
Students Struggle to Explain Their Own Program Code
Teemu Lehtinen

teemu.t.lehtinen@aalto.fi
Aalto University

Aleksi Lukkarinen
aleksi.lukkarinen@aalto.fi

Aalto University

Lassi Haaranen
lassi.haaranen@aalto.fi

Aalto University

ABSTRACT
We asked students to explain the structure and execution of their
small programs after they had submitted them to a programming
exercise. These questions about learner’s code (QLCs) were deliv-
ered at three occasions in an online and open course in introductory
programming as a part of the digital learning material. We make
inductive content analysis to research the open-ended text answers
we collected. One third of the students struggled to explain their
own program code. This estimates possible occurrences of fragile
learning at the moment when a student seemingly succeeds in a
program writing exercise. Furthermore, we examine correlations
between the correctness of the answers with other learning data.
Our results indicate that answering properly aligned QLCs correctly
has stronger correlation with student success and retention than
merely submitting a correct program. Additionally, we present ob-
servations on learning event-driven programming to explore QLCs’
potential in identifying students’ thinking process.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Applied computing → Education; E-learning; Computer-assisted
instruction; • Software and its engineering→ Publish-subscribe
/ event-based architectures.

KEYWORDS
QLC, program comprehension, event-driven programming, intro-
ductory programming, CS1, online education
ACM Reference Format:
Teemu Lehtinen, Aleksi Lukkarinen, and Lassi Haaranen. 2021. Students
Struggle to Explain Their Own Program Code. In 26th ACM Conference on
Innovation and Technology in Computer Science Education V. 1 (ITiCSE 2021),
June 26–July 1, 2021, Virtual Event, Germany. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3430665.3456322

1 INTRODUCTION
Multiple studies have investigated students’ ability to explain given
program code “in plain English” [5, 15, 18] or by answeringmultiple-
choice questions [17]. Similarly, concept inventories for introduc-
tory programming typically include example programs and related
questions that test understanding of the concepts utilized in the
examples [4]. Successfully explaining or tracing given program

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE 2021, June 26–July 1, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8214-4/21/06. . . $15.00
https://doi.org/10.1145/3430665.3456322

code (executing statements by hand and keeping record of the vari-
able values) correlates with the student’s ability of writing similar
program code themselves [11, 14].

Despite the correlation, an assumption that a student who cre-
ated a correctly behaving program would automatically have a
good understanding of the concepts involved is incorrect [7, 13].
Students’ process of arriving at a functionally correct program may
include elements of guessing, copying, and hidden misconceptions
that instructors should know about in order to design learning
interventions. We present research on three cases of asking stu-
dents questions about the structure and execution of the program
they had submitted for automatic assessment. The questions share
similarities to tasks cited above with the difference of targeting the
learner’s own program code instead of given example codes.

This research reports on delivering Questions about Learner’s
Code (QLCs) [9] in an online introductory programming course. In
this analysis we expand from programming fundamentals towards
a less researched area of learning event-driven programming. Our
research answers to three questions:

RQ1: How well students answer QLCs?
RQ2: How success in QLCs correlates with other learning data?
RQ3:What potential QLCs have in student thinking research?
In Section 2, we discuss related work on students’ programming

process, fragile learning, and program comprehension. In Section 3,
we describe our method in detail for further research evaluation and
replication studies. In Section 4, we report results and in Section 5
we discuss the students’ answers. We finish with discussion on
implications of the research in Section 6.

2 RELATEDWORK
In contrast to programming exercises and paper exams, a lab exami-
nation, where instructors silently surveyed students’ programming
process—including approach to error messages, testing, and avail-
able documentation—has been argued to provide improved assess-
ment over the systematic ability to develop programs [1]. Individual
students’ programming processes have been researched with think-
aloud protocol which identified cases where students were able to
produce correctly behaving programs while expressing uncertainty
about the underlying concepts [7]. Analysis of two students during
a semester revealed that while they could write original programs
that produced correct results they both had a fundamental miscon-
ception [13]. Sometimes the delivered product—a program created
by a student—can conceal fragile learning issues. This research
employs QLCs to expand assessment and emphasis towards the
programming process in online programming assignments.

Many students who completed programming courses have dis-
played symptoms of fragile learning, such as poor grasp of pro-
gramming principles or difficulties in tracing the execution of a
program [10]. While learning to program inherently involves de-
veloping original programs, recent research highlights program

ar
X

iv
:2

10
4.

