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ABSTRACT
From small screenshots to large videos, documents take up a bulk
of space in a modern smartphone. Documents in a phone can accu-
mulate from various sources, and with the high storage capacity of
mobiles, hundreds of documents are accumulated in a short period.
However, searching or managing documents remains an onerous
task, since most search methods depend on meta-information or
only text in a document. In this paper, we showcase that a sin-
gle modality is insufficient for classification and present a novel
pipeline to classify documents on-device, thus preventing any pri-
vate user data transfer to server. For this task, we integrate an
open-source library for Optical Character Recognition (OCR) and
our novel model architecture in the pipeline. We optimise the model
for size, a necessary metric for on-device inference. We benchmark
our classification model with a standard multimodal dataset FOOD-
101 and showcase competitive results with the previous State of
the Art with 30% model compression.
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1 INTRODUCTION
With the advent of smartphones with internal memory in GBs,
there is a plethora of documents, which can be present on a mobile
phone. Some of these are private while some are downloaded just
while browsing the internet. Existing search mechanisms heavily
rely on the name of the document, which can be random and may
not represent the content of the document properly. Thus, an im-
portant document may get lost in the clutter, providing a bad user
experience. The automatic organization of documents based on its
content will immensely increase a user’s satisfaction. Since, the
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contents of a document in a smart phone are personal, sending the
document or its content to a server for such kind of processing may
lead to privacy and latency issue. Hence, in this paper, we present
a light-weight architecture to classify documents on-device, that
improves user experience as well as preserve privacy.

Traditionally, document classification considers only text con-
tent of a document. The words from a document are converted
into vectors, and these vectors are used to compute sentence as
well as document vector representations. Sparse Composite Docu-
ment Vector (SCDV) [16] calculates document vectors using soft
clustering over word vectors. One popular model, Hierarchical At-
tention Network (HAN), uses a word- and sentence-level attention
in classifying documents [20]. [3] stipulate that a simple BiLSTM
architecture with appropriate regularization yields competitive ac-
curacy and F1-score. [2] established the state of the art results for
document classification by fine-tuning BERT [8] and demonstrated
that BERT could be distilled into a much simpler single-layered
lightweight BiLSTM model that provides competitive accuracy. A
recently published paper [1], proposed an approach (HAHNN) takes
into account the text structure as well in a document. However, all
these models are huge, often containing hundreds of millions of
parameters, making on-device deployment infeasible.

Most of the work on document classification is based on text
extracted from the document. However, we believe that the orga-
nization of the text in the document is also an essential factor for
document classification. For example, a boarding pass may be easily
identified with the structuring of its data, such as the placement
of passenger name, gate number, etc. without having to read the
actual text. In this paper, we also consider the organization of text
in the virtual space of the document as a feature in form of an
image. For this task, we create an in-house dataset of documents
with human annotated class category. To validate the efficacy of
our multimodal approach, we present results on an open-source
multimodal dataset. For on-device, we develop a quantized version
of our model. The main contributions of our work are as follows:

• Developed a novel multimodal architecture, which considers
visual and text features as input for on-device classification.

• Evaluation on a popular text and image dataset, as there is
no standard dataset for on-device document classification.

• A novel pipeline for on-device document classification that
takes input, a pdf document and gives its class as output.

2 BACKGROUND
Multimodal learning brings out some unique challenges for re-
searchers, given the heterogenity of data. [5] captures the chal-
lenges, methods, and applications of multimodal learning. Docu-
ment classification is a subjective problem where the classes and
data depend on the usecase being targeted. [4] classified documents
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Modality Model Details Accuracy Size (MB)

Baselines

Text

SVD 1st Layer 2nd Layer 3rd Layer
Yes 2000 2000 500 85.39 40
Yes 2000 1000 500 85.33 20
No 2000 1000 500 86.7 946

Image

Batch Norm Dropout Layers Frozen
No Yes 53 65.6 17
Yes Yes 53 66.1 17
Yes Yes 31 65.76 17

