
Gestop: Customizable Gesture Control of Computer Systems
Sriram S K

sriramsk1999@gmail.com
PES University
Bengaluru, India

Nishant Sinha
nishant@offnote.co

OffNote Labs
Bengaluru, India

ABSTRACT
The established way of interfacing with most computer systems is
a mouse and keyboard. Hand gestures are an intuitive and effective
touchless way to interact with computer systems. However, hand
gesture based systems have seen low adoption among end-users
primarily due to numerous technical hurdles in detecting in-air
gestures accurately. This paper presents Gestop, a framework de-
veloped to bridge this gap. The framework learns to detect gestures
from demonstrations, is customizable by end-users and enables
users to interact in real-time with computers having only RGB
cameras, using gestures.

CCS CONCEPTS
• Human-centered computing → Gestural input; • Comput-
ing methodologies → Tracking.

KEYWORDS
hand gesture, MediaPipe, neural networks, pytorch

ACM Reference Format:
Sriram S K and Nishant Sinha. 2021. Gestop: Customizable Gesture Control
of Computer Systems. In 8th ACM IKDD CODS and 26th COMAD (CODS
COMAD 2021), January 2–4, 2021, Bangalore, India. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3430984.3430993

1 INTRODUCTION
Hand detection and gesture recognition has a broad range of poten-
tial applications, including in-car gestures, sign language recogni-
tion, virtual reality and so on. Through gestures, users can control
or interact with devices without touching them. Although numer-
ous gesture recognition prototypes and tutorials are available across
the web, they handle only restricted set of gestures and lack proper
architecture design and description, making it hard for end-users
to use and build upon them.

In this paper, we present the architecture and implementation
of our end-to-end, extensible system which allows user to control
desktop in real-time using hand gestures. Our tool works across
different hardware (CPU/GPU) and operating systems and relies on
amedium resolution camera to detect gestures. The tool controls the
desktop through hand gestures alone, replacing all mouse actions
with gestures, and many keyboard shortcuts as well. Furthermore,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CODS COMAD 2021, January 2–4, 2021, Bangalore, India
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8817-7/21/01.
https://doi.org/10.1145/3430984.3430993

the design is modular and customizable: we provide an easy-to-
use configuration for remapping gestures and actions, adding new
custom actions as well as new gestures.

We make use of two kinds of gestures in our application: static
and dynamic. Static gestures are gestures where a single hand
pose provides enough information to classify the gesture, such as
the "Peace" sign. On the other hand, dynamic gestures cannot be
detected from a single pose alone, and require a sequence of poses
to be understood and classified. Examples include the gestures
maintaining the pose of the hand while moving it ("Swipe Up"),
or gestures which involve changing hand posture continuously
("Pinch"). By combining hand motion along with continuous pose
change, we can create a large number of dynamic gestures.

The architecture of the application follows a modular design.
It is separated into logical components, each performing a single
task. The Gesture Receiver receives keypoints from the image
and passes it on to the Gesture Recognizer, which uses neural
networks to classify both static and dynamic gestures, and finally
the Gesture Executor, which executes an action based on the
detected gesture.

A key distinguishing aspect of our application is that it is cus-
tomizable by the end-user. Other than the inbuilt mouse and key-
board functions, it is possible to map gestures to arbitrary desktop
actions, including a shell script. This allows for massive flexibility in
how the application can be used. Gestures can be mapped to launch
other applications, setup environments and so on. In addition, we
have provided a way to add new gestures as well, allowing the user
to extend it as much as required.

2 RELATEDWORK
Hand Gesture Recognition from Video. The literature on ges-
ture recognition from static images or video is vast. The solutions
vary based on whether (a) the cameras or sensors (single or multiple
instances) provide RGB-only images vs depth data (RGB-D), (b) we
detect hand keypoints (palm and finger joints) as an intermediate
step or perform end-to-end detection directly from video, (c) de-
tecting keypoints is the end-goal as opposed to 3D reconstruction
of hands, (d) gestures are pre-segmented or must be segmented
in real-time. For more details, please refer to recent overview ar-
ticles by Lepetit [8] and Ren et al. [13]. In our approach, we use a
monocular RGB video stream, which is fed into a two-phase neural
network architecture. The first phase detects hand keypoints from
individual video frames (using the off-the-shelf MediaPipe [3] tool)
and generates a sequence of hand keypoints, which is used by the
second phase to detect both static and dynamic gestures (using
our neural models). GestARLite [7] is a light, on-device framework
for detecting gestures based on pointing fingers. Our solution is
targeted towards desktop computers and can recognize much larger
set of complex dynamic gestures and can be customized easily.

ar
X

iv
:2

01
0.

