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Abstract
In recent years, great strides have been made in the field of affective
computing. Several models have been developed to represent and
quantify emotions. Two popular ones include (i) categorical models
which represent emotions as discrete labels, and (ii) dimensional
models which represent emotions in a Valence-Arousal (VA) circum-
plex domain. However, there is no standard for annotation mapping
between the two labelling methods. We build a novel algorithm for
mapping categorical and dimensional model labels using annotation
transfer across affective facial image datasets. Further, we utilize
the transferred annotations to learn rich and interpretable data
representations using a variational autoencoder (VAE). We present
“LeVAsa”, a VAE model that learns implicit structure by aligning the
latent space with the VA space. We evaluate the efficacy of LeVAsa
by comparing performance with the Vanilla VAE using quantitative
and qualitative analysis on two benchmark affective image datasets.
Our results reveal that LeVAsa achieves high latent-circumplex
alignment which leads to improved downstream categorical emo-
tion prediction. The work also demonstrates the trade-off between
degree of alignment and quality of reconstructions.
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1 Introduction
Emotions are intrinsic characteristics of mammals, particularly
overt in human behaviour [5, 17, 29]. Intelligent systems must em-
ploy means to incorporate emotions for a more natural interaction
[31]. This surge for “emotional intelligence” has evolved into the
field of affective computing, which by definition encompasses the
creation of and interaction with machines that can sense, recognize,
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respond to, and influence emotions [32]. Several models of emo-
tion have been developed over the years, which are considered as
the backbone of affective computing [11, 12, 25, 40]. Among these
models, a popular choice is the Categorical Model which describes
six basic discrete emotions, namely, happiness, anger, disgust, sad-
ness, fear, and surprise [8]. However, this model failed to capture
relations between the discrete emotions. Moreover, there is a lack
of consistency in the choice of these fundamental emotions [7].
As a result, Russell & Mehrabian [35] developed the Dimensional
Model which suggests that each emotional state can be defined
in terms of Valence (pleasure of an emotion), Arousal (energy of
an emotion) and Dominance (controlling nature of an emotion).
The Dominance dimension is commonly ignored since the valence-
arousal (VA) dimensional model was shown to possess adequate
reliability, convergent validity, and discriminant validity [36]. This
led to the conceptualization of the Circumplex Model to represent
affective states as a circle in a 2D bipolar VA space [34]. The VA
variables are typically considered independent [10].
Motivation: The existence of different models of emotions re-
sult in a range of possible annotation strategies for affective data
[9, 21, 24, 27, 28]. This poses two challenges: (i) building deepmodels
on affective data, and (ii) drawing collective insights from multiple
datasets having potentially different formats of annotations [6].

In this paper, we present a novel algorithm for mapping an-
notations of the Categorical Model to those of the Dimensional
Model through annotation transfer across affective facial image
datasets. The subsequent step following annotation mapping is
to obtain meaningful representations. With the increased use of
deep neural networks and generative models, there have been sig-
nificant advances in emotion modelling and affective computing
[13, 19, 33]. Variational Autoencoders (VAEs) [20] are known to
yield disentangled latent representations and generate new data
samples [15, 16, 39]. They have been used extensively in affective
computing to represent text, audio, image and electroencephalogra-
phy (EEG) data [22, 41]. Applying VAEs on affective facial images
to obtain disentangled image representations can (i) provide high
quality feature representations for downstream tasks [2, 30], and
(ii) serve applications like facial editing and data augmentation [23].
In our study, we obtain interpretable features by aligning the latent
space of a VAE with the VA space. We show that this improves
performance in downstream tasks of affect classification and regres-
sion, as demonstrated on two benchmark affective image datasets.

Our major contributions are (i) an annotation transfer algorithm
for label transfer between Categorical and Dimensional models
of emotion and (ii) a regularised VAE model “LeVAsa” (Latent En-
codings for Valence-Arousal Structure Alignment) that yields an
interpretable latent space with an implicit structure aligned with
the VA space.

ar
X

iv
:2

00
7.

10
05

8v
3 

 [
cs

.A
I]

  3
0 

N
ov

 2
02

0

https://doi.org/10.1145/3430984.3431037
https://doi.org/10.1145/3430984.3431037
https://doi.org/10.1145/3430984.3431037


CODS COMAD 2021, January 2–4, 2021, Bangalore, India Nath and Udandarao, et al.

