
File System Semantics Requirements of HPC Applications
Chen Wang

University of Illinois at
Urbana-Champaign
Champaign, US

chenw5@illinois.edu

Kathryn Mohror
Lawrence Livermore National

Laboratory
Livermore, US

kathryn@llnl.gov

Marc Snir
University of Illinois at
Urbana-Champaign
Champaign, US
snir@illinois.edu

ABSTRACT
Most widely-deployed parallel file systems (PFSs) implement POSIX
semantics, which implies sequential consistency for reads and
writes. Strict adherence to POSIX semantics is known to impede
performance and thus several new PFSs with relaxed consistency
semantics and better performance have been introduced. Such PFSs
are useful provided that applications can run correctly on a PFS
with weaker semantics. While it is widely assumed that HPC appli-
cations do not require strict POSIX semantics, to our knowledge
there has not been systematic work to support this assumption. In
this paper, we address this gap with a categorization of the consis-
tency semantics guarantees of PFSs and develop an algorithm to
determine the consistency semantics requirements of a variety of
HPC applications. We captured the I/O activity of 17 representative
HPC applications and benchmarks as they performed I/O through
POSIX or I/O libraries and examined the metadata operations used
and their file access patterns. From this analysis, we find that 16 of
the 17 applications can utilize PFSs with weaker semantics.

CCS CONCEPTS
• Software and its engineering→ File systems management; In-
put / output; Consistency.

KEYWORDS
consistency semantics, parallel file system, scientific applications

ACM Reference Format:
Chen Wang, Kathryn Mohror, and Marc Snir. 2021. File System Semantics
Requirements of HPC Applications. In Proceedings of the 30th International
Symposium on High-Performance Parallel and Distributed Computing (HPDC
’21), June 21–25, 2021, Virtual Event, Sweden. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3431379.3460637

1 INTRODUCTION
High performance computing (HPC) systems host parallel applica-
tions composed of hundreds to tens of thousands of tightly-coupled
processes that typically run for hours or days. The I/O needs of
these applications are supported by parallel file systems (PFSs), such
as Lustre [15], BeeGFS [28] and GPFS [58]. These PFSs aggregate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC ’21, June 21–25, 2021, Virtual Event, Sweden
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8217-5/21/06. . . $15.00
https://doi.org/10.1145/3431379.3460637

parallel data and metadata servers to provide high capacity and
high bandwidth, even for concurrent access to a single file by the
processes of a highly-parallel application, where the file data can
be striped across the data servers of the PFS.

HPC applications can access the PFS directly via the POSIX file
system API, however they often utilize higher-level I/O libraries
specially designed for scientific I/O. For example, MPI-IO [19] sup-
ports collective I/O operations, where groups of processes use the
API to concurrently execute a read or write operation. As an opti-
mization, MPI-IO servers can perform global write buffering and
aggregation to match the I/O pattern of clients to the layout of data
on the data servers. Libraries such as HDF5 [23] and ADIOS [24, 44]
provide higher-level storage management capabilities. For example,
HDF5 provides its own directory structure, with files being replaced
with typed, multidimensional numerical arrays called datasets. I/O
libraries may be layered, e.g., HDF5 can be layered on top of MPI-
IO to enable collective access to datasets; and, in turn, MPI-IO can
be layered on top of POSIX. This layering generates complex I/O
access patterns that may differ greatly from the I/O access patterns
one would deduce from examining the scientific application code.

While PFSs can support high read and write bandwidths under
ideal conditions, their effective performance can vary significantly
depending on the I/O access patterns of applications, the PFS con-
figuration, and on interference from other concurrently running
applications [13, 27, 43]. A major impediment to PFS performance is
the strict adherence to POSIX semantics, which requires sequential
consistency in general and atomicity for many operations [62, 68].
The strict enforcement of these requirements impedes caching,
generates significant additional traffic, and results in congestion
in situations of high sharing, especially for small block reads and
writes [42]. In order to avoid these performance issues, HPC I/O
researchers have developed PFSs with relaxed semantics, such as
UnifyFS [37], PLFS [12], Gfarm/BB [63], and GekkoFS [66], and
have demonstrated significant performance improvements.

