engineering

Helsinki University of Technology
Finland

{archie,lma}@cs.hut.fi

Abstract

Visualization is a useful aid for understanding the work-
ing of algorithms. Therefore many interactive algorithm
animation tools have been developed. However, stu-
dents may misinterpret the visualization and therefore
the correctness of their interpretation should be con-
firmed by tests supplemented with feedback.

In this paper, a learning environment for data structures
and algorithms is presented. The combination of algo-
rithm animation and simulation with automatic assess-
ment provides a way to give meaningful feedback to the
students. Our experience shows that this combination
is of great value for the students studying algorithms.

1 Introduction

Data structures and algorithms belong to the core is-
sues in computer science education. Students should
learn how various data structures are constructed and
how different algorithms manipulate them. In addition,
the students should gain a proper understanding of the
analytical properties of algorithms and their applicabil-
ity to different practical cases.

Since data structures and algorithms are often com-
plex topics, different approaches have been attempted
to present their dynamic nature in realistic and easily
understandable forms. Algorithm animation is one of
such approaches. Many tools for creating algorithm ani-
mations have been developed during the past decade,
and new useful features have been introduced in recent
years. For example, the visual debugging system pre-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to hats, requires prior specific permission and/or s fee.
ITiCSE 2000 7/00 Helsinki, Finland
© 2000 ACM 1-58113°207-710010007_.$5.00

sented in [4] included a possibility to view the execution
of the program source code during the animation. We
call this feature program animation. In Jeliot [1] this
idea was enhanced by allowing the user to specify the
code to be animated and visualized. The "Algorithms
in Action" tool presented in [5] has a novel approach
where students have the option of stepwise refinement
of algorithm code and the corresponding animation.

There are, however, still challenges to be met from the
teacher's point of view. It is quite possible that some
students consider algorithm and program animation as
entertainment without seriously trying to learn from
them. Even if this is not true, the students may believe
that they have understood how the algorithm works,
when in practice they have misinterpreted something.
Weshould give them an opportunity to test their un-
derstanding.

An obvious method for such testing is manual algorithm
simulation. With this we mean simple exercises where
students have to demonstrate how a given algorithm
manipulates a given data structure step by step. When
appropriate feedback is given, such exercises apparently
help the students to capture the logic of exercised algo-
rithms. The problem, however, is that if the exercises
are solved on paper and checked manually, it is hard to
provide immediate feedback.

At Helsinki University of Technology, we have exten-
sively used manual algorithm simulation to support
learning. In 1991, we implemented the TRAKLA sys-
tem [2] which automatically generates algorithm sim-
ulation exercises and automatically assesses students'
answers, returned by email. For the whole of the 1990's
the system has been successfully used in a course with
a yearly enrolment of 500 students. Many new fea-
tures have been added. Currently the students solve
the problems using a graphical editor, TRED, on a web
page [3]. These tools interestingly combine manual al-
gorithm simulation and algorithm animation with au-
tomatic assessment, since the students can view their
solution by stepping the states of the data structure

160

forward or backward before they submit the solution
for evaluation. We have monitored the learning results
and we have observed that they are very good.

We present the key ideas of TRAKLA and TRED in
Section 2. In the next section we discuss the princi-
ples of implementation and automatic assessment. In
section 4 we present our experiences when the system
has been used for a mass course, and the final section
includes the conclusion.

2 Overview of the T R A K L A system

TRAKLA is a system for teaching basic computer sci-
ence data structures and algorithms including sorting,
searching and graph algorithms. The heart of the sys-
tem is the TRAKLA server which provides the following
facilities:

1. distribution of individually tailored algorithm simu-
lation exercises (by email or by Java applet),

2. accurate and automatic assessment of the exercises,

3. meaningful and immediate feedback about the an-
swers to improve learning,

4. distribution of model solutions for the exercises, and

5. automatic administration of the course.

The other part of the system is TRED which provides a
graphical interface for manipulating a selection of data
structures. TRED combines the idea of algorithm an-
imation and simulation, i.e., it provides tools for ma-
nipulating visual data structures step by step and for
browsing the constructed sequence of steps forward and
backward.

An older, email-based interface for using TRAKLA is
also supported, since some students prefer using it when
lacking graphical browser access to the Internet. They
do manual simulation by paper and pencil and submit
the solution by email. Then, additional knowledge of
the the submit format of the answer is required, and
there is neither animation nor continuous interaction
b~ween the user and the system.