Previous Work Text +
Image

Wang et al. 2015 [19] 85.1 >534
Kiela et al. 2018 [13] 90.8 >230

Fusion Text +
Image

Max 86.18 12
Concatenate 89.8 13
Average 82.9 12
Highway 88.03 15

Table 1: Accuracy andmodel size (in MegaBytes) of fusionmodels compared to baselines, previous works. (Exact model details
of previous works are unknown, thus providing minimummodel size through visual model used by each.)

of type questionnaire, memo, etc. and showcased that integrating
an additional modality offer more robust representation. They used
tesseract-OCR to extract text and generate document embedding,
and MobileNetv2 to learn visual features. This approach showed a
boost in pure image accuracy by 3% on Tobacco3482 and RVL-CDIP
datasets. In 2015, a new image and text dataset, UPMCFood-101
dataset, with 100K images and 101 classes was proposed by [19].
The researchers built a search engine that retrieves the relevant
recipes given an image by using both text and visual features. [13]
verified the performance of multimodal methods on large datasets,
and compared various fusion methods with their own method of
discretizing continuous features obtained from visual represen-
tations. This method demonstrated the feasibility of multimodal
methods on large datasets and results showed that multimodal mod-
els outperform Fast-Text [? ] and the continuous-only approach
regardless of the type of fusion. To the best of our knowledge, our
document class types have not been used in any document classifi-
cation method. Amongst, all the possible ways to fuse and co-learn
different modalities representation, we choose late fusion for our
problem. We want individual modalities to also be able to classify
documents, incase the device constrains don’t permit a full multi-
modal classifier. Moreover, it’s hard to see low level interactions
between visual and text modality in a document, as image of a
document hardly describes the textual content of the document.

3 APPROACH
On-device document classification is at a nascent stage, where
previous work is sparse. Due to the subjectivity of our task, it is
difficult to create a standard dataset that suits the need of all. Thus,
to tackle this lack of dataset, we create a small dataset consisting
of 5 classes, decided using an internal survey. But, to truly check
the efficacy of our model, we needed a dataset, which contains
multimodal features. For this, we chose the FOOD-101[19] dataset
that contains recipes and images of 101 popular food categories.
We use this dataset to benchmark our modelś performance and to
showcase that our multimodal architecture learns both modalities
representation and present our experiments below.

3.1 Baselines
Text The text input of FOOD-101 dataset is the food recipe. We
pre-process this text input by performing stop words removal and
lemmatization using NLTK [15] Porter Stemmer algorithm. Further,
we remove high-frequency(greater than 100,000 occurences) and
low-frequency(less than 5 occurences to account for spelling/parsing
errors) words from the text since the food category of an recipe
is likely to be determined by rare words. Moreover, the maximum
number of words in a recipe after eliminating stop words were
roughly 100,000. Due to this huge size, it was not practical to train
a sequential neural model such as CNN, and RNN for building an
on-device classifier since the time complexity of such models is
directly proportional to number of words in a sequence. Thus, we
use Tf-Idf as feature vectors, and train two fully connected layers
and a softmax layer on top of this. To identify recipe category, the
order of the recipe is rarely useful, thus the loss of sequential infor-
mation due to Tf-Idf vectors wouldn’t hamper model performance.
But the dimensionality of these Tf-Idf vectors is dependent on vo-
cabulary size, and thus it rendered a model of size 720 MB, since
the number of parameters first fully connected (FC) layer is directly
proportional to the size of input vector, i.e. vocabulary size. Tf-Idf
vectors are often sparse and low-rank. So, to resolve this, we use
Truncated-SVD to reduce the rank of these high dimensional sparse
vectors, and train our classifier on these low-dimensional vectors.
We demonstrate in Table 1 that our Tf-Idf vectors were indeed low
rank and that with SVD, the model gives an accuracy of 85%, a 1.5%
reduction from the Tf-Idf model but with a reduction in the model
size of more than 95%, since the size of input vector to first FC layer
has gone from size of vocab to rank of SVD output.

