skip to main content
10.1145/3430524.3440628acmotherconferencesArticle/Chapter ViewAbstractPublication PagesteiConference Proceedingsconference-collections
research-article

StringTouch - From String Instruments towards new Interface Morphologies

Published:14 February 2021Publication History

ABSTRACT

We present StringTouch, a user interface design exploration translating the expressive resource of string instruments to a new interface morphology. StringTouch transfers the string as a tactile element of interaction to the touch surface, resulting in a tactilely experienceable interface. In this paper we discuss our research through design centered approach, which focused on the exploration of musical string instruments and their translation to the UI context. To investigate this specific design space, we analyzed the systematic and handling of string instruments as well as common HCI principles to develop the interaction concept. The resulting experience prototype demonstrates the idea’s potential for haptic UI design and provides insights into the prototyping process. We present: (1) the investigation of string instruments as a resource for TUI design and (2) the transfer to a generic UI context to inform new hybrid interface morphologies that combine features of tangible, touch, and flexible interaction.

References

  1. Chadia Abras, Diane Maloney-Krichmar, Jenny Preece, 2004. User-centered design. Bainbridge, W. Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage Publications 37, 4 (2004), 445–456.Google ScholarGoogle Scholar
  2. Leonardo Angelini, Jürgen Baumgartner, Francesco Carrino, Stefano Carrino, Maurizio Caon, Omar Abou Khaled, Jürgen Sauer, Denis Lalanne, Elena Mugellini, and Andreas Sonderegger. 2016. A Comparison of Three Interaction Modalities in the Car: Gestures, Voice and Touch. In Actes de La 28ième Conference Francophone Sur l’Interaction Homme-Machine(Fribourg, Switzerland) (IHM ’16). Association for Computing Machinery, New York, NY, USA, 188–196. https://doi.org/10.1145/3004107.3004118Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Patrick Baudisch and Gerry Chu. 2009. Back-of-device Interaction Allows Creating Very Small Touch Devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Boston, MA, USA) (CHI ’09). ACM, New York, NY, USA, 1923–1932. https://doi.org/10.1145/1518701.1518995Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Edgar Berdahl and Julius O. Smith. 2008. A Tangible Virtual Vibrating String : A Physically Motivated Virtual Musical Instrument Interface. In Proceedings of the International Conference on New Interfaces for Musical Expression. Genoa, Italy, 299–302. https://doi.org/10.5281/zenodo.1179493Google ScholarGoogle ScholarCross RefCross Ref
  5. Alan F. Blackwell. 2006. The Reification of Metaphor as a Design Tool. ACM Trans. Comput.-Hum. Interact. 13, 4 (Dec. 2006), 490–530. https://doi.org/10.1145/1188816.1188820Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Alberto Boem and Giovanni Maria Troiano. 2019. Non-Rigid HCI: A Review of Deformable Interfaces and Input. In Proceedings of the 2019 on Designing Interactive Systems Conference (San Diego, CA, USA) (DIS ’19). Association for Computing Machinery, New York, NY, USA, 885–906. https://doi.org/10.1145/3322276.3322347Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Simon Butscher, Maximilian Dürr, and Harald Reiterer. 2017. InformationSense: Trade-offs for the Design and the Implementation of a Large Highly Deformable Cloth Display. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 2, Article 7 (June 2017), 28 pages. https://doi.org/10.1145/3090053Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. John Raymond Callahan, Don Hopkins, Mark David Weiser, and Ben Shneiderman. 1988. An Empirical Comparison of Pie vs. Linear Menus. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Washington, D.C., USA) (CHI ’88). ACM, New York, NY, USA, 95–100. https://doi.org/10.1145/57167.57182Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Kyung Yun Choi and Hiroshi Ishii. 