2 Methods
Here we present our annotation transfer algorithm and VAE model
architectures. Our code and models are publically available 1.

2.1 Annotation Transfer Algorithm
For the task of annotation transfer between Categorical and Dimen-
sional emotion models, we use an external reference dataset (𝐷𝑟 )
containing both discrete categorical emotion labels (𝑙𝑖 ∈ {𝑒1, 𝑒2, ..., 𝑒𝑛},
where 𝑒1, 𝑒2, ..., 𝑒𝑛 are the n discrete emotional labels) and valence,
arousal values (𝑣𝑖 ∈ [𝑙𝑙𝑖𝑚𝑣, 𝑢𝑙𝑖𝑚𝑣], 𝑎𝑖 ∈ [𝑙𝑙𝑖𝑚𝑎, 𝑢𝑙𝑖𝑚𝑎], where
𝑙𝑙𝑖𝑚𝑣, 𝑢𝑙𝑖𝑚𝑣, 𝑙𝑙𝑖𝑚𝑎, 𝑢𝑙𝑖𝑚𝑎 are the lower and upper limits for valence
and arousal values respectively). Each data sample 𝑥𝑖 ∈ 𝐷𝑟 thus
has an emotion label 𝑙𝑖 , a valence value 𝑣𝑖 and an arousal value 𝑎𝑖 .
𝐷𝑟 serves as the standard based on which continuous or discrete
VA values can be sampled for data points in a working dataset (𝐷)
with only emotion labels (Algorithm 1, Line 4), or conversely, the
most likely emotion labels can be obtained for data points in dataset
𝐷 ′ with only VA tuples (Algorithm 1, Line 6). The ellipse sizes (on
average 3% of total area) ensure that the sampled VA values allow
both sufficient variability and consistency within emotion classes.

Algorithm 1: Annotation transfer algorithm
Input : reference dataset 𝐷𝑟 , discrete categorical emotion

labels [𝑙1, 𝑙2, ...𝑙 |𝐷𝑟 |], VA values [𝑣1, 𝑣2, ...𝑣 |𝐷𝑟 |] and
[𝑎1, 𝑎2, ...𝑎 |𝐷𝑟 |], working dataset 𝐷 with discrete
emotion labels, working dataset 𝐷 ′ with VA tuples

Output :VA values for the working dataset 𝐷 , discrete
emotion labels for the working dataset 𝐷 ′

1 Partition each sample 𝑥𝑖 ∈ 𝐷𝑟 into 𝑛 groups (𝑔1, 𝑔2, ..., 𝑔𝑛)
based on discrete emotion labels 𝑙𝑖 ∈ (𝑒1, 𝑒2, ..𝑒𝑛)

2 For each group 𝑔 𝑗 , 𝑗 ∈ {1, 2, ..., 𝑛}, obtain the mean valence
`𝑣 𝑗 , standard deviation valence 𝜎𝑣 𝑗 , mean arousal `𝑎𝑗 ,
standard deviation arousal 𝜎𝑎𝑗 values

3 Generate ellipses 𝑐 𝑗 , 𝑗 ∈ {1, 2.., 𝑛} for group 𝑔 𝑗 representing
emotion 𝑒 𝑗 with centre (`𝑣 𝑗 , `𝑎𝑗 ), semi major axis 𝜎𝑣 𝑗 and
semi minor axis 𝜎𝑎𝑗

4 To obtain VA values for data point 𝑥𝑘 in 𝐷 with label 𝑙𝑘 ,
sample (𝑣𝑘 , 𝑎𝑘 ) from ellipse 𝑐𝑘 as: 𝑣𝑘 = 𝑥𝜎𝑣𝑘 + `𝑣𝑘 ,
𝑎𝑘 = 𝑦𝜎𝑎𝑘 + `𝑎𝑘 , where 𝑥 =

√
𝑟 cos\ , 𝑦 =

√
𝑟 sin\ and

𝑟 ∼ [0, 1], \ ∼ [0, 2𝜋]
5 Convert (𝑣𝑘 , 𝑎𝑘 ) to discrete values by scaling and
rounding-off if desired

6 To obtain emotion label for sample 𝑥𝑘 in 𝐷 ′ with VA
(𝑣𝑘 , 𝑎𝑘 ), find ellipse 𝑐𝑘 with centroid at least Euclidean
distance from (𝑣𝑘 , 𝑎𝑘 ), and assign 𝑒𝑘 as most likely emotion