06
71

0v
1

 [
cs

.C
Y

]
 1

4
A

pr
 2

02
1

https://doi.org/10.1145/3430665.3456322
https://doi.org/10.1145/3430665.3456322

comprehension as a critical component [6]. Block Model offers a
framework to classify program comprehension on two dimensions—
from single elements towards the whole program; and simultane-
ously from text surface towards purpose [16]. In the range of these
dimensions, program comprehension can be rehearsed and assessed
using example program code and different tasks, such as identifying,
describing, or tracing a program and its elements [6]. Among these
tasks, “Explain in plain english” matches how QLCs were designed
in this research. Approximately one third of introductory program-
ming students has previously failed “Explain in plain English” tasks
targeting small example programs [15].

In contrast to previous work in program comprehension, our
tasks target students’ own programs. Students have previously de-
scribed their own program code in collaborative tasks—such as pair
programming [8]—and when reviewing their program code with
instructors. However, we could not identify previous research on
questions that a student has received about their own program code
or their answers to them. Considering the possibilities of QLCs [9],
this research evaluates manually crafted open-text questions that
are posed after an automatically assessed program writing exercise.

Our introductory programming context introduces Event-Driven
Programming (EDP) concepts. Little experimental research on teach-
ing and learning EDP has been presented to date [12]. Based on
personal opinions and anecdotal evidence, many authors have sug-
gested that EDP increases the complexity of programming and
might even be too difficult to teach for the novice programmer. A re-
port on educational practice presents a controversial opinion about
EDP—with the aid of a proper scaffolding—being simple enough for
introductory programming education [3] and that it might be ben-
eficial from the perspective of teaching other programming-related
concepts [2]. Through researching QLCs potential, we present our
observations on possible student confusions about EDP.

3 METHOD
3.1 Education Context
Our research was conducted in an introductory CS course in Fin-
land, taught in English, it aims to teach the basics of programming
in a web development context. The first half of the course is fo-
cused on the basics of programming and HTML & CSS. The latter
half is centered around HTTP communication and client-server
model with Node.js. The only programming language discussed
and used is JavaScript. Figure 1 shows the course structure and
roughly where QLCs were located.

Figure 1: Structure of the course with QLCs E1, E2, and E3

The intended audience for the course are people in the workforce
aiming to expand their skills and enrolling is restricted to those
currently not studying for a degree in a Finnish university. The
broad audience also means that the backgrounds of the students

are very varied. For some, this is their first time programming and
some have years of industry experience in software development.
The course ran for the first time in spring 2020 and the data for this
research was gathered in the second instance during fall 2020.

We had 146 students that responded to the enrolment survey, out
of which 125 (86%) gave research consent. Out of all the enrolled
students, 70 of them received at least a passing grade (48%).

3.2 Three Exercises with QLCs
In the three exercises including QLCs (marked with E1, E2, & E3 in
Figure 1), students first did a regular programming exercise in the
online learning material where they received detailed instructions
and input-output examples for a program that they must create
in their IDE. The exercises also included supporting files and a
possible code template for download. After students worked in
their IDE they submitted their program for automated assessment.
They received feedback from functional tests that were designed
with a constructive agenda. Additionally, the assessment system
awarded points towards completing the exercise and the course.
Next, we present the three exercises before discussing the QLCs.

3.2.1 Function (E1). The chapter introduced principles of variables
and functions ending with an exercise to write a function based on
a description and an input-output sample (a separate HTML page
to test the student function was provided in the project):

The function should take two arguments. The first one should
be a note name, e.g. C, and the second one is the pitch
as a number, e.g. 3. Given these two arguments, the func-
tion should return them together. For example: let note

= getPitchedNote("G", 4); console.log(note); //

This should print "G4".

3.2.2 Loops (E2). The chapter containing E2 ended with an ex-
ercise that required the use of loops for printing specific lines of
text repeating in a pattern. The use of two nested loop structures
was enforced and guided by automated assessment. The exercise
included description and an output sample we decided to omit from
this paper:

Your task is to print out a countdown for launching multiple
rockets. You need to launch 3 rockets altogether. Before start-
ing each countdown, you need to print Launching rocket

1 (for the first rocket) to console.log. Then you need to print
a countdown from 5 to 0, and after that you need to print
Lift off! before starting the next rocket countdown.

3.2.3 Event-Driven Programming (E3). Round 4 (see Figure 1) intro-
duced programming in web browser context and EDP. An exercise
for students aiming above passing grade included a small project
template for download. Students were requested to (1) register and
complete an event handler for a set of buttons that represented two
octaves of the chromatic scale as the keys of the piano as well as
(2) program event handling for buttons that start and stop recording.
While recording, the program was expected to save the names and
the octave numbers of the played notes to a global array. When the
recording was stopped, the content of this array was to be presented
to the user by creating new list items for an unordered list (ul) ele-
ment in the Document Object Model of the same web page. Playing
back the recorded notes as sound or in the correct rhythm were

not part of the assignment. Screen capture of a correctly working
program was presented.