2020. AmbienBeat: Wrist-Worn Mobile Tactile Biofeedback for Heart Rate Rhythmic Regulation. In Proceedings of the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction (Sydney NSW, Australia) (TEI ’20). Association for Computing Machinery, New York, NY, USA, 17–30. https://doi.org/10.1145/3374920.3374938Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ronald Ecker, Verena Broy, Andreas Butz, and Alexander De Luca. 2009. pieTouch: A Direct Touch Gesture Interface for Interacting with In-vehicle Information Systems. In Proceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services (Bonn, Germany) (MobileHCI ’09). ACM, New York, NY, USA, Article 22, 10 pages. https://doi.org/10.1145/1613858.1613887Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Harald Emmerich and Martin Schöfthaler. 2000. Magnetic field measurements with a novel surface micromachined magnetic-field sensor. IEEE Transactions on Electron Devices 47, 5 (May 2000), 972–977. https://doi.org/10.1109/16.841228Google ScholarGoogle ScholarCross RefCross Ref
  12. Anna Maria Feit and Antti Oulasvirta. 2014. PianoText: Redesigning the Piano Keyboard for Text Entry. In Proceedings of the 2014 Conference on Designing Interactive Systems (Vancouver, BC, Canada) (DIS ’14). ACM, New York, NY, USA, 1045–1054. https://doi.org/10.1145/2598510.2598547Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Sean Follmer, Daniel Leithinger, Alex Olwal, Nadia Cheng, and Hiroshi Ishii. 2012. Jamming User Interfaces: Programmable Particle Stiffness and Sensing for Malleable and Shape-changing Devices. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (Cambridge, Massachusetts, USA) (UIST ’12). ACM, New York, NY, USA, 519–528. https://doi.org/10.1145/2380116.2380181Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Sean Follmer, Daniel Leithinger, Alex Olwal, Akimitsu Hogge, and Hiroshi Ishii. 2013. inFORM: Dynamic Physical Affordances and Constraints Through Shape and Object Actuation. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (St. Andrews, Scotland, United Kingdom) (UIST ’13). ACM, New York, NY, USA, 417–426. https://doi.org/10.1145/2501988.2502032Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Takanori Fukushi, Sung Hoon Kim, Shuichiro Hashi, and Kazushi Ishiyama. 2013. Magnetic silicone rubber: Fabrication and analysis with applications. Journal of the Korean Physical Society 63, 3 (01 Aug 2013), 686–690. https://doi.org/10.3938/jkps.63.686Google ScholarGoogle ScholarCross RefCross Ref
  16. Harriet Rosemary Ann Gaywood. 1996. Guqin and Guzheng: the historical and contemporary development of two Chinese musical instruments. Ph.D. Dissertation. Durham University.Google ScholarGoogle Scholar
  17. Kristian Gohlke, Eva Hornecker, and Wolfgang Sattler. 2016. Pneumatibles: Exploring Soft Robotic Actuators for the Design of User Interfaces with Pneumotactile Feedback. In Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction (Eindhoven, Netherlands) (TEI ’16). ACM, New York, NY, USA, 308–315. https://doi.org/10.1145/2839462.2839489Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Shad Gross, Jeffrey Bardzell, and Shaowen Bardzell. 2014. Skeu the Evolution: Skeuomorphs, Style, and the Material of Tangible Interactions. In Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction (Munich, Germany) (TEI ’14). Association for Computing Machinery, New York, NY, USA, 53–60. https://doi.org/10.1145/2540930.2540969Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Tobias Grosshauser and Gerhard Tröster. 2013. Finger Position and Pressure Sensing Techniques for String and Keyboard Instruments. In Proceedings of the International Conference on New Interfaces for Musical Expression. Graduate School of Culture Technology, KAIST, Daejeon, Republic of Korea, 479–484. http://nime.org/proceedings/2013/nime2013_286.pdfGoogle ScholarGoogle Scholar