2.2 VAE model architectures
We train a generative model with an interpretable latent space
with an implicit structure given a raw distribution of affective
face images. We employ variational autoencoder based models
because of their simple training protocols and structured inductive
priors. We compare two VAE models, Vanilla VAE and LeVAsa. This
comparison is justified because: (1) No baseline VA structured latent
1https://github.com/vishaal27/LeVAsa
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Figure 1: Model Architecture

model exists, and (2) the Vanilla VAE features being unbiased (owing
to no explicit supervision) may perform better on the downstream
tasks. The latent space for both models was constructed to comprise
of three chunks. Figure 1 depicts our model architectures.

For the Vanilla VAE, no explicit alignment was imposed on the
latent space, whereas for LeVAsa, we take inspiration from recent
work [4, 18] and model the latent space as follows:

• 𝑍𝑣 – subspace consisting of valence attributes 𝑧𝑣 that learn
to encode the valence features of image samples

• 𝑍𝑎 – subspace consisting of arousal attributes 𝑧𝑎 that learn
to encode the arousal features of image samples

• 𝑍𝑧 – subspace consisting of other miscellaneous generative
attributes 𝑧𝑧 that are required for high-fidelity reconstruction
of the input data distribution.

Given a dataset of 𝑁 affective images 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑁 }, our
VAE backbone consists of encoder 𝑓\ and decoder 𝑔𝜙 given by:

𝑧𝑣𝑖 , 𝑧𝑎𝑖 , 𝑧𝑧𝑖 = 𝑓\ (𝑥𝑖 ), 𝑥𝑖 ∈ 𝑋
𝑥𝑖 = 𝑔𝜙 (𝑧𝑣𝑖 , 𝑧𝑎𝑖 , 𝑧𝑧𝑖 )

𝑧𝑣𝑖 ∈ 𝑍𝑣, 𝑧𝑎𝑖 ∈ 𝑍𝑎, 𝑧𝑧𝑖 ∈ 𝑍𝑧

We train the Vanilla VAE with a simple reconstruction loss along
with a modified Kullback-Leibler (KL) loss (Eq. 1). We induce a
N(0, 𝑰 ) prior on all three attributes 𝑧𝑣 , 𝑧𝑎 and 𝑧𝑧 .

L𝐾𝐿 =
∑︁

𝑧∈{𝑧𝑣 ,𝑧𝑎,𝑧𝑧 }
𝐾𝐿

(
𝑓\ (𝑧 |𝑥)∥N (0, 𝑰 ))

)
2 (1)

We employ the same backbone Vanilla VAE architecture for the
LeVAsa model with two major modifications:

(1) Projection Heads: We use two non-linear projection heads ℎ𝑣
and ℎ𝑎 which map the encoded valence and arousal repre-
sentations 𝑧𝑣 and 𝑧𝑎 to the valence and arousal label space
(giving label representations 𝑟𝑣 and 𝑟𝑎). The projections ob-
tained are represented as follows:

𝑟𝑣𝑖 = ℎ𝑣 (𝑧𝑣𝑖 ), 𝑟𝑎𝑖 = ℎ𝑎 (𝑧𝑎𝑖 )

(2) VA-regularization loss: To impose an explicit alignment of
the 𝑧𝑣 and 𝑧𝑎 attributes with the VA ground truth factors,

https://github.com/vishaal27/LeVAsa
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we introduce a VA-regularization loss as follows:

L𝐶 =

𝑁∑︁
𝑖=0

(
L(𝑟𝑣𝑖 , 𝑣𝑖 ) + L(𝑟𝑎𝑖 , 𝑎𝑖 )

)
(2)

where L takes the form of MSE for continuous and BCE for
discrete annotation types. MSE/BCE are design choices and
can be replaced by suitable likelihood-based loss functions.

The overall optimization objective for the LeVAsa model is:

L𝑡𝑜𝑡𝑎𝑙 = L𝑅 + _𝐾𝐿L𝐾𝐿 + _𝐶L𝐶 (3)

where _𝐾𝐿 and _𝐶 are hyperparameters.