3.2.4 QLCs design. After the previous program writing step the
research cases differed from a regular exercise in that the learning
material included a manually crafted form titled “Questions About
Your Program Code.” This form included two or three QLCs that
students were asked to answer using a single line text field. Apart
from the single line shown for students the length of the answer
was not controlled. Any answers were automatically accepted and
awarded fixed points that represented 6–15% of the exercise total
and less than 0.4% towards passing the course.

The QLCs are given in Table 1. Generally, we aimed the QLCs to
encourage reflection on the chapter content in relation to the stu-
dent’s work. The first QLC was designed to provide unambiguous
answers that could be automatically assessed in future. The later
QLCs were intentionally open-ended to allow students to elaborate
more on their thinking. The QLCs about EDP focused on the less lin-
ear program flow that characterized the newly introduced concepts.
In order to address a range of difficulty in program comprehension,
the different QLCs were designed to reach a number of levels of
the two dimensional Block Model [16] as labeled in Table 1.

3.3 Analysis Decisions
Each open-ended text answer to the QLCs in each of the three exer-
cises were examined and compared by an author who qualitatively
coded the emerging themes observed in the answers. A second
author applied the developed coding again to 18% of the answers
to assess inter-rater reliability. This reached 86% overall agreement
(multirater𝜅free 95% CI [0.68−0.91]). Disagreements were resolved
by improving code definitions. We describe the answers to each of
the QLCs using counts of code instances. In Section 5, we examine
several answers that were assigned an interesting code.

In addition to examining the answers to QLCs independently,
we researched correlations with student enrolment survey, student
success, and student retention. As a measure of success, we examine
the ratio of awarded exercise points in four chapters following the
three exercises. The time range of four chapters was an arbitrary
decision that would yield seemingly continuous data and have
negligible effect of student drop-out. As a measure of retention, we
examine the ratio of exercises that students attempted in the last
four rounds of the course. Again, the range of four rounds was an
arbitrary decision based on getting adequately continuous data for
statistical analysis.

In our evaluation we are interested in three different student
populations for each exercise separately:

P1: Students submitted at least one program for the exercise but
they failed to pass all functional tests in the automated assessment
system.

P2: Students submitted a program that did pass all of the func-
tional tests but their answers to the related QLCs included at least
one answer that was coded incorrect or irrelevant

P3: Students both passed all of the functional tests and correctly
answered the related QLCs.

From the previous cohort on an identical course we know that
distributions of both exercise points and exercise interactions expe-
rience severe ceiling and flooring effects: many students are either

at the minimum or at the maximum of a selected scale. We expect
this to rise partly from the exercise design—most students earn full
points given adequate effort and support for an exercise—and partly
from high dropout. For these distributions, where means approach
ceiling, we do not want to make normality assumptions required for
common t-tests. For visual evaluation, we choose to present distri-
butions in detail using histograms. We assume that observations are
independent & continuous and distributions are equal apart from
possible shifts in location. Then we used Wilcoxon-Mann-Whitney
two-sample rank-sum test to argue any difference in medians be-
tween selected populations. In addition, results include an estimate
of median difference using a 0.95 confidence interval.

3.4 Reliability and Validity
Initially, self-selection bias in this study is small and the partici-
pating students represent the course cohort well in exercises E1
and E2. Unfortunately, the third exercise E3 had significant self-
selection bias that must be considered in analysis. Our students’
varied background could affect the results and for that reason we
report correlations with data from our background survey.

Above, we tested inter-rater reliability of the coding used. Anal-
ysis could focus on other topics that develop different criteria and
coding than in this research. However, we are confident in detecting
incorrect answers which are relevant for correlation study.

The decided success and retention measures and their arbitrary
time range choices are a threat to validity. We see success as a
partial course grade earned in relevant time span and retention as
working until the end of the course material. However, we argue
any measure of success or retention on a course are less than ideal
interpretation of learning and valid interpretations should replicate
the same results to a certain degree.

More importantly, students’ ability to answer QLCs depends
on the following factors: questions’ alignment with teaching, the
amount & quality of teaching & practice students have had, the
experience students have in program comprehension tasks, the
design of the programming exercises that the QLCs target, and
the wording of the questions. In the interest of replication and
variations of this research, we aim to report such factors in detail.
This early research aims to report potential and correlations of
QLCs and not to validate instruments or causalities.

4 RESULTS
4.1 Student Answers to QLCs (RQ1)
Table 1 presents the answer coding and code frequencies. For E1
approximately one third of the students failed to answer at least
one of the three questions correctly. Four incorrect answers for
parameter names in E1.1 included “C and 3” and “Absolutely no
idea.” Common incorrect answers for E1.2 were file names that
did not call the function in the given template. For E1.3 incorrect
answers were longer more unique descriptions, such as “returning
a value is like running it, console.log is the test version of it.”