  20. Jacob Harrison, Robert H Jack, Fabio Morreale, and Andrew P. McPherson. 2018. When is a Guitar not a Guitar? Cultural Form, Input Modality and Expertise. In Proceedings of the International Conference on New Interfaces for Musical Expression, Thomas Martin Luke Dahl, Douglas Bowman(Ed.). Virginia Tech, Blacksburg, Virginia, USA, 299–304. https://doi.org/10.5281/zenodo.1302589Google ScholarGoogle ScholarCross RefCross Ref
  21. Ken Hinckley, Seongkook Heo, Michel Pahud, Christian Holz, Hrvoje Benko, Abigail Sellen, Richard Banks, Kenton O’Hara, Gavin Smyth, and William Buxton. 2016. Pre-Touch Sensing for Mobile Interaction. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’16). Association for Computing Machinery, New York, NY, USA, 2869–2881. https://doi.org/10.1145/2858036.2858095Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Echo Ho, Prof. Dr. Phil. Alberto de Campo, and Hannes Hoelzl. 2019. The SlowQin: An Interdisciplinary Approach to reinventing the Guqin. In Proceedings of the International Conference on New Interfaces for Musical Expression, Marcelo Queiroz and Anna Xambó Sedó (Eds.). UFRGS, Porto Alegre, Brazil, 256–259. https://doi.org/10.5281/zenodo.3672948Google ScholarGoogle ScholarCross RefCross Ref
  23. David Holman and Roel Vertegaal. 2008. Organic User Interfaces: Designing Computers in Any Way, Shape, or Form. Commun. ACM 51, 6 (June 2008), 48–55. https://doi.org/10.1145/1349026.1349037Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Eva Hornecker. 2011. The Role of Physicality in Tangible and Embodied Interactions. interactions 18, 2 (March 2011), 19–23. https://doi.org/10.1145/1925820.1925826Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Cindy Jacob and Bruno Dumas. 2014. Designing for Intimacy: How Fashion Design Can Address Privacy Issues in Wearable Computing. In Proceedings of the 2014 ACM International Symposium on Wearable Computers: Adjunct Program (Seattle, Washington) (ISWC ’14 Adjunct). ACM, New York, NY, USA, 185–192. https://doi.org/10.1145/2641248.2641353Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Robert JK Jacob. 1993. Eye movement-based human-computer interaction techniques: Toward non-command interfaces. Advances in human-computer interaction 4 (1993), 151–190.Google ScholarGoogle Scholar
  27. Heekyoung Jung, Heather Wiltse, Mikael Wiberg, and Erik Stolterman. 2017. Metaphors, materialities, and affordances: Hybrid morphologies in the design of interactive artifacts. Design Studies 53(2017), 24 – 46. https://doi.org/10.1016/j.destud.2017.06.004Google ScholarGoogle ScholarCross RefCross Ref
  28. Melvin Khoo and Chang Liu. 2001. Micro magnetic silicone elastomer membrane actuator. Sensors and Actuators A: Physical 89 (04 2001), 259–266. https://doi.org/10.1016/S0924-4247(00)00559-8Google ScholarGoogle ScholarCross RefCross Ref
  29. Scott R. Klemmer, Björn Hartmann, and Leila Takayama. 2006. How Bodies Matter: Five Themes for Interaction Design. In Proceedings of the 6th Conference on Designing Interactive Systems (University Park, PA, USA) (DIS ’06). ACM, New York, NY, USA, 140–149. https://doi.org/10.1145/1142405.1142429Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Juyoung Lee, Hui-Shyong Yeo, Murtaza Dhuliawala, Jedidiah Akano, Junichi Shimizu, Thad Starner, Aaron Quigley, Woontack Woo, and Kai Kunze. 2017. Itchy Nose: Discreet Gesture Interaction Using EOG Sensors in Smart Eyewear. In Proceedings of the 2017 ACM International Symposium on Wearable Computers (Maui, Hawaii) (ISWC ’17). ACM, New York, NY, USA, 94–97. https://doi.org/10.1145/3123021.3123060Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Rong-Hao Liang, Liwei Chan, Hung-Yu Tseng, Han-Chih Kuo, Da-Yuan Huang, De-Nian Yang, and Bing-Yu Chen. 2014. Gaussbricks: Magnetic Building Blocks for Constructive Tangible Interactions on Portable Displays. In CHI ’14 Extended Abstracts on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI EA ’14). ACM, New York, NY, USA, 587–590. https://doi.org/10.1145/2559206.2574776Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Markus Löchtefeld, Sven Gehring, Ralf Jung, and Antonio Krüger. 