In both ways the user can submit the answer and get
almost immediate feedback generated by the automatic
assessment tool. Based on this feedback, the students
can revise the answers a few times, typically 3-5 times
per exercise, if necessary 1.

In Figure 1 the logic of the system is presented on a
general level. Registration is needed in order to interact
with the system. For all messages sent to the system,

1The average count of submissions among more than 1000
students has been 1.4.

a receipt is sent back to the user as a notification that
the message was received.

A typical exercise gives an initial data structure and/or
an input data set. The student has to apply the given
algorithm using this data and present the resulting data
structures(s). An example: "Insert the keys X H R U F
G I J C M A K in this order into an initially empty AVL
tree. Give the tree both after 6 insertions and after all
keys have been inserted." The initial data is individu-
ally tailored for each student, i.e., all students have the
same assignment with different input parameters.

3 Manual simulation and automatic assessment

In order to be able to automatically assess the simulated
behaviour of a data structure, a well defined simulation
model is needed.

The simulation model consists of an exercise algorithm
(EA), input and output data structures needed by the
algorithm and an execution environment which pro-
duces the initial simulation case, i.e., it initializes the
input data structures with individually tailored data.

3.1 Exercise algorithms and data structures

An exercise algorithm is the logic and topic for an ex-
ercise. It describes the actions that should take place
in order to complete the exercise. If the focus of an ex-
ercise is not on the algorithm but on a data structure,
we can see E A as an operation of an abstract data type
(ADT) and the data structure as an implementation of
this ADT. This is because the nature of the simulation
is not static (like a data structure) but dynamic (an al-
gorithm). In the AVL tree exercise described above, the
ADT is the balanced search tree and E A is the insert
operation of the ADT. Of course, there exists also an
actual implementation for E A in order to complete the
automatic assessment.

3.2 Setting up an exercise

The execution environment includes a random input
generator and an input data vaiidator. The student
identification and other parameters are used as a seed
for the random generator which creates individually tai-
lored input data structures for a specific E A .

The input data is validated by checking that it satisfies
some exercise dependent constraints. In the AVL tree
example, these constraints could be, "the initial struc-
ture contains at most 12 items to be inserted and during
the insertions at least two single rotations and at least
one double rotation must be performed". If the initial-
ization fails under these constraints, a new attempt is
made with a slightly modified seed. The initialization
procedure is, however, a deterministic algorithm. Thus,
for every attempt to produce an individually tailored

161

~ T : : : :; W w ~ - ~ K ~

:i:A:RDIO~

istudenC.,

r TAiLOn:..

ii! : I

• " ' ' i ! " ' "

CHECKER :::..:: : : . : :

• .~ ¢omloarison /
Figure 1: Flow of submissions and the overview of the automatic assessment procedure.

input data for a given exercise, the initialization termi-
nates with the very same output.

3.3 Students' view of the exercise

From the students ' point of view, the simulation model
is a combination of a predefined assignment (textual
description) and the input data. The assignment gives
guidelines what to do, how input data should be under-
stood, and in which format to submit the answer (data
structure). As the exercise, the students manually simu-
late the given exercise algorithm and produce an output
structure or a set of output structures depending on the
assignment.

The input da ta has to be represented in some predefined
format. In our example, the set of input items could be
represented simply as a string or as an array of alpha-
bets. When appropriate, more complicated forms like
adjacency lists are used. Output structure formats are
usually very similar to initial input structure formats.
However, when TRED is used, the user does not need
to consider formats.

3.4 Automatic assessment

After the student has submitted the answer to the sys-
tem, TRAKLA initializes the exercise again precisely as
in the creation phase. Now, in addition to the initial in-
put structures the resulting output structure(s), which
are required to follow the execution of CA, are created.
Depending on the assignment, the output structure is

one da ta structure or a sequence of states of the data
structure. This s tate or these states serve as the model
solution of the exercise.

The student 's answer and the model solution are pre-
sented as strings. The automatic assessment is per-
formed by searching exercise dependent regular expres-
sions from the student 's answer string. This allows some
mismatches like typos to be ignored. Some exercises
generate model solutions for a few different versions of
the algorithm, e.g., the pivot item of quicksort can be
taken from the left or the right end of the array. The
percentage of correct matches in the string defines the
grade of the exercise.

After the marking has been completed, the student is
informed of the results. The level of feedback depends
on the exercise. Assessment log information, including
the generated model solution and the grading trace is
stored each t ime so tha t the student can discuss the
evaluation with an assistant, if necessary.