Little less than one third of the students failed to answer either
E2.1 or E2.2 correctly. Many of the answers were rather irrelevant
discussions, such as “Outer loop executes first.” A repeating mistake
was to claim inner loop prints “Lift off!” while it clearly is outside
the countdown.

Table 1: Answer coding and frequencies for QLCs by stu-
dents’ program passing or failing related functional tests.
Targeted Block Model levels are given in square brackets.

E1.1Which are the two function parameter names in your
program? [BM: atom – text surface]

pass fail 𝑁 = 82
- Incorrect or irrelevant answer 1 3 5%
+ Correct parameter names 70 8 95%

E1.2Where would you guess the parameter values come from
when you test in the provided browser page synth.html?
[BM: relation – text surface]

pass fail 𝑁 = 82
- Incorrect or irrelevant answer 19 8 33%
+ The function call in source 15 1 19%
+ The argument variables traced backwards 30 2 39%
+ The user task generating values 7 0 9%

E1.3 How would you describe the difference between returning
a value and printing a value using console.log?
[BM: atom – execution]

pass fail 𝑁 = 82
- Incorrect or irrelevant answer 16 7 28%
+ Returning a value (vague) 16 1 21%
+ Returning a value for further computation 32 2 41%
+ Logging a value to view/debug it 59 4 77%

E2.1 Describe the responsibilities of your outer loop in few
words. [BM: block – execution]

pass fail 𝑁 = 68
- Incorrect or irrelevant answer 13 1 20%
+ Iterates/prints rockets (incomplete) 34 2 53%
+ Iterates rockets & commences countdown 18 0 27%

E2.2 Describe the responsibilities of your inner loop in few
words. [BM: block – execution]

pass fail 𝑁 = 68
- Incorrect or irrelevant answer 15 2 25%
+ Prints countdown (no extraneous parts) 50 1 75%

E3.1Which parts of your program execute when browser
opens the page? [BM: macro – execution]

pass fail 𝑁 = 33
- Incorrect or irrelevant answer 10 4 42%
+ Declarations 11 1 36%
+ Event listeners (vague) 5 1 18%
+ Registering event listeners 10 1 33%

E3.2Which parts of your program execute when the user
clicks one of the note buttons? [BM: macro – execution]

pass fail 𝑁 = 33
- Incorrect or irrelevant answer 5 2 21%
+ Event (vague) 4 2 18%
+ Event listener 18 2 61%

E3.3 Describe in a few words how your program remembers
the played notes. [BM: macro – purpose]

pass fail 𝑁 = 33
- Incorrect or irrelevant answer 2 1 9%
+ Stored in an array variable 26 5 91%

Md

N=17

Md

N=29

Md

N=43

0.0 0.5 1.0

Md

N=5

Md

N=20

Md

N=46

0.5 1.0

Md

N=10

14
28

Md

N=14

14
28

Md

N=13

0
14

28

0.5 1.0

E1 func.

P
1

fa
il

E2 loop

P
2

te
st

E3 EDP

P
3

Q
L

C

Earned / Available Exercise Points

N
um

be
r

of
 S

tu
de

nt
s

Figure 2: Frequencies of exercise success following three sep-
arate exercises and three different student populations for
them: P1 submitted programs failing functional tests, P2 passed
tests but answered QLCs incorrectly, and P3 both passed tests and
answered QLCs correctly.

Md

N=17

Md

N=29

Md

N=43

0.0 0.5 1.0

Md

N=5

Md

N=20

Md

N=46

0.5 1.0

Md

N=10

7
13

Md

N=14

7
13

Md

N=13
0

7
13

0.5 1.0

E1 func.

P
1

fa
il

E2 loop

P
2

te
st

E3 EDP

P
3

Q
L

C

Attempted / Available Exercises

N
um

be
r

of
 S

tu
de

nt
s

Figure 3: Frequencies of attempted exercises towards end of
the course divided by three separate exercises and three dif-
ferent student populations for them: P1 submitted programs
failing functional tests, P2 passed tests but answered QLCs incor-
rectly, and P3 both passed tests and answered QLCs correctly.

The QLCs about EDP in E3 were the hardest to answer. Approxi-
mately half of the students failed at least one of the questions and
many correct answers were vague. Importantly, many students did
not reach E3 at all in time or decided to skip it. Students described
this chapter as demanding and laborious. Our research in E3 should
be seen more as exploratory work, which we discuss in Section 5.