2.3 Datasets
We use the following datasets in our experiments.

Annotation Transfer: AffectNet

• AffectNet [26] is the largest facial expression dataset, with
over 420,000 annotated images and contains both continuous
VA annotations and discrete emotional labels. The dataset
also incorporates a wide diversity in gender, age and ethnic-
ity, hence is an ideal choice for the reference dataset in the
annotation transfer algorithm (Algorithm 1). The generated
ellipses are shown in Figure 2.

Model Training: IMFDB, AFEW-VA

• IMFDB [38] contains around 34,000 annotated zoomed-in
facial images of 100 Indian actors, with only emotional labels
and no VA supervision. Continuous and discrete VA super-
vision for IMFDB is obtained from annotation transfer using
AffectNet. This is particularly well suited due to the similar
nature of images in IMFDB and AffectNet datasets.

• AFEW-VA [21] on the other hand, contains around 24,000
annotated images from videos of real world scenes of ap-
proximately 600 actors with only discrete VA values and no
discrete emotional labels.

The different nature of IMFDB and AFEW-VA datasets allow us to
analyse and compare model performance based on different factors
including image type (zoomed in faces/video scenes) and annotation
type (discrete VA supervision/continuous VA supervision).

s(a) Continuous sp(b) Discrete

Figure 2: Ellipses from AffectNet for annotation transfer

3 Experiments
We evaluate model performance through a series of qualitative and
quantitative experiments. This enables comparisons based on three
aspects: (i) architecture (Vanilla VAE vs LeVAsa), (ii) dataset (IMFDB
vs AFEW-VA), and (iii) nature of annotations (Continuous VA vs
Discrete VA). Altogether, we train five models: (i) Vanilla VAE on

IMFDB, (ii) LeVAsa on IMFDB with continuous VA annotations, (iii)
LeVAsa on IMFDB with discrete VA annotations, (iv) Vanilla VAE on
AFEW-VA, (v) LeVAsa on AFEW-VA with discrete VA annotations.

3.1 Latent-Circumplex Alignment
We measure the alignment of LeVAsa’s 𝑍𝑣 ∪ 𝑍𝑎 latent space with
the VA ground truths using normalized Euclidean and Manhattan
distance metrics for continuous annotations, and Cross Entropy
measure for discrete annotations. This helps quantify the degree
of latent-circumplex alignment. For the Vanilla VAE, we determine
the 𝑧𝑣 and 𝑧𝑎 chunks heuristically by considering the two latent
chucks which aligned best with the corresponding valence and
arousal ground truths. Further, we reduce the dimensionality of the
𝑧𝑣 and 𝑧𝑎 latent chunks and plot them alongside the ground truth
to replicate the circumplex representation.

It is found that LeVAsa outperformed Vanilla VAE for both con-
tinuous and discrete annotations (Table 1). This clearly exhibits
the superior latent-circumplex alignment achieved by LeVAsa. For
discrete annotations, in case of AFEW-VA, the difference between
the cross entropy measures of the Vanilla VAE and LeVAsa is greater
than in case of IMFDB. This could be attributed to the different
image types in both datasets. The circumplex plots (Figure 3) for
LeVAsa reveal reduced variance and increased alignment with true
labels. This validates the quantitative results in Table 1.

Table 1: Alignment

IMFDB Valence Arousal Combined
MSE MAE MSE MAE MSE MAE

Vanilla VAE 1.83 0.29 1.49 0.26 3.31 0.55
LeVAsa 0.14 0.14 0.06 0.09 0.2 0.23

(a) Continuous

Model IMFDB AFEW-VA

Vanilla VAE 8.9 8.9
LeVAsa 6.63 2.54

(b) Discrete

(a) IMFDB Cont. (b) IMFDB Disc. (c) AFEW-VA

Figure 3: Circumplex Representation

To gain further insights, we assess the regressive power of 𝑧𝑣 and
𝑧𝑎 by their ability to predict the corresponding VA ground truths.
We use Multi Layer Perceptron (MLP) Regression. This analysis
applies to continuous annotations hence was conducted only on
the models trained on IMFDB dataset with continuous VA values.
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(a) IMFDB Vanilla
VAE

(b) IMFDB LeVAsa
Cont.