Despite the greatly improved I/O performance demonstrated
by these relaxed-semantics PFSs, there remain several unsolved
issues regarding their ability to correctly and efficiently support
HPC applications: (a) It is not generally known a priori whether an
application will run correctly on a PFS with weaker semantics. (b) It
is challenging to determine the semantics needed by an application
since I/O patterns depend on execution flow and on the behavior of
high-level I/O libraries. (c) PFSs relax POSIX semantics in different
ways which reduces the portability of applications across PFSs. (d)
There are no accepted categorizations or definitions of the relaxed
semantics implemented by PFSs for applications or I/O libraries to
target. All in all, the lack of information leads to conservative PFS
choices by HPC system designers, possibly leading to unnecessarily
reduced I/O performance by many applications.

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

19

https://doi.org/10.1145/3431379.3460637
https://doi.org/10.1145/3431379.3460637
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3431379.3460637&domain=pdf&date_stamp=2021-06-21

These critical, open issues show that there is a clear gap in our
knowledge of application consistency semantics requirements and
the relaxed consistency models of PFSs. In this paper, we close this
gap by providing a method for testing consistency requirements
of applications based on the possibility of access conflicts under
weaker semantics. In addition, we develop a categorization of the
consistency models of PFSs to serve as a basis for describing the
semantics offered by PFSswith relaxed semantics. The contributions
of this paper are summarized as follows:
• We present the I/O characteristics of 17 representative HPC
applications and benchmarks using POSIX or I/O libraries.
While our study focuses on I/O patterns that are relevant to
the PFS semantic model, we also study access patterns that
are important for the understanding of I/O performance and
the metadata operations used by these applications.
• We develop a method for detecting I/O accesses that can
cause conflicts under weaker consistency models.
• We provide terminology for the categorization of the consis-
tency semantics of PFSs.

To our knowledge, this paper is the first work on determining
the I/O consistency semantics requirements of parallel applications.
Our results can provide critical insights for file system developers
on which optimizations can be utilized by HPC applications and
for HPC users who need to choose the appropriate PFS for their
application’s I/O requirements for correctness and performance.

The rest of this paper is organized as follows. Section 2 provides
background and related work. In Section 3, we describe our catego-
rization of PFS consistency models. Section 4 introduces definitions
used for detecting conflicting I/O accesses. In Section 5, we present
our algorithm for detecting conflicting accesses. Section 6 reports
our results and analysis. Finally, we discuss consequences of our
work and future work in Section 7.

2 BACKGROUND AND RELATEDWORK
Here, we provide information on HPC applications, I/O behavior
studies, the POSIX I/O interface and its consistency semantics, and
POSIX and near-POSIX PFS efforts.

2.1 HPC Applications and I/O Behavior
HPC applications are highly-parallel, often with tens of thousands
of processes working concurrently to simulate physical phenomena.
Scientific applications tend to have regular I/O patterns due to
their typical 3-phase structure: initialization, time step computation,
and finalization. During initialization, parallel processes read in
input files, consisting of initial data and simulation configuration
information. In the computation phase, the processes loop through
a series of “time steps”, where in each time step, the phenomenon
is simulated for some time delta, after which all parallel processes
synchronize using a communication library and optionally write
data to a file, either a checkpoint that can be used for recovery, or a
snapshot of the current simulation state for further analysis. During
the finalization phase, processes will write final data to files. The
number of files accessed in parallel varies across applications, but
it is common for processes in an HPC application to concurrently
access a single shared file or a set of shared files in an I/O phase.

Many researchers have studied the I/O behavior of HPC applica-
tions and have noted the regularity of I/O requests [47, 53, 54, 70, 72].
These researchers collected I/O trace and profile information from
application runs and analyzed them to discover patterns. In gen-
eral, the researchers concluded that scientific applications share
common I/O properties such as sequential file access, initial and
final phases of compulsory I/O, and bursts of high-volume I/O ac-
tivity at regular intervals during computation. Other researchers
have focused on I/O measurement for the purpose of improving
performance [18, 60]. For example, Carns et al. characterized the
I/O behaviour of several scientific applications and found potential
I/O performance issues of those applications, such as a large num-
ber of small writes. In contrast to these application-level studies,
several efforts have examined the I/O behavior of applications at
the system level [46, 55]. For example, Luu et al. [46] conducted a
study of thousands of supercomputing applications that revealed
that POSIX I/O is much more widely used than other high-level I/O
libraries, and most applications only achieved a small fraction of
available I/O performance.