4.2 Correlations With Answers to QLCs (RQ2)
Answering correctly to QLCs had no correlation with age, gender,
level of education, self-reported determination of success on course,
or students considering themselves as beginners in programming.
Student’s earlier participation in programming courses was moder-
ately correlated with answering correctly, 𝑟 (109) = .43, 𝑝 < .001.
There was no correlation with the education level of prior pro-
gramming courses. Additionally, the student’s estimate of prior
programming hours was moderately correlated with answering
correctly to QLCs, 𝑟 (102) = .37, 𝑝 < .001.

Figure 2 presents student success after each of the three exercises
as three frequency histograms for different student populations.
For the exercises about function (E1) and loops (E2) it is evident
that a small number of students who failed the functional tests
(P1) earned least points in the following four chapters. Further-
more, students who both passed the tests and answered QLCs
correctly (P3) earned more points than students who answered
QLCs incorrectly (P2). For E1 medians for P2 and P3 are 0.50 and
0.98 having difference 95% CI [−0.48,−0.07] which is statistically
significant (Mann-Whitney 𝑈 = 299, 𝑛1 = 27, 𝑛2 = 45, 𝑃 < .001
two-tailed). For E2 medians for P2 and P3 are 0.71 and 0.86 hav-
ing difference 95% CI [−0.20, 0.08] which is insignificant (Mann-
Whitney𝑈 = 410, 𝑛1 = 20, 𝑛2 = 46, 𝑃 = .483 two-tailed). Regarding
the exercise about EDP (E3), we believe the low number of students
and most observations at ceiling prevented us from making any
arguments or difference tests.

Figure 3 presents student retention depending on the three exer-
cises that each divide students into three populations presented as
frequency histograms. Among the students that failed the functional
tests (P1) in the exercises about function (E1) and loops (E2), nobody
attempted all of the exercises in the last four rounds. Additionally,
students who both passed the tests and answered QLCs correctly
(P3) attempted more exercises than students who answered QLCs
incorrectly (P2). For E1, medians for P2 and P3 are 0.33 and 0.75 hav-
ing difference 95% CI [−0.42,−0.03] which is statistically significant
(Mann-Whitney 𝑈 = 382, 𝑛1 = 27, 𝑛2 = 45, 𝑃 = .008 two-tailed).
For E2, medians for P2 and P3 are 0.64 and 0.74 having differ-
ence 95% CI [−0.25, 0.14] which is insignificant (Mann-Whitney
𝑈 = 413, 𝑛1 = 20, 𝑛2 = 46, 𝑃 = .514 two-tailed). The exercise about
EDP (E3) breaks the pattern and students who passed the tests but
answered QLCs incorrectly (P2) attempted most exercises. All of
the students who at least attempted E3 worked a good amount in
the last rounds of the course.

5 STUDENT THINKING (RQ3)
In this chapter, we discuss potential reasons underlying the an-
swers. We examine student thinking through our answer coding
and selected answer quotations. The open feedback from the course

suggests that QLCs do make students reflect. For instance, two stu-
dents wrote about “They can kind of check if the student completed
the task him/herself and understood what was done and why.” and

“I don’t know whether these questions helped me. After all,
often they asked for things one already thinks about when
writing the code. So it felt a bit redundant at times. But then
again, maybe it helps with self-reflection.”

5.1 Answering Challenges
The QLCs in this research require a varying levels of program
comprehension to answer correctly. By examining the incorrect
answers, we identified three challenges that manifested in multiple
QLCs.

5.1.1 Defective Expression. Many of the answers evoked uncer-
tainty of whether the root cause for an incorrect answer is the
respondent’s understanding or merely a defective written expres-
sion. While English was used for both presenting the questions and
giving the answers, many of the respondents are not native English
speakers. Consequently, an inadequate command of English might
pose challenges in expressing one’s thoughts precisely. In addi-
tion to possible challenges in using English, possible earlier issues
with clear understanding of prerequisite concepts might result in
non-ideal word choices.

One example of a defective expression can be found in an answer
to E1.3: “Returned value can be used elsewhere in the program, printed
value can’t be accessed.” Certainly a value can be accessed after
printing it. However, if a return statement is replaced with a print
statement, the value becomes inaccessible from outside the function
scope. Another example from E3.1 is the usage of the verb to activate
in “Event listeners are activated.” We can ask if it means that the
event handlers are being attached (registered to be called later) or
executed (actually called to handle an event).

5.1.2 Misunderstood Terminology. The course teaches new termi-
nology, which confused some of the students. There might also be
clashes between synonymous terms that are being used in differ-
ent contexts (e.g., development environments, teaching materials,
discussions with people) or interchangeably in one context. For
instance, the answer “Eventlisteners and then eventhandlers” (E3.2)
illustrates that the respondent most likely has a confusion with the
synonymous terms event listener and event handler, both of which
mean a subprogram that is called to respond to an event. Unless this
respondent has some special reason for calling event handlers with
two synonymous terms, they might have associated some differing
meaning for one of these terms.