4 Pedagogical issues

An important feature of the system is tha t we can gen-
erate a unique initial input s tructure for each student.
Thus, although the predefined assignment is the same
for all students, each one has to solve a personally tai-
lored exercise. This has obvious advantages for learning.
They cannot copy their answer from anybody. More-
over, we can now encourage natural co-operation be-

162

tween the students. They can discuss the problem freely
as long as they do not solve each other's exercise totally.

The other important feature is the immediate feedback
of exercises. This allows the students to learn from their
mistakes. We stress here that they have to think about
their solution anew for each new submission, since the
solution space of the exercises is simply too large for
using any mechanical trial-and-error method.

As mentioned before, the system includes the actual
exercise algorithms for initializing the input structures
and for solving the exercises. These very same exercise
algorithms are also used for producing model answers
to the exercises. The model answers can be delivered
to the students after some deadline. There is also an
option to create example exercises which can be exam-
ined and solved by the students before solving the actual
exercises.

All these properties are features we possibly can't
achieve without a computer aided learning environment.
For example, there is a huge difference between feedback
received within a few minutes instead of within a few
days or weeks, which is often the case in mass courses.

During the last two years, when TRED has been ex-
tensively used by our students, we have had excellent
results. On a course of over 500 students, each student
had to do about 25 simulation exercises covering most
basic algorithms and data structures in sorting, search-
ing and graph applications. Over half of the students
got at least 90 percent of the maximum points and al-
most 2/3 of them got at least 80 percent. This guaran-
teed that the students know the basic topics well, and
that they were well prepared for the more advanced de-
sign exercises. The feedback from the students has been
very positive, too. An important reason for this is that
TKED can be used on any WWW browser supporting
Java applets, enabling the students to solve their exer-
cises wherever and whenever they wish.

5 Conclusion

The TRAKLA system has been used since 1991. Dur-
ing these years many new ideas have been encountered
for developing the system further, and a great num-
ber of them have been incorporated in the system, e.g.,
the graphical user interface TRED. However, many new
ideas remain and a number of problems are still to be
solved.

Development of new exercises is currently rather a slow
process. We would like to get rid of the fact that devel-
oping a new exercise relies on the technical skills of a
content expert. The goal is to develop a system which
requires only programming skills to produce an actual
working exercise algorithm. All the other functional-
ity should be derived from this. This means that the

assessment process and the feedback generation should
be separated from the actual algorithm producing the
model solution. Then, we could set up programming ex-
ercises for students, such that introduce new exercises
on algorithms and data structures to the system.

The generalization of automatic assessment is currently
being implemented. It enables us to observe, assess and
comment on every step of the algorithm during the sim-
ulation. For the teacher this provides a tool for giving
detailed automatic comments on the solutions submit-
ted by the students. The same tool can be used for
making on-line examples where the students can browse
the states of a data structure during the execution of
an algorithm stepwise forwards and backwards. This
is a useful aid in understanding complicated structural
changes in a data structure, e.g., AVL tree rotations.
An even better solution would be to include program
animation with each step of the algorithm.

Currently, the client-server architecture requires active
on-line access to the server to get any feedback. Our
aim is to implement a system in which feedback could be
provided without communication with the server. Then,
the system could also be used as an electronic exercise
book.

As a whole, our work has shown that the development
of an automatic assessment system is feasible and useful
tools can be provided. Such a system can be of great
help to anyone who has to assess algorithmical exercises.

References

[1] Haajanen J. et ah: Animation of user algorithms
on the Web, Proceedings of the IEEE Symposium
on Visual Languages, VL'97, pp 360-367, 1997.

[2] HyvSnen 3., Malmi L.: TRAKLA - A System for
Teaching Algorithms Using gmail and a Graph-
ical Editor. Proceedings of HYPERMEDIA in
Vaasa'93, pp. 141-147, 1993.

[3] Korhonen A.: World Wide Web in Computer-
Aided Learning of Algorithms and Data Struc-
tures. MSc Thesis, Department of Computer Sci-
ence, Helsinki University of Technology, Finland
(in finnish), 1997.

[4] Mukherjea, S. and Stasko, J.T.: Toward Visual De-
bugging: Integrating Algorithm Animation Capabil-
ities within a Source Level Debugger, ACM Trans-
actions on Computer-Human Interaction, Vol. 1,
No. 3, pp 215-244, 1994.

[5] Stern, L. et al.: A Strategy for Managing Content
Complexity in Algorithm Animation, Proceedings
of The 4th Annual SIGCSE/SIGCUE Conference
on Innovation and Technology in Computer Science
Education, ITiCSE'99 pp 127-130, 1999.

163