In contrast to these studies, our work focuses on collecting de-
tailed traces of I/O operations with the explicit purpose of analyzing
their behavior to understand the file system semantics required by
HPC applications. File system researchers looking to relax POSIX
semantics often make assumptions that I/O operations are conflict-
free: e.g., if concurrent processes write to the same file, each process
will modify an independent segment of the file and there will be
no write-after-write hazards that would affect file data integrity.
However, these lower-level behaviors have not been studied. A
primary contribution of this work is to fill in that knowledge gap
in HPC I/O behavior understanding.

2.2 POSIX I/O Interface and Semantics
The POSIX I/O interface [5] and its semanticswere designed decades
ago for use by a single machine with a single storage device, i.e.,
not for the highly-concurrent operations to PFSs typical on HPC
systems. POSIX I/O operations are commonplace and include the
familiar open, close, read, and write operations used by applica-
tions in many domains.

The primary challenges for parallel I/O arise from the strict se-
mantics requirements the POSIX specification imposes on write
and read operations. These requirements necessitate the use of
a cache coherence protocol that is often implemented using read-
/write locks. The POSIX standard [5] states:
• Any successful read from each byte position in the file that
was modified by the last write shall return the data specified
by the write for that position until such byte positions are
again modified.
• Any subsequent successful write to the same byte position
in the file shall overwrite that file data.

A previous effort [9, 67] proposed a set of extensions to the
POSIX I/OAPI for HPC. The extensions include options to introduce
“laziness” into theAPI to improve PFS performance. For example, the
effort introduced new stat calls where some fields are optional and
the information in other fields is not required to be current to reduce
query time, and API calls to flush caches and synchronize across
compute nodes when operating on files where the O_LAZY flag was

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

20

supplied to open. Unfortunately, this proposal was not accepted
into the POSIX I/O standard. However, similar functionality is now
being adopted by relaxed-semantics PFSs.

2.3 PFSs and POSIX
PFSs have been designed and implemented to support parallel work-
loads on HPC systems. Most support POSIX semantics; this includes
widely used PFSs such as Lustre [15], GPFS [58], and BeeGFS [28].
Even PFSs that support POSIX have mechanisms for relaxing the
semantics for performance. For example, Lustre allows users to
disable file locking that enforces POSIX consistency semantics [8]
and GPFS has options for lazy metadata updates [7]. Additionally,
NFS [59], which is widely used for home directories on HPC sys-
tems, relaxes POSIX semantics in favor of performance.

Recently, HPC systems have become equipped with burst buffers
(BBs), and a new crop of POSIX and near-POSIX PFSs have been
developed to support them. BBs are in-system solid storage devices
designed to buffer the “bursty” I/O requests from HPC applications
between the compute nodes and main storage. BBs are attractive
because they can smooth the bursty I/O traffic and promise better
scalability and performance advantages, e.g., latencies on the or-
der of a few `s [52]. Despite their performance advantages, BBs
present challenges to users. In particular, BBs that are local to in-
dividual compute nodes, e.g. as compute-node local SSDs on the
supercomputer Summit [51], present challenges for applications
that perform shared file I/O because these BBs do not present a
shared file namespace across compute nodes.

As a result of these challenges, a set of new PFSs have been devel-
oped to facilitate the use of BBs, including BurstFS [71], GekkoFS [66],
UnifyFS [37], SymphonyFS [51], Gfarm/BB [63], and echofs [49].
Each of these PFSs was designed specifically for BBs, with the com-
mon goal of being fast and easy-to-use. Some of the PFSs focus
on the problem of transferring file data to and from the BBs, e.g.,
SymphonyFS and echofs, while others focus on supporting shared
file I/O across compute-node local BBs, e.g., BurstFS and Gfarm/BB.
Because of their specialized functionality and the goal of supporting
the performance advantages of BBs, many of these BB PFSs relax
their adherence to strict POSIX semantics; e.g., BurstFS does not
guarantee that a read operation will always return the result of the
most recent write in order to optimize write performance.

In addition to general-purpose BB PFSs, there are also file sys-
tems designed to optimize the I/O of specific workloads as described
in surveys by Lüttgau and et al. [45] and Dubeyko [22]. A notable
example for HPC is PLFS [12], designed specifically for large paral-
lel shared checkpoint files over compute-node local BBs. Another
promising direction for optimizing specific I/O workloads is the
idea of tunable consistency semantics [33–35, 68], where users can
choose different consistency semantics at run time to improve per-
formance, e.g., with “hints” passed to the file system implementation
depending on the workload requirements.