5.1.3 Concept vs. Application. Some answers contained terms writ-
ten in camel case or without spaces, as identifiers are written in
some programming languages. The respondent might have writ-
ten them themselves, thinking for some reason that they have to
be written that way, or they might have copied those terms from
some program code. One hypothesis for the reason of this behavior
is that the respondent is following a surface learning approach,
focusing on passing the exercises quickly without thinking on con-
ceptual level what the code actually contains or does. This would
result, for instance, in copying a name of an event handler (such as
“eventHandler”) from their code to the answer instead of using the

name of the concept. A similar situation could exist with an answer
“variable definitions and addeventlisteners.” There, the (presumed)
method name “addeventlisteners” is being used instead of describing
the attachment of the event handlers on the conceptual level, as
was done with variables in the same answer.

5.2 EDP-Related Confusions
From students’ answers to the QLCs, we identified possible confu-
sions about EDP and, more specifically, program flow, which was
at focus in E3. As these observations are based on the answers of a
few individual students,we cannot predict the true frequencies of
the presented confusions among the whole student base.

5.2.1 Loading-Time Behavior. The answers of six respondents (18%)
to E3.1 indicated that static resources, such as the HTML and CSS
files, would be the program parts executed when a web page is
opened in a browser. One hypothesis for this would be that the
respondents have an elementary-level confusion about what re-
sources are static and what are executable program code. However,
this seems somewhat implausible, as the participants have been
writing JavaScript on the course already, and one of these respon-
dents explicitly used the word static (“It goes over the static html
file”).

Another reason for referring to static resources could be that
instead of understanding a program to refer to the JavaScript code
they are editing, these respondents reason that their program is com-
posed of all the files in the exercise and that the browser first loads
the HTML and CSS files. A third possibility is that the respondents
have an unclear notion of executing a program, and consequently
they think that executing means, for instance, loading and parsing
all the related files and then displaying the resulting web page.

5.2.2 Attaching and Executing Event Handlers. Seven responses
(21%) for E3.1 and E3.2 implied that some of the respondents might
be confused about what it means to attach (to add, to register) an
event handler, when they are actually executed, and who actually
calls them. In other words, details of essential event handling me-
chanics, including the Observer design pattern, potentially pose
confusions at least when left explicitly unexplained.

Concerning E3.1, the responses “event listeners are activated,” “all
the global variables and event-listeners,” and “eventListeners” could
indicate the respondents to think that the event handlers are exe-
cuted at the time of attaching them—in this case, when the web page
is loaded. Moreover, E3.2 gathered such explanations as “eachNote-
Buttons[i].addEventListener(’click’, playNote) executes the playNote
event handler,” which quite clearly reflect the incorrect idea of
addEventListener()method calling the given event handler after
the occurrences of the events.

6 CONCLUSION
Our results support earlier findings [7, 13] on students struggling
with concepts they applied when writing a program. In our experi-
ment, a similar ratio of students failed at correctly explaining their
own program code as has previously been reported [15] for explain-
ing example codes (RQ1). Our analysis of student thinking sug-
gests other answering challenges besides program comprehension.
We note that open-text explanations do not only require program

comprehension but also the ability to describe the programming
concepts adequately. We also argue that both the program compre-
hension and the ability to describe the program are necessary skills
in a programming career.

The QLCs in E1 targeted syntax and execution of individual
language elements related to functions. They were well aligned
with the current learning goals and relatively simple according to
the Block Model [16].

After submitting a functionally correct program to E1, the stu-
dents that also answered correctly to the posed QLCs had signifi-
cantly higher correlation with success and retention on the course
(RQ2). The same phenomena was statistically insignificant for QLCs
in E2. These QLCs targeted execution of code blocks—more demand-
ing according to the Block Model—and were considerably more
open-ended. We hypothesize that the open-endedness combined
with the identified challenges in student answers are important
factors for observing weaker correlation effects.

Finally, we analysed student thinking from the QLC answers
and identified several challenges that the students had. Specially,
E3 had a low number of students for statistical analysis but enabled
exploratory work in the EDP context. We observed several students
had confusions with loading-time behaviour as well as attaching
vs. executing event handlers. Because a limited student population
completed E3, the true frequency of these confusions about EDP is
unknown. However, as we strive to improve our teaching in every
possible way, these observations should be useful in considering
areas that might potentially have been left unclear or misunder-
stood. We recommend that educators consider them in everyday
teaching of EDP outside formal research contexts. Given that these
observations were possible, we see that open-ended QLCs can be
useful in researching student thinking (RQ3).