Figure 1: Fusion Model Architecture
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Image We use a pre-trained MobileNet [10] to train a classifier
for visual features. MobileNet serves as an ideal choice for on-
device classifier as it is optimized for both space and latency. We
use transfer learning to retrain a pre-trained MobileNet on our
dataset. Our image classifier consists of MobileNet, a pooling layer,
two dense layers and a final softmax layer. We freeze the training
of MobileNet parameters and train only the final layers for first 15
epochs of training. We treat the number of layers unfrozen after
15th epoch as a hyperparameter. We use batch normalization [12]
and dropout [17] to improve the generalization and performance
of our model.

3.2 Fusion Classifier
We built upon the late fusion strategy of [19] and show improved
accuracy with significant compression in the model size. We use our
pre-trainedMobileNet based image classifier and the text classifer to
train a fusion classifier. We transfer the pre-softmax layer features
of both the networks and merge the features from both modalities.
We train only the layers succeding these merged features and build
a classifier as shown in Figure 1. We use different methods, F(x), of
merging these features, which we discuss below:

Concatenation: We concatenate the vectors from both modal-
ities and train a dense layer on top of the concatenated vector,
i.e.,

𝑜 (𝑥𝑛) =𝑊 (𝑈𝑥𝑡𝑛 ⊕ 𝑉𝑥𝑣𝑛), (1)
where W, U, V are the weight matrices of dense layer and 𝑥 tn and
𝑥vn are the pre-softmax text and visual features representation re-
spectively.

Average: Here, we retain the softmax layers of the pre-trained
models.Wemerge the output of the softmax layers using component-
wise average and train a dense layer on that average, i.e.,

𝑜 (𝑥𝑛) =𝑊 (𝑎𝑣𝑔(𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑥𝑡𝑛), 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑉𝑥𝑣𝑛))), (2)

Max: We combine the information from both modalities using
component-wise maximum.

𝑜 (𝑥𝑛) =𝑊𝑚𝑎𝑥 (𝑈𝑥𝑡𝑛,𝑉𝑥
𝑣
𝑛), (3)

Gating Layer post Concatenation: We concatenate the fea-
tures of both modalities and train a highway layer [18] on top of
it.

𝑦𝑛 = 𝑈𝑥𝑡𝑛 ⊕ 𝑉𝑥𝑣𝑛 𝑔 =𝑊𝑦𝑛 + 𝑏,
𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑔) 𝑜 (𝑥𝑛) = 𝑡 ∗ 𝑔 + (1 − 𝑡) ∗ 𝑦𝑛,

(4)

We use ReLU [7] as our non-linear function after merging the
layers. The accuracy and model sizes of different fusion strategies
as compared to baselines and previous works are shown in Ta-
ble 1. With our concatenation model, we were able to match the
performance achieved by the Gated model of [13] with a reduc-
tion in model size, as they use a 152-layer Resnet [9] for capturing
visual features while we build upon mobilenet, which has fewer
parameters compared to Resnet.

We observed a significant improvement in classification accu-
racy of food images in the multimodal classifier as compared to
individual modality classifiers. For specific classes, as shown in
Table 2, we observed improvement in classification accuracy with
a fusion of image and text features.

Class Text Image Fusion

scallops 0.125 0.625 0.5
breakfast_burrito 0.6 0.2 0.5
sashimi 0.75 0.25 1
fish_and_chips 0.72 0.27 0.63
apple_pie 0.333 0.555 0.666

Table 2: Accuracy of fusion classifier and single modality
classifiers for some food categories. Here, accuracy is the
number of correct top-1 predictions for that class.

Category # of documents

Travel 118
Personal information 100
Receipts 98
papers/books 102
Misc 94

Table 3: Class split of the document dataset.

4 ON-DEVICE DOCUMENT CLASSIFICATION
We define On-Device document classification as a task of categoris-
ing real documents on user device into topics. These topics were
decided based on an internal survey of ~100 people. For this task,
we created an in house dataset of ~512 documents as presented
in Table 3. For the ease of purpose, we consider only PDF docu-
ments, but the architecture can be easily extended to any other
document type(word, excel, etc.). The architecture as shown in
Figure 2, is divided into 3 parts: data extraction, feature generation
and classification.