3 PFS CONSISTENCY SEMANTICS
In this section, we discuss the consistency semantics of PFSs and
present the categorization of relaxed consistency models that we
use in this work. In general, the difference between the models in

our categorization is based upon when updates to a shared file are
visible to subsequent reads.

In this work, our algorithm to determine consistency semantics
needs of an application uses only data operations and leaves consid-
eration of metadata operations to future work. Because of this, PFSs
like GekkoFS [66] and BatchFS [73], that provide relaxed metadata
consistency semantics but strict POSIX data consistency semantics
will be categorized as having “strong consistency semantics”, as
described in Section 3.1. However, we do provide analysis on the
metadata operations used by our set of applications in Section 6.4
and find that the applications use only a small subset of the available
POSIX metadata operations.

3.1 Strong Consistency Semantics
POSIX requires sequential consistency for reads and writes: upon
successful return, modifications made by a write call must be vis-
ible to subsequent read calls until those file regions are updated.
Because HPC systems do not have global clocks, we employ the
partial happens-before or causality order defined by the execu-
tion order within each process and the communications across
processes [38]. We use→ to denote this order. We define strong
consistency semantics with the following condition: A read 𝑟 from a
byte returns the value written by a write 𝑤 to the byte if 𝑤 → 𝑟 ,
and for any other write𝑤 ′ to the same byte if𝑤 ′ → 𝑤 or 𝑟 → 𝑤 ′.
Otherwise, the value returned is undefined.

Most general-purpose PFSs (e.g., Lustre, GPFS, GFS, BeeGFS and
PVFS2 1 [40, 57]) support strong consistency semantics. The disad-
vantages of strong consistency semantics are not readily apparent
in a single node/single storage device system, in which I/O op-
erations are serialized. However, these semantics are expensive
to maintain in PFSs, where there are a potentially large number
of concurrent I/O requests being handled by distributed servers.
Distributed locking is a common approach to guaranteeing strong
consistency semantics and is used by popular PFSs like GPFS and
Lustre. Locks may be applied to blocks, file segments, full files, or
other granularities of file accesses. The number of locks depends
on the lock granularity and the number of sharing processes. Thus,
the metadata server, where the locks are normally maintained, may
become a bottleneck for large-scale applications.

3.2 Commit Consistency Semantics
The fundamental problem behind the performance issues stemming
from strong consistency semantics is that the PFS is ignorant of
application synchronization logic and the happens-before order
of concurrent I/O operations; the PFS must make worse-case as-
sumptions and serialize all potentially conflicting I/O operations.
Alternatively, an application can provide ordering information for
conflicting operations so that the PFS can implement a weaker con-
sistency semantics. We define commit consistency semantics as a less
strict consistency model, where “commit” operations are explicitly
executed by processes, and I/O updates performed by a process to

1PVFS and PVFS2 (now OrangeFS [10]) provide non-conflicting write semantics where
non-overlappingwrites (potentially concurrent) are immediately visible to all processes
once completed. The behaviour of conflicting writes are undefined. The semantics of
these file systems fit best in our strong semantics category even though they do not
meet full POSIX requirements on atomicity.

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

21

a file before a commit become globally visible upon return of the
commit operation.

Many user-level and BB PFSs (e.g., BSCFS [30], UnifyFS [37],
SymphonyFS [51], and BurstFS [71]) provide commit consistency
semantics. Note that the “commit” operation is system-specific. For
example, in UnifyFS, a commit can by performed with an fsync
operation which makes writes performed by an individual process
globally visible. Alternatively, UnifyFS also provides a lamination
operation, which renders a file permanently read-only and makes
all file data globally visible. Similarly, SymphonyFS does not support
read-after-write and overlapping writes between different nodes
unless fsync() is called. The fsync() operation, which flushes the
cache of the caller and ensures that data is persisted, acts as the
commit. A close() call usually also has the effect of a commit.

3.3 Session Consistency Semantics
We define session consistency semantics as semantics that guarantee
writes by a process are visible to another process when the modified
file is closed by the writing process and subsequently opened by
the reading process, with the close happening before the open.
Commonly known as close-to-open semantics, several PFSs imple-
ment this model including NFS [59], DDN IME [20], Gfarm/BB [63]
and AFS [29].

The major difference between session semantics and commit
semantics is when the writes become visible to other processes. In
commit semantics, updates become globally visible after a commit
operation by the writer. In session semantics one needs a pair of
operations, one executed by the writer and the other by the reader.