2011. guitAR: Supporting Guitar Learning Through Mobile Projection. In CHI ’11 Extended Abstracts on Human Factors in Computing Systems (Vancouver, BC, Canada) (CHI EA ’11). ACM, New York, NY, USA, 1447–1452. https://doi.org/10.1145/1979742.1979789Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Paul Marshall, Eva Hornecker, Richard Morris, Nick Sheep Dalton, and Yvonne Rogers. 2008. When the fingers do the talking: A study of group participation with varying constraints to a tabletop interface. In 2008 3rd IEEE International Workshop on Horizontal Interactive Human Computer Systems. 33–40. https://doi.org/10.1109/TABLETOP.2008.4660181Google ScholarGoogle ScholarCross RefCross Ref
  34. Carolina Brum Medeiros and Marcelo M Wanderley. 2014. A comprehensive review of sensors and instrumentation methods in devices for musical expression. Sensors 14, 8 (2014), 13556–13591. https://doi.org/10.3390/s140813556Google ScholarGoogle ScholarCross RefCross Ref
  35. Mathias Müller, Anja Knöfel, Thomas Gründer, Ingmar Franke, and Rainer Groh. 2014. FlexiWall: Exploring Layered Data with Elastic Displays. In Proceedings of the Ninth ACM International Conference on Interactive Tabletops and Surfaces (Dresden, Germany) (ITS ’14). ACM, New York, NY, USA, 439–442. https://doi.org/10.1145/2669485.2669529Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Donald Arthur Norman. 2002. The Design of Everyday Things. Basic Books, Inc., New York, NY, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Dan Overholt. 2012. Violin-Related HCI: A Taxonomy Elicited by the Musical Interface Technology Design Space. In Arts and Technology, Anthony L. Brooks(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 80–89.Google ScholarGoogle Scholar
  38. Jimmie Paloranta, Anders Lundström, Ludvig Elblaus, Roberto Bresin, and Emma Frid. 2016. Interaction with a large sized augmented string instrument intended or a public setting. In Proceedings Sound and Music Computing 2016 (SMC), Rolf Großmann and Georg Hajdu (Eds.). Hamburg: Zentrum für Mikrotonale Musik und Multimediale Komposition (ZM4), 388–395.Google ScholarGoogle Scholar
  39. Laurel Pardue, Kurijn Buys, Dan Overholt, Andrew P. McPherson, and Michael Edinger. 2019. Separating sound from source: sonic transformation of the violin through electrodynamic pickups and acoustic actuation. In Proceedings of the International Conference on New Interfaces for Musical Expression, Marcelo Queiroz and Anna Xambó Sedó (Eds.). UFRGS, Porto Alegre, Brazil, 278–283. https://doi.org/10.5281/zenodo.3672958Google ScholarGoogle ScholarCross RefCross Ref
  40. James Patten, Ben Recht, and Hiroshi Ishii. 2006. Interaction Techniques for Musical Performance with Tabletop Tangible Interfaces. In Proceedings of the 2006 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology (Hollywood, California, USA) (ACE ’06). ACM, New York, NY, USA, Article 27. https://doi.org/10.1145/1178823.1178856Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Sylvain Pauchet, Jean-Luc Vinot, Catherine Letondal, Alexandre Lemort, Claire Lavenir, Timothée Lecomte, Stéphanie Rey, Valentin Becquet, and Guillaume Crouzet. 2019. Multi-plié: A Linear Foldable and Flattenable Interactive Display to Support Efficiency, Safety and Collaboration. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). ACM, New York, NY, USA, Article 154, 13 pages. https://doi.org/10.1145/3290605.3300384Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Joshua Peschke, Fabian Göbel, Thomas Gründer, Mandy Keck, Dietrich Kammer, and Rainer Groh. 2012. DepthTouch: An Elastic Surface for Tangible Computing. In Proceedings of the International Working Conference on Advanced Visual Interfaces (Capri Island, Italy) (AVI ’12). ACM, New York, NY, USA, 770–771. https://doi.org/10.1145/2254556.2254706Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Isabel P. S. Qamar, Rainer Groh, David Holman, and Anne Roudaut. 