13
19

7v
1 

 [
cs

.H
C

] 
 2

5 
O

ct
 2

02
0

https://doi.org/10.1145/3430984.3430993
https://doi.org/10.1145/3430984.3430993


CODS COMAD 2021, January 2–4, 2021, Bangalore, India Sriram S K and Nishant Sinha

Gesture Recognition Platforms. Gesture recognition is use-
ful for several applications: controlling virtual interfaces, gaming,
embodied AR/VR environments, automotive human-machine in-
terface [4], home automation [14], education [15], retail business
environments, consumer electronics control and more. Many appli-
cations use hand gestures because they enable highly expressive
interaction. Although the gesture recognition market size is rapidly
growing, there are hardly any end-to-end open source gesture recog-
nition platforms. Exceptions include GRT [2], an open-source, C++
machine learning library designed for real-time gesture recognition,
which provides building blocks for creating custom recognizers. In
contrast, we use neural layers as our building blocks and develop
models using PyTorch [12].

Programming imperative multi-touch gesture recognizers in-
volves dealing with low-level, event-driven programming model.
Gesture Coder [9] learns from multi-touch gesture examples pro-
vided by users and generates imperative recognition code auto-
matically and invokes corresponding application actions. Oney et
al. [11] investigate declarative abstractions for simplifying program-
ming of multi-touch gestures. In contrast, we recognize gestures
end-to-end using deep learning from video examples.

3 DESIGN ARCHITECTURE
We use an open source framework (MediaPipe) [10] to detect the
hand keypoints in the images captured by the camera. TheMedi-
aPipe module reads data from the camera, processes it and gen-
erates keypoints which are then sent to the Gesture Receiver
using ZeroMQ, a messaging queue. On receiving the keypoints,
the Gesture Receiver then passes it to the Gesture Recognizer,
which then processes the keypoints into the encoded features, feeds
them into the network which detects the output gesture. Finally,
the Gesture Receiver sends the detected gesture to the Gesture
Executor, which executes an action.

Figure 1: Overview of design architecture

MediaPipe. The first component, which tracks the palms of
the user and generates the hand landmarks or keypoints is built
using MediaPipe, a cross-platform framework providing a variety
of ML solutions. We utilize MediaPipe’s Hand Tracking [16], a
high-fidelity hand and finger tracking solution which can infer 21
3D landmarks of a hand from just a single frame. The tracking
is smooth and handled cases of self-occlusion (the hand covering
itself) as well.

Gesture Receiver. The Gesture Receiver is the heart of the
application and acts as a controller for the other modules. It receives

the keypoints from the MediaPipe module, and then passes it to
the Gesture Recognizer and the Mouse Tracker. The output received
(the name of a gesture) is then passed to the Gesture Executor.

Mouse Tracker. The Mouse Tracker tracks the cursor on the
screen as the hand moves. As convention, we use the tip of the
index finger as the keypoint with which to track the mouse. As the
index finger is moved, the motion is projected onto the screen and
the cursor moves accordingly.

Gesture Recognizer. The Gesture Recognizer module classi-
fies gestures given keypoints. We utilize two neural networks for
the same, one to detect static gestures and the other for dynamic
gestures. The details of their structure and training are elaborated
upon in the subsequent sections.

Gesture Executor. The input to this module is the name of the
gesture which has been recognized by the Gesture Recognizer. This
module finds the action mapped to this gesture and then executes it.
We include a small set of predefined gestures and actions to cover
common use cases.

4 GESTURE RECOGNIZER
The inputs to the Gesture Recognizer are the 21 3D keypoints
generated by MediaPipe. each corresponding to a point on the
hand. Each keypoints consists of three coordinates (𝑥,𝑦, 𝑧). Thus
the Gesture Recognizer receives a 63-D input vector. These input
vectors are then transformed into the features expected by the
neural networks as described below.