3.4 Eventual Consistency Semantics
The most relaxed semantics model we define is eventual consis-
tency semantics; we are not aware of more relaxed semantics being
provided by any PFS. In this model, even with no explicit commit
operation, updates from a write are eventually visible to all readers
if no subsequent write to the same location occurs. PFSs that imple-
ment this model have more freedom to perform optimizations such
as write aggregation, data reorganization, and delayed propagation.

While there are several PFSs that provide eventual consistency se-
mantics, they may impose additional constraints to provide better
performance. For example, PLFS [12] implements eventual con-
sistency semantics and is designed specifically for large parallel
checkpoint files, where it converts an N-1 (N clients, one file) write
access pattern into an N-N (N clients, N files) pattern. In PLFS, the
outcome of two overlapping writes is not guaranteed to be correct
with respect to the happens-before relationship even with explicit
synchronization. Another example is echofs [49], which is designed
for node-local BBs. Although echofs provides the POSIX interface,
it manages data by the use of memory mapped files, and POSIX
semantics is only enforced locally to each compute node. Globally,
data becomes visible when it is eventually transferred out to the
system-level PFS.

3.5 Discussion
A summary of the PFSs we discussed and their consistency seman-
tics is shown in Table 1. Our categorization does not cover all the
semantic differences between the file systems, but is sufficient for

Table 1: HPC file systems and their consistency semantics.

Consistency Semantics File Systems
Strong Consistency GPFS, Lustre, GekkoFS, BeeGFS,

BatchFS, OrangeFS
Commit Consistency BSCFS, UnifyFS, SymphonyFS,

BurstFS
Session Consistency NFS, AFS, DDN IME, Gfarm/BB
Eventual Consistency PLFS, echofs, MarFS [31]

our purposes. Most PFSs we discussed provide strong consistency
semantics for I/O operations performed by a single process, where a
read of a file location returns the value last written to that location
by the same process, if no other process modifies that location.
BurstFS is an exception, where a read following two writes from
the same process could return the value of either write. PLFS and
PVFS2 also do not provide such a guarantee because the behaviour
of overlapping writes is simply undefined.

Adherence to stronger consistency semantics normally imposes
higher overhead to guarantee the given consistency model, with
metadata servers a likely bottleneck. PFSs that implement weaker
consistency semantics can alleviate such bottlenecks. The under-
lying assumption behind using weaker semantics is that HPC ap-
plications do not normally access files via interleaved reads and
writes to random offsets, so stronger consistency is not required.

In the following sections, we address the central questions of this
paper: Do applications really need strong consistency semantics
from a PFS? If not, what is the weakest model that suffices for a
given application? In this work, we focus on the strongest three
consistency models, excluding eventual consistency, because tra-
ditional scientific applications rely on a deterministic relationship
between writes and reads. Eventual consistency may be applicable
for non-traditional, emerging scientific workloads, e.g., workflows
in which simulation data is pipelined to analysis modules, but we
reserve analysis of these workloads for future work.

4 I/O PATTERNS
The I/O pattern of an application describes how the application
accesses the PFS. A key concern for us in this work is whether
multiple processes in the application concurrently access the same
file, and, if so, whether the accesses are conflicting, and whether and
how the accesses are synchronized. Another concern is whether
accesses are “random” or “sequential”, as this has a significant
impact on performance. I/O patterns can be studied at different
granularities. At a very high granularity, the POSIX API and most
I/O libraries require users to set flags when opening a file. Common
flags indicate the file will be accessed for reads only, writes only,
both reads and writes, and for appending to the file. This very high
granularity information for I/O patterns does not provide sufficient
information for our study.

To examine the consistency semantics needs of applications, we
focus on byte-level, fine-grained I/O patterns. The main focus of
our study is about identifying potential conflicting I/O operations
where delayed writes may cause errors. But we also harvest infor-
mation on the I/O access pattern, whether random or sequential,

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

22

and about executed meta-operations. As expected, HPC applica-
tions do not access files randomly, and sequential appends are very
common, e.g., for log files or snapshots of an ongoing simulation.
However, when using I/O libraries like HDF5, the metadata opera-
tions of those libraries may introduce more complicated patterns.
The I/O patterns can be studied at two levels: (1) the local pattern
of accesses performed by one process, and (2) the global pattern
of accesses generated collectively by the I/O calls across processes.
Both levels of patterns affect performance, but in different ways.
As we will show in Section 6.2, the global pattern is likely to appear
more random than the local pattern since the I/O requests from
concurrent processes are interleaved in time. However, because of
the nature of scientific applications, the interleaved accesses from
multiple processes are not truly random, especially when collective
I/O and libraries such as MPI-IO are used that may perform data
aggregation before accessing the PFS.