2018. HCI Meets Material Science: A Literature Review of Morphing Materials for the Design of Shape-Changing Interfaces. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). ACM, New York, NY, USA, Article 374, 23 pages. https://doi.org/10.1145/3173574.3173948Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Majken Rasmussen, Esben Pedersen, Marianne Petersen, and Kasper Hornbæk. 2012. Shape-changing interfaces: A review of the design space and open research questions. Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/2207676.2207781Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Beat Rossmy and Alexander Wiethoff. 2019. COMB – Shape As a Meaningful Element of Interaction. In Proceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction(Tempe, Arizona, USA) (TEI ’19). ACM, New York, NY, USA, 287–295. https://doi.org/10.1145/3294109.3295646Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Beat Rossmy and Alexander Wiethoff. 2019. StringTouch: A Scalable Low-Cost Concept for Deformable Interfaces. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI EA ’19). Association for Computing Machinery, New York, NY, USA, 1–4. https://doi.org/10.1145/3290607.3313245Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Curt Sachs. 2012. The history of musical instruments. Courier Corporation.Google ScholarGoogle Scholar
  48. Deepak Ranjan Sahoo, Kasper Hornbæk, and Sriram Subramanian. 2016. TableHop: An Actuated Fabric Display Using Transparent Electrodes. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’16). ACM, New York, NY, USA, 3767–3780. https://doi.org/10.1145/2858036.2858544Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Philipp Schoessler, Sang-won Leigh, Krithika Jagannath, Patrick van Hoof, and Hiroshi Ishii. 2015. Cord UIs: Controlling Devices with Augmented Cables. In Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction (Stanford, California, USA) (TEI ’15). ACM, New York, NY, USA, 395–398. https://doi.org/10.1145/2677199.2680601Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Ronit Slyper, Ivan Poupyrev, and Jessica Hodgins. 2011. Sensing Through Structure: Designing Soft Silicone Sensors. In Proceedings of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction (Funchal, Portugal) (TEI ’11). ACM, New York, NY, USA, 213–220. https://doi.org/10.1145/1935701.1935744Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. David Strayer, Joel Cooper, Rachel Goethe, Madeleine McCarty, Douglas Getty, and Francesco Biondi. 2019. Assessing the visual and cognitive demands of in-vehicle information systems. Cognitive Research: Principles and Implications 4 (12 2019). https://doi.org/10.1186/s41235-019-0166-3Google ScholarGoogle ScholarCross RefCross Ref
  52. Miriam Sturdee and Jason Alexander. 2018. Analysis and Classification of Shape-Changing Interfaces for Design and Application-based Research. ACM Comput. Surv. 51, 1, Article 2 (Jan. 2018), 32 pages. https://doi.org/10.1145/3143559Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Yuta Sugiura, Gota Kakehi, Anusha Withana, Calista Lee, Daisuke Sakamoto, Maki Sugimoto, Masahiko Inami, and Takeo Igarashi. 2011. Detecting Shape Deformation of Soft Objects Using Directional Photoreflectivity Measurement. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (Santa Barbara, California, USA) (UIST ’11). ACM, New York, NY, USA, 509–516. https://doi.org/10.1145/2047196.2047263Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Atau Tanaka. 2000. Musical performance practice on sensor-based instruments. Trends in Gestural Control of Music 13, 389-405 (2000), 284.Google ScholarGoogle Scholar