We still lack knowledge whether QLCs, as employed in this re-
search, can be used as instruments for measuring program compre-
hension, knowledge of terminology, or only careful answering—and
whether answering itself has learning gains via reflection or other
processes. Our research and discussion support all of these hypothe-
ses. We note that the results are also greatly dependent on the type
and design of the QLCs and their application in the course. Given
the QLCs’ correlation with student success and retention in online
learning context, we see that replications and improved research
designs are worth considerable future efforts.

In our future work, we will
(1) develop automatic personalized QLC generation

from the programs that students submit,
(2) evaluate QLCs’ potential effect on learning, and
(3) investigate students’ understanding of EDP-related

concepts and program code.
To drill deeper and to see whether our observations can be re-

peated, we encourage the computing education community to carry
out replications or variations of this study in varying teaching con-
texts (e.g., student populations and learning materials). Regarding
students’ understanding of EDP, it might be helpful to complement
QLCs with other research methods, including concept maps.

REFERENCES
[1] Jens Bennedsen and Michael E. Caspersen. 2007. Assessing Process and Product.

Innovation in Teaching and Learning in Information and Computer Sciences 6, 4

(2007), 183–202. https://doi.org/10.11120/ital.2007.06040183
[2] Kim B. Bruce and Andrea Danyluk. 2004. Event-Driven Programming Facilitates

Learning Standard Programming Concepts. In Companion to the 19th Annual ACM
SIGPLANConference on Object-Oriented Programming Systems, Languages, and Ap-
plications (Vancouver, BC, CANADA) (OOPSLA ’04). Association for Computing
Machinery, New York, NY, USA, 96–100. https://doi.org/10.1145/1028664.1028704

[3] Kim B. Bruce, Andrea P. Danyluk, and Thomas P. Murtagh. 2001. Event-Driven
Programming is Simple Enough for CS1. In Proceedings of the 6th Annual Confer-
ence on Innovation and Technology in Computer Science Education (Canterbury,
United Kingdom) (ITiCSE ’01). Association for Computing Machinery, New York,
NY, USA, 1–4. https://doi.org/10.1145/377435.377440

[4] Ricardo Caceffo, SteveWolfman, Kellogg S. Booth, and Rodolfo Azevedo. 2016. De-
veloping a Computer Science Concept Inventory for Introductory Programming.
In Proceedings of the 47th ACM Technical Symposium on Computing Science Edu-
cation (Memphis, Tennessee, USA) (SIGCSE ’16). Association for Computing Ma-
chinery, New York, NY, USA, 364–369. https://doi.org/10.1145/2839509.2844559

[5] Malcolm Corney, Sue Fitzgerald, Brian Hanks, Raymond Lister, Renee McCauley,
and Laurie Murphy. 2014. ’explain in Plain English’ Questions Revisited: Data
Structures Problems. In Proceedings of the 45th ACM Technical Symposium on
Computer Science Education (Atlanta, Georgia, USA) (SIGCSE ’14). Association for
Computing Machinery, New York, NY, USA, 591–596. https://doi.org/10.1145/
2538862.2538911

[6] Cruz Izu, Carsten Schulte, AshishAggarwal, Quintin Cutts, RodrigoDuran,Mirela
Gutica, Birte Heinemann, Eileen Kraemer, Violetta Lonati, Claudio Mirolo, and
RenskeWeeda. 2019. Fostering ProgramComprehension in Novice Programmers -
Learning Activities and Learning Trajectories. In Proceedings of theWorking Group
Reports on Innovation and Technology in Computer Science Education (Aberdeen,
Scotland Uk) (ITiCSE-WGR ’19). Association for Computing Machinery, New
York, NY, USA, 27–52. https://doi.org/10.1145/3344429.3372501

[7] Cazembe Kennedy and Eileen T. Kraemer. 2019. Qualitative Observations of
Student Reasoning: Coding in theWild. In Proceedings of the 2019 ACMConference
on Innovation and Technology in Computer Science Education (Aberdeen, Scotland
Uk) (ITiCSE ’19). Association for Computing Machinery, New York, NY, USA,
224–230. https://doi.org/10.1145/3304221.3319751

[8] Lan Cao and Peng Xu. 2005. Activity Patterns of Pair Programming. In Proceedings
of the 38th Annual Hawaii International Conference on System Sciences. IEEE, New
York, NY, USA, 88a–88a. https://doi.org/10.1109/HICSS.2005.66

[9] Teemu Lehtinen, André L. Santos, and Juha Sorva. to appear. Let’s Ask Students
About Their Programs, Automatically. In Proceedings of the 28th International
Conference on Program Comprehension (ICPC ’21). IEEE, New York, NY,USA.