4.1 Static Gestures
Static gestures are gestures which can be described by a single hand
pose. Some of the gestures detected by Gestop are shown in Fig. 2,
along with the name which is used to refer to them. The set of static
gestures included in the tool can virtually replace the mouse for all
uses.

Eight Four Hitchhike Seven Spiderman

Figure 2: Sample static gestures that are included with the
application.

Feature Computation. The keypoints generated by MediaPipe
are transformed and fed into the network. The vector is computed
by calculating the relative hand vectors: the vector differences be-
tween the input keypoints. These relative vectors encode hand pose
information in a position invariant manner, i.e. the same gesture is
detected, regardless of where the hand is in the webcam’s field of
vision. For example, the first relative hand vector (from the base of
the palm to the first joint of the thumb) can be computed by the
following:

𝑉 01𝑥 = 𝑉 1𝑥 −𝑉 0𝑥
𝑉 01𝑦 = 𝑉 1𝑦 −𝑉 0𝑦
𝑉 01𝑧 = 𝑉 1𝑧 −𝑉 0𝑧



Gestop: Customizable Gesture Control of Computer Systems CODS COMAD 2021, January 2–4, 2021, Bangalore, India

Where 𝑉 0 and 𝑉 1 represent the 3D coordinates of the points
labeled 0 and 1 in Fig. 3 and𝑉 01 represents the relative hand vector
between them. In summary, we have 16 relative hand vectors (4 for
the thumb, 3 for the other fingers) and each hand vector consisting
of (𝑥,𝑦.𝑧) coordinate giving us a total of 48 coordinates. Finally,
the handedness, i.e., the hand with which the gesture is performed,
is appended and this 49-D vector is fed into the network (Sec. 6).

Figure 3: The labeled keypoints generated by MediaPipe

Dataset. In training the network, we recorded our own data and
created a small dataset. The data was collected in the following
manner: The name of the gestures is specified, the MediaPipe com-
ponent is executed and keypoints were captured. These keypoints
are simply written to a CSV file for later use along with the given
gesture name. For each gesture, around 2000 samples were taken,
which took only a couple of minutes.

While static gestures are simple to perform, they are limited by
virtue of the fact that they are only so many distinct poses one can
perform with a hand. Hence, dynamic gestures are required.

4.2 Dynamic Gestures
Dynamic Gestures are an extension of static gestures, and consist
of a sequence of poses. These include gestures commonly used on
touchscreen devices, such as "Swipe Up", "Pinch" etc.

Dataset. For training dynamic gestures, we make use of the
SHREC [5] dataset. This dataset consists of 2800 sequences across
14 gestures, including common ones like "Swipe Up", "Tap" as well
as more complex gestures like "Swipe +". It consists of variable
length sequences performed by multiple people in 2 ways: either
using the whole hand, or just the fingers. To capture more data,
Gestop also includes a script to record dynamic gestures.

Feature Computation. To compute the feature vector, each
frame of the input sequence is transformed into a vector consisting
of the following:

• The absolute coordinates of the base of the palm i.e.𝑉 0𝑥 and
𝑉 0𝑦 . This was used because gestures like "Swipe Up", "Swipe
Right" etc. involve moving the hand.

• The timediff coordinates of the base of the palm. This con-
sisted of the change in position of that coordinate with re-
spect to the previous timestep. This was empirically found
to improve the performance of the network.

• Finally, similar to the static case, coordinates of the relative
hand vectors to capture the pose of the hand.

5 GESTURE EXECUTOR
The Gesture Executor is the user-facing module. Its responsibility
is to take in the recognized gesture, map it to the specified action
and then execute it. The mapping of gestures to actions is stored in
a human-readable JSON file, for easy modification. The format of
the file is:

{'gesture-name':['type','func-name']}

Here, gesture-name is the name of a gesture, type is either sh
(shell) or py (python), denoting the type of the action to be executed
and func-name is the name of the shell script/command to be exe-
cuted if the type is sh, or the name of a user defined function if the
type if py. To remap functionality, for example, if the user wishes to
take a screenshot with Swipe + instead of Grab, the configuration
would change from:

"Grab" : ["py", "take_screenshot"],
"Swipe +" : ["py", "no_func"],

To,
"Grab" : ["py", "no_func"],
"Swipe +" : ["py", "take_screenshot"],

CustomActions.To suit an end user’s specificworkflow,Gestop
allows defining custom actions, e.g., a python function or a shell
script, which are executed when the corresponding gesture is de-
tected. For example, to execute a shell script script.sh on the "Tap"
gesture, the user may change the mappings in the configuration
file to:

{'Tap':['sh','./script.sh']}

5.1 New Gestures
In our experience, the end user may want to add both new actions
and new gestures. Hence, we have provided a method to add data
for new gestures (static or dynamic). For static gestures, the same
script that was used to collect initial data to train the network is
reused to addmore gestures. The new gesture name is provided, and
data is recorded and written to disk. For recording dynamic data, we
provide a script: for each script run, a gesture name is provided and
the corresponding gesture performed repeatedly. Post-run, multiple
sequences with gesture labels are stored on the disk. Data for a new
gesture, ’Circle’, was collected using this process over the course
of 15-20 minutes, demonstrating its feasibility. After adding new
gesture data, the network is retrained and the application is now
able to detect the user’s custom gestures as well.

6 IMPLEMENTATION AND RESULTS
We use the pytorch-lightning [6] framework to build our neural
network classifiers. The implementation is open-sourced [1] with
detailed documentation for installation and usage, along with a
demo video showcasing Gestop’s capabilities.

Static Gestures. To detect static gestures, we utilize a feed for-
ward neural network classifier with 2 linear layers, which takes in
a feature vector and classifies it as one of the available gestures.
The network was trained for around 50 epochs and the confusion
matrix of the trained network can be seen in Fig. 4.

The set of static gestures relevant to an application are much
smaller than all possible static gestures. Moreover, it is infeasible
to record all unwanted gestures to help our classifier discriminate



CODS COMAD 2021, January 2–4, 2021, Bangalore, India Sriram S K and Nishant Sinha

Figure 4: Confusion Matrix for static gestures

accurately. We handle this data imbalance as follows. Besides the
set of relevant gestures, we introduce a none gesture, which is
selected if no relevant gesture is detected. To train our classifier,
we capture a variety of unrelated static gestures and label them
as none. While this improves classifier performance, we still see
many false positives. To solve this problem, we manually calibrate
the softmax output of the classifier by scaling the score of the none
gesture by a constant 𝑘 (𝑘 = 2 worked well for our experiments).

These optimizations allow our static classifier to achieve high
detection accuracy for multiple users and different lighting con-
ditions. We achieve good performance (Fig. 4), with a validation
accuracy of 99.12%, and this translates to test time as well. Hand
gestures are detected with no noticeable latency.

Dynamic Gestures. To detect dynamic gestures, we use a recur-
rent neural network, which consists of a linear layer, to encode the
incoming features, connected to a bidirectional GRU. A key issue
when detecting dynamic gestures is that of computing the start and
end of a gesture precisely. We circumvent this issue by making use
of a signal key to signify the start and end of the gesture; we uti-
lize the Ctrl key in Gestop. This enables handling varying length
gestures as well as reduces the number of misclassifications. In
addition to the gestures provided by SHREC, an additional gesture,
’Circle’, was also added using the aforementioned methods. Despite
being a complex gesture, the network was able to detect the gesture
accurately during testing, leading us to believe that the network
can successfully generalize to other gestures as well. The confu-
sion matrix for the various gestures is shown in Fig. 5. We observe
that dynamic gestures have lower performance than static gestures,
with an average accuracy of around 85%. Dynamic gestures are
inherently concerned with two factors, the pose of the hand and
the displacement of the hand over time. As can be seen from the

Figure 5: Confusion Matrix for dynamic gestures

confusion matrix, gestures which involve displacement of the hand
(i.e. the "Swipes") are detected well, whereas those concerned with
the orientation of the hand such as "Tap" have a relatively lower
accuracy. When testing our models trained on SHREC dataset, we
also observed a domain mismatch problem. The data from SHREC
was recorded using an Intel RealSense depth camera, whereas the
incoming stream during testing is from an RGB camera, causing
loss in accuracy during testing. In our ongoing work, we plan to
address both these issues with improved feature computation and
training on larger, diverse datasets.

Compared to existing systems like GestARLite [7],Gestop doesn’t
require a headset or additional hardware to operate. GRT-[2], a ges-
ture recognition toolkit in C++, provides building blocks for users
to build a gesture recognition pipeline, whereas Gestop provides a
complete pipeline and a simple interface for end users to customize.