  55. Marc Teyssier, Gilles Bailly, Catherine Pelachaud, Eric Lecolinet, Andrew Conn, and Anne Roudaut. 2019. Skin-On Interfaces: A Bio-Driven Approach for Artificial Skin Design to Cover Interactive Devices. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 307–322. https://doi.org/10.1145/3332165.3347943Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Karen Vanderloock, Vero Vanden Abeele, Johan A.K. Suykens, and Luc Geurts. 2013. The Skweezee System: Enabling the Design and the Programming of Squeeze Interactions. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (St. Andrews, Scotland, United Kingdom) (UIST ’13). ACM, New York, NY, USA, 521–530. https://doi.org/10.1145/2501988.2502033Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Jens Vetter and Sarah Leimcke. 2017. Homo Restis - Constructive Control Through Modular String Topologies. In Proceedings of the International Conference on New Interfaces for Musical Expression. Aalborg University Copenhagen, Copenhagen, Denmark, 83–86. http://www.nime.org/proceedings/2017/nime2017_paper0017.pdfGoogle ScholarGoogle Scholar
  58. Erich M Von Hornbostel and Curt Sachs. 1914. Systematik der Musikinstrumente. Ein Versuch. Zeitschrift für Ethnologie 46, H. 4/5 (1914), 553–590.Google ScholarGoogle Scholar
  59. Martin Weigel, Tong Lu, Gilles Bailly, Antti Oulasvirta, Carmel Majidi, and Jürgen Steimle. 2015. iSkin: Flexible, Stretchable and Visually Customizable On-Body Touch Sensors for Mobile Computing. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15). ACM, New York, NY, USA, 2991–3000. https://doi.org/10.1145/2702123.2702391Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Raphael Wimmer and Patrick Baudisch. 2011. Modular and Deformable Touch-sensitive Surfaces Based on Time Domain Reflectometry. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology(Santa Barbara, California, USA) (UIST ’11). ACM, New York, NY, USA, 517–526. https://doi.org/10.1145/2047196.2047264Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Lining Yao, Sayamindu Dasgupta, Nadia Cheng, Jason Spingarn-Koff, Ostap Rudakevych, and Hiroshi Ishii. 2011. Rope Revolution: Tangible and Gestural Rope Interface for Collaborative Play. In Proceedings of the 8th International Conference on Advances in Computer Entertainment Technology (Lisbon, Portugal) (ACE ’11). ACM, New York, NY, USA, Article 11, 8 pages. https://doi.org/10.1145/2071423.2071437Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Lining Yao, Ryuma Niiyama, Jifei Ou, Sean Follmer, Clark Della Silva, and Hiroshi Ishii. 2013. PneUI: Pneumatically Actuated Soft Composite Materials for Shape Changing Interfaces. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (St. Andrews, Scotland, United Kingdom) (UIST ’13). ACM, New York, NY, USA, 13–22. https://doi.org/10.1145/2501988.2502037Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Lining Yao, Jifei Ou, Chin-Yi Cheng, Helene Steiner, Wen Wang, Guanyun Wang, and Hiroshi Ishii. 2015. bioLogic: Natto Cells As Nanoactuators for Shape Changing Interfaces. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15). ACM, New York, NY, USA, 1–10. https://doi.org/10.1145/2702123.2702611Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. John Zimmerman, Jodi Forlizzi, and Shelley Evenson. 2007. Research through Design as a Method for Interaction Design Research in HCI. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’07). Association for Computing Machinery, New York, NY, USA, 493–502. https://doi.org/10.1145/1240624.1240704Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. StringTouch - From String Instruments towards new Interface Morphologies
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        TEI '21: Proceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction
        February 2021
        908 pages
        ISBN:9781450382137
        DOI:10.1145/3430524

        Copyright © 2021 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 14 February 2021

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        TEI '21 Paper Acceptance Rate40of136submissions,29%Overall Acceptance Rate393of1,367submissions,29%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format