Data Extraction : While libraries such as pdfbox exist to extract
text from a PDF, it will restrict our document set to only PDFs. To
create a framework for processing all document types, we use OCR
to extract text from PDF. We convert the PDF documents into a set
of images and use MLKit1 to extract text from the images. We then
use the images and extracted text as input data to our Multimodal
Architecture presented in Figure 1 with some changes to model
parameters. For now, we consider only the first page of the PDF
document, since the document may consist of 10s of pages and
processing all of them would increase latency.

Feature Generation : OCR text extraction is highly erratic for
PDF documents since it parses information in a line manner. For
example, if a PDF is column split, like research papers, the sequence
of text will be lost. Thus, a word order based model may fail for
this task. We use regex-based text filtering and the pre-processing
approach mentioned in the previous section. Further, to tackle noise
due to watermarks, etc., we use a filter to remove non-English words
from the tokenized text. We maintain a pre-defined a vocabulary of
60,000 english words to extract Tf-Idf vectors for a document. This
vocabulary covers 98% of words present in our dataset. For image
features, we use the image generated while extracting text as input
to the visual modality network.

Classification : We use the architecture presented above for
FOOD-101 dataset for this task. We tweak the network parameters
to account for the complexity of this specific task and dataset. For

1https://firebase.google.com/docs/ml-kit/recognize-text
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Figure 2: Pipeline of the on-device document classification framework.

Modality Accuracy

Text 59.62%
Visual 71.88%
Text + Visual 84.38%

Table 4: Top-1 Accuracy of single and multimodal models.

the text classification, we reduced the rank of Tf-Idf vector to 200
using SVD. Following which, we trained 2 dense layers of size
64 and 32 units respectively before adding a final softmax layer
for classification. For the image classification, we use MobileNet
architecture and train a pooling layer of 512 units and a dense layer
of 64 units. We followed the same approach of pre-training text
and image classifier separately, and trained a fusion classifier on
top of it. The results of single modalities, as well as fusion model,
are presented in Table 4.

Training Methodology : We use Stochastic Gradient Descent
with decay as our optimiser with an initial learning rate of 0.01 and
decay of 0.8 after every epoch. For training fusion classifier, we
follow a multi-stage transfer learning approach, inspired by [11].
We experiment with various strategies of unfreezing layer weights
for training. We train a base model for 90 epochs without unfreez-
ing the layers of the pre-trained models. MobileNet architecture
consists of repeated blocks of point-wise and depth-wise separated
convolutions. So, we unfreeze weights post the end of a block of
MobileNet and at the end of second layer of our text model architec-
ture. The layer numbers in the subsequent section signify the actual
layer number in order of our model as available in keras’s[6] model
summary. Firstly, we unfreeze the weights of pre-trained weights
individual modalities models from the 53rd layer of the network
after the 30th epoch with and without resetting the learning rate.
Secondly, we unfreeze the model weights from 81st layer after the
30th epoch and 53rd layer post the 60th epoch, resetting learning
rate at both instances. The accuracy and loss variation is presented
in Figure 3. Since, our dataset and the dataset on which mobilenet is
trained is dissimilar, we observed better performance by resetting
the learning rate in stages.

On-Device Execution Depending upon the extension of a file,
we can choose an appropriate renderer. For our pdf documents,
we use android PdfRenderer2 for rendering. Once the rendering is
done, we extract bitmap which is processed to get Image features.

2https://developer.android.com/reference/android/graphics/pdf/PdfRenderer

(a) Loss curve of models (b) Accuracy curve of models

Figure 3: Comparing validation loss and accuracy of differ-
ent training techniques

To extract the text of the document, we have used Google Mlkit3
which provides on-device API for text extraction. For simplicity,
only the English language is considered. However, it’s possible to
extract text for different languages on-device as explained in [14].
The offline fusion model which was trained, is quantized using the
tflite4 post-training quantization method. The quanitzation led to
an accuracy reduction of ~0.5%, a minor impact considering it lead
to model compression of 75%. The size of the final model is ~13 MB.
The total execution time of this pipeline on a document is 4.6s, out
of which 3.5s is taken by OCR.