[10] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, Beth Simon, and Lynda Thomas. 2004. A Multi-National Study of

Reading and Tracing Skills in Novice Programmers. InWorking Group Reports
from ITiCSE on Innovation and Technology in Computer Science Education (Leeds,
United Kingdom) (ITiCSE-WGR ’04). Association for Computing Machinery, New
York, NY, USA, 119–150. https://doi.org/10.1145/1044550.1041673

[11] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships between Reading, Tracing and Writing Skills in Introductory Program-
ming. In Proceedings of the Fourth International Workshop on Computing Education
Research (Sydney, Australia) (ICER ’08). Association for Computing Machinery,
New York, NY, USA, 101–112. https://doi.org/10.1145/1404520.1404531

[12] Aleksi Lukkarinen, Lauri Malmi, and Lassi Haaranen. 2021. Event-Driven
Programming in Programming Education: A Mapping Review. ACM Trans-
actions on Computing Education (TOCE) 21, 1, Article 1 (March 2021), 31 pages.
https://doi.org/10.1145/3423956

[13] Sandra Madison and James Gifford. 2002. Modular Programming. Journal of
Research on Technology in Education 34, 3 (2002), 217–229. https://doi.org/10.
1080/15391523.2002.10782346

[14] Laurie Murphy, Sue Fitzgerald, Raymond Lister, and Renée McCauley. 2012.
Ability to ’explain in Plain English’ Linked to Proficiency in Computer-Based
Programming. In Proceedings of the Ninth Annual International Conference on
International Computing Education Research (Auckland, New Zealand) (ICER ’12).
Association for Computing Machinery, New York, NY, USA, 111–118. https:
//doi.org/10.1145/2361276.2361299

[15] Laurie Murphy, Renée McCauley, and Sue Fitzgerald. 2012. ’Explain in Plain
English’ Questions: Implications for Teaching. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education (Raleigh, North Carolina,
USA) (SIGCSE ’12). Association for Computing Machinery, New York, NY, USA,
385–390. https://doi.org/10.1145/2157136.2157249

[16] Carsten Schulte. 2008. Block Model: An Educational Model of Program Com-
prehension as a Tool for a Scholarly Approach to Teaching. In Proceedings of
the Fourth International Workshop on Computing Education Research (Sydney,
Australia) (ICER ’08). Association for Computing Machinery, New York, NY, USA,
149–160. https://doi.org/10.1145/1404520.1404535

[17] Simon and Susan Snowdon. 2014. Multiple-Choice vs Free-Text Code-Explaining
Examination Questions. In Proceedings of the 14th Koli Calling International
Conference on Computing Education Research (Koli, Finland) (Koli Calling ’14).
Association for Computing Machinery, New York, NY, USA, 91–97. https://doi.
org/10.1145/2674683.2674701

[18] Renske Weeda, Cruz Izu, Maria Kallia, and Erik Barendsen. 2020. Towards an
Assessment Rubric for EiPE Tasks in Secondary Education: Identifying Quality
Indicators and Descriptors. In Koli Calling ’20: Proceedings of the 20th Koli Calling
International Conference on Computing Education Research (Koli, Finland) (Koli
Calling ’20). Association for Computing Machinery, New York, NY, USA, Article
30, 10 pages. https://doi.org/10.1145/3428029.3428031

https://doi.org/10.11120/ital.2007.06040183
https://doi.org/10.1145/1028664.1028704
https://doi.org/10.1145/377435.377440
https://doi.org/10.1145/2839509.2844559
https://doi.org/10.1145/2538862.2538911
https://doi.org/10.1145/2538862.2538911
https://doi.org/10.1145/3344429.3372501
https://doi.org/10.1145/3304221.3319751
https://doi.org/10.1109/HICSS.2005.66
https://doi.org/10.1145/1044550.1041673
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/3423956
https://doi.org/10.1080/15391523.2002.10782346
https://doi.org/10.1080/15391523.2002.10782346
https://doi.org/10.1145/2361276.2361299
https://doi.org/10.1145/2361276.2361299
https://doi.org/10.1145/2157136.2157249
https://doi.org/10.1145/1404520.1404535
https://doi.org/10.1145/2674683.2674701
https://doi.org/10.1145/2674683.2674701
https://doi.org/10.1145/3428029.3428031

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Education Context
	3.2 Three Exercises with QLCs
	3.3 Analysis Decisions
	3.4 Reliability and Validity

	4 Results
	4.1 Student Answers to QLCs (RQ1)
	4.2 Correlations With Answers to QLCs (RQ2)

	5 Student Thinking (RQ3)
	5.1 Answering Challenges
	5.2 EDP-Related Confusions

	6 Conclusion
	References