7 CONCLUSION
In this paper, we present Gestop, a novel framework for control-
ling the desktop through hand gestures, which may be customized
to preferences of the end-user. In addition to providing a fully
functional replacement for the mouse, our framework is easy to
extend by adding new custom gestures and actions, allowing the
user to use gestures for many more desktop use cases. We aim to
improve Gestop further by improving the detection accuracy, make
incremental training for new gestures efficient, detecting gesture
start/end and other subtle user intents, and conduct user studies to
measure the usability of the tool.

ACKNOWLEDGMENTS
We would like to thank Vikram Gupta for useful discussions.



Gestop: Customizable Gesture Control of Computer Systems CODS COMAD 2021, January 2–4, 2021, Bangalore, India

REFERENCES
[1] 2020. Gestop. https://github.com/sriramsk1999/gestop.
[2] 2020. Gesture Recognition Toolkit. https://github.com/nickgillian/grt.
[3] 2020. MediaPipe: Cross-platform ML solutions made simple. https://google.github.

io/mediapipe/.
[4] Hassene Ben Amara. 2019. End-to-End Multiview Gesture Recognition for Au-

tonomous Car Parking System.
[5] Quentin De Smedt, Hazem Wannous, Jean-Philippe Vandeborre, Joris Guerry,

Bertrand Le Saux, and David Filliat. 2017. Shrec’17 track: 3d hand gesture recog-
nition using a depth and skeletal dataset.

[6] WEA Falcon et al. 2019. Pytorch lightning. GitHub. Note: https://github.
com/williamFalcon/pytorch-lightning Cited by 3 (2019).

[7] Varun Jain, Gaurav Garg, Ramakrishna Perla, and Ramya Hebbalaguppe. 2019.
GestARLite: An On-Device Pointing Finger Based Gestural Interface for Smart-
phones and Video See-Through Head-Mounts. ArXiv abs/1904.09843 (2019).

[8] Vincent Lepetit. 2020. Recent Advances in 3D Object and Hand Pose Estimation.
arXiv:2006.05927 [cs.CV]

[9] Hao Lü and Yang Li. [n.d.]. Gesture Coder: A Tool for Programming Multi-Touch
Gestures by Demonstration (CHI ’12).

[10] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja,
Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee,
et al. 2019. Mediapipe: A framework for building perception pipelines. arXiv
preprint arXiv:1906.08172 (2019).

[11] Steve Oney, Rebecca Krosnick, Joel Brandt, and Brad Myers. [n.d.]. Implementing
Multi-Touch Gestures with Touch Groups and Cross Events. In CHI’19.

[12] Adam et al. Paszke. [n.d.]. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Neurips’19.

[13] Bin Ren, Mengyuan Liu, Runwei Ding, and Hong Liu. 2020. A Sur-
vey on 3D Skeleton-Based Action Recognition Using Learning Method.
arXiv:2002.05907 [cs.CV]

[14] Heinrich Ruser, Susan Vorwerg, and Cornelia Eicher. [n.d.]. Making the Home
Accessible - Experiments with an Infrared Handheld Gesture-Based Remote
Control. In HCI International 2020 - Posters.

[15] Lora Streeter and John Gauch. [n.d.]. Detecting Gestures Through a Gesture-
Based Interface to Teach Introductory Programming Concepts. InHCI’20, Masaaki
Kurosu (Ed.).

[16] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei Tkachenka, George
Sung, Chuo-Ling Chang, and Matthias Grundmann. 2020. MediaPipe Hands:
On-device Real-time Hand Tracking. arXiv preprint arXiv:2006.10214 (2020).

https://github.com/sriramsk1999/gestop
https://github.com/nickgillian/grt
https://google.github.io/mediapipe/
https://google.github.io/mediapipe/
https://arxiv.org/abs/2006.05927
https://arxiv.org/abs/2002.05907

	Abstract
	1 Introduction
	2 Related Work
	3 Design Architecture
	4 Gesture Recognizer
	4.1 Static Gestures
	4.2 Dynamic Gestures

	5 Gesture Executor
	5.1 New Gestures

	6 Implementation and Results
	7 Conclusion
	Acknowledgments
	References