5 CONCLUSION
The storage capacity of smartphones is ever-increasing, which leads
to a vast accumulation of documents on-device. Such a clutter in-
hibits a user from retrieving relevant documents. Moreover, with
the internet becoming increasingly multimodal, we should lever-
age the information offered by different modalities for a better
understanding of content. With this work, we show that different
modalities indeed contribute towards increased understanding of
documents. We achieve a ~90% accuracy with our fusion network
on FOOD 101 dataset, matching the previous best with a reduction
in model size. We also present a feasible framework to classify doc-
uments on-device. We acknowledge that the size of our dataset is
not sufficient and conclusive evidence of the same. But we hope
that our work serves as a precursor for others to contribute to this
field of on-device document classification.

3https://firebase.google.com/docs/ml-kit/recognize-text
4https://tensorflow.org/lite

https://developer.android.com/reference/android/graphics/pdf/PdfRenderer
https://firebase.google.com/docs/ml-kit/recognize-text
https://tensorflow.org/lite


On-Device Document Classification using multimodal features CODS COMAD 2021, January 2–4, 2021, Bangalore, India

REFERENCES
[1] Jader Abreu, Luis Fred, David Macêdo, and Cleber Zanchettin. 2019. Hierarchical

Attentional Hybrid Neural Networks for Document Classification. arXiv preprint
arXiv:1901.06610 (2019).

[2] Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and Jimmy Lin. 2019. DocBERT:
BERT for Document Classification. arXiv preprint arXiv:1904.08398 (2019).

[3] Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and Jimmy Lin. 2019. Re-
thinking complex neural network architectures for document classification. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 4046–4051.

[4] Nicolas Audebert, Catherine Herold, Kuider Slimani, and Cédric Vidal. 2019.
Multimodal deep networks for text and image-based document classification.
In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, 427–443.

[5] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. 2018. Multi-
modal machine learning: A survey and taxonomy. IEEE Transactions on Pattern
Analysis and Machine Intelligence 41, 2 (2018), 423–443.

[6] François Chollet et al. 2015. Keras. https://keras.io.
[7] George E Dahl, Tara N Sainath, and Geoffrey E Hinton. 2013. Improving deep

neural networks for LVCSR using rectified linear units and dropout. In 2013
IEEE international conference on acoustics, speech and signal processing. IEEE,
8609–8613.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[10] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:

Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[11] Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning
for text classification. arXiv preprint arXiv:1801.06146 (2018).

[12] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[13] Douwe Kiela, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2018. Effi-
cient large-scale multi-modal classification. In Thirty-Second AAAI Conference on
Artificial Intelligence.

[14] Sumit Kumar, Gopi Ramena, Manoj Goyal, Debi Mohanty, Ankur Agarwal, Benu
Changmai, and Sukumar Moharana. 2020. On-Device Information Extraction
from Screenshots in form of tags. In Proceedings of the 7th ACM IKDD CoDS and
25th COMAD. 275–281.

[15] Edward Loper and Steven Bird. 2002. NLTK: the natural language toolkit. arXiv
preprint cs/0205028 (2002).

[16] Dheeraj Mekala, Vivek Gupta, Bhargavi Paranjape, and Harish Karnick. 2016.
SCDV: Sparse Composite Document Vectors using soft clustering over distribu-
tional representations. arXiv preprint arXiv:1612.06778 (2016).

[17] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[18] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. 2015. Highway
networks. arXiv preprint arXiv:1505.00387 (2015).

[19] Xin Wang, Devinder Kumar, Nicolas Thome, Matthieu Cord, and Frederic Pre-
cioso. 2015. Recipe recognition with large multimodal food dataset. In 2015 IEEE
International Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 1–6.

[20] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
Hovy. 2016. Hierarchical attention networks for document classification. In
Proceedings of the 2016 conference of the North American chapter of the association
for computational linguistics: human language technologies. 1480–1489.

https://keras.io

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Baselines
	3.2 Fusion Classifier

	4 On-Device Document Classification
	5 Conclusion
	References