(c) IMFDB LeVAsa
Discrete

(d) AFEW-VA
Vanilla VAE

(e) AFEW-VA LeV-
Asa dumbesss

Figure 4: VAE Reconstruction from the five models

Table 2: VA Regressive Power

Axis Model MSE MAE EV 𝑅2

Valence Vanilla VAE
LeVAsa

0.256
0.251

0.420
0.414

-0.011
0.016

-0.012
0.015

Arousal Vanilla VAE
LeVAsa

0.092
0.074

0.242
0.224

-0.022
0.095

-0.048
0.086

It is observed that theMSE andMAE values computed for LeVAsa
were lower by 2.25% and 1.42% as compared to Vanilla VAE for
valence, and lower by 19.13% and 7.18% as compared to Vanilla
VAE for arousal (Table 2). Furthermore, the goodness of fit metrics
(explained variance and 𝑅2) showed better performance in the case
of LeVAsa. These results further strengthen our hypothesis.

3.2 Categorical Emotion Predictive Power
We predict the discrete emotion labels using different combinations
of latent representations obtained from Vanilla VAE and LeVAsa
(Table 3). Due to lack of discrete emotion labels in the AFEW-VA
dataset, it was excluded from this analysis. We randomized the data
splits across Continuous and Discrete experiments to ensure an
unbiased setup. Model performance is evaluated using classification
accuracy. We utilize a simple one-layered MLP to ensure that the
accuracy is a direct measure of representation quality and not
influenced by the complexity of the classifier.

It is seen that LeVAsa has significantly better predictive power as
compared to the Vanilla VAE. Moreover, for LeVAsa, the VA chunks
alone are more informative in emotion prediction as compared to
𝑧𝑣 ⊕ 𝑧𝑎 ⊕ 𝑧𝑧 chunks altogether. Also, the improvement in classifica-
tion accuracy by employing LeVAsa in place of Vanilla VAE can be
compared under the continuous and discrete settings. This reveals
that LeVAsa representations from the model trained with discrete
annotations and BCE loss (Eq. 2) proves to be better at classifying
emotion labels. This is due to the discrete nature of emotion labels
which correlate well with the model representations.

3.3 Reconstruction Quality
VAE models are prone to posterior collapse, producing unreliable
reconstructions [14, 37]. Thus, along with analyses of the latent
representations, we study the quality of reconstructions (Figure 4).

It is observed that the quality of the reconstructed faces is slightly
compromised in the case of LeVAsa as compared to Vanilla VAE.
This can be attributed to the slightly higher variance of the learnt

Table 3: Categorical emotion predictive power using vanilla
VAE and LeVAsa models. All reported scores are accuracies
(⊕ represents vector concatenation)

Annotation Chunk Vanilla VAE LeVAsa Difference=
Type Combination (V) (L) L - V (in %)

𝑧𝑣 0.29 0.36 7
𝑧𝑎 0.32 0.35 3

Continuous 𝑧𝑧 0.32 0.36 4
𝑧𝑣 ⊕ 𝑧𝑎 0.32 0.38 6

𝑧𝑣 ⊕ 𝑧𝑎 ⊕ 𝑧𝑧 0.29 0.33 4

𝑧𝑣 0.30 0.35 5
𝑧𝑎 0.27 0.30 3

Discrete 𝑧𝑧 0.24 0.30 6
𝑧𝑣 ⊕ 𝑧𝑎 0.25 0.33 8

𝑧𝑣 ⊕ 𝑧𝑎 ⊕ 𝑧𝑧 0.26 0.30 4

LeVAsa decoding distribution [1, 15]. By Shannon’s rate-distortion
theory [3], there is a trade-off between the distortion (reconstruc-
tion quality) and rate (representation quality). Since we are impos-
ing an explicit compression bottleneck on the latent space, it is
expected that the reconstruction quality is slightly compromised in
order to achieve better interpretability of latent representations.

4 Conclusion
In this paper, we have developed an annotation-transfer algorithm
for mapping between Categorical and Dimensional emotion model
annotations. Using them, we generated interpretable image features
with a VA-regularized VAE model called LeVAsa. We conducted a
series of evaluation tasks to verify and validate our experiments
and compare performance based on three factors: (i) architecture
(Vanilla VAE vs LeVAsa), (ii) dataset (IMFDB vs AFEW-VA), and (iii)
nature of annotations (Continuous VA vs Discrete VA). The results
showed that the LeVAsa model obtains robust and interpretable
representations enabling improved downstream affective task per-
formance. In the future, we hope to extend the annotation-transfer
algorithm to action-unit annotations, and test the expressiveness
of the representations by performing latent traversals for data aug-
mentation and facial editing.
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