4.1 Overlaps and Conflicts
Conflicting accesses can occur when two I/O operations access the
same location of a file. We call this situation an overlap. Overlaps
can cause conflicts if one of the two operations is a write. If two
overlapping operations by distinct processes are concurrent, then
the outcome of the operations to the file is non-deterministic even
under POSIX semantics: Writes are not atomic, and accesses can
be interleaved in arbitrary manner. We assume now (tested later in
Section 5.2) that the programs we test are “race-free”: If the parallel
application performs conflicting I/O operations, then these accesses
are synchronized and are not concurrent. Thus, if a process writes
data to a file and another process reads that data, a synchronization
will ensure that the read does not start before the write completed.
But, if the PFS provides weaker semantics, a conflict may still hap-
pen, as the write may not be visible to the reader when it completes.
This can occur in four cases:
• RAW-[S|D]: read-after-write by the same process (S) or by
different processes (D).
• WAW-[S|D]: write-after-write by the same process (S) or by
different processes (D).

We define these four cases as potential conflicts. Whether they
are actual conflicts depends on the PFS semantics. In the majority of
PFSs, conflicting accesses by the same process will take effect in the
right order so that only RAW-D and WAW-D are potentially prob-
lematic. Note that a write-after-read pair cannot cause a conflict, as
we assume conflicting operations are properly synchronized and
the read will complete before the write starts.

The information about potential conflicts is important at differ-
ent levels: A programmer running the application on a PFS with
weak consistency can prevent the conflicts by inserting commit op-
erations at suitable points, or the designer of a parallel I/O library
can insert commit operations automatically. On the other hand, if
the application can tolerate relaxed consistency, then the PFS or
I/O libraries can leverage the tolerance for improved performance.

5 DETECTING OVERLAPS AND CONFLICTS
To analyze the I/O behaviors of an application, we need to extract its
dynamic I/O operations. The operations depend on the application
logic, but also on parameters such as the PFS and I/O library settings,

and on the underlying hardware configuration such as the number
of data servers.

We utilize the multi-level I/O tracing tool Recorder [69] to gen-
erate traces from applications. Recorder captures I/O operations at
multiple layers of the I/O stack, currently supporting HDF5, MPI-
I/O, and POSIX, which gives us the ability to identify the I/O layer
responsible for introducing conflicts. Additionally, Recorder gener-
ates detailed trace records for I/O operations in each I/O layer used
either explicitly or implicitly by the application. The trace records
include entry/exit time stamps, function name, and all function
parameters, except the data buffer content. This level of detail al-
lows us to identify operations that introduce overlaps and conflicts.
While our focus is on identifying potential conflicts in file accesses,
the detailed traces obtained also enable us to identify to what ex-
tent file accesses are sequential or random, which is important for
performance optimizations.

We analyze the traces to detect overlaps and conflicts by building
on the algorithm for detecting I/O operation overlaps developed in
our prior work [69] and modify it to additionally detect conflicts.

5.1 Detecting Overlaps
To detect overlaps, we employ the algorithm from our priorwork [69],
where each record is a tuple (𝑡, 𝑟, 𝑜𝑠, 𝑜𝑒, 𝑡𝑦𝑝𝑒), where 𝑡 is the entry
timestamp, 𝑟 is the rank of the process who made the call, 𝑜𝑠 and 𝑜𝑒
are the starting and ending offsets of this I/O operation, and 𝑡𝑦𝑝𝑒
indicates a read or write operation.

Calculating the offset of an I/O operation is not always straight-
forward. For functions like pwrite, the offset and length are in-
cluded in the arguments of the call, but for functions like write,
the offset is not specified, but depends on previous accesses to the
file. Therefore, the algorithm tracks the most up-to-date offset for
each file. For metadata operations like open and seek, we update
the offset according to the open flag (e.g., O_CREAT, O_TRUNC,
or O_APPEND) and the seek flag (e.g., SEEK_CUR, SEEK_END, or
SEEK_SET) respectively. For operations such as write and fwrite,
we increment the current offset by the number of bytes accessed
by that function.

Once we have the correct offset for each function, we use Algo-
rithm 1 to construct an overlapping pair table 𝑃 . This algorithm is
quadratic in the worse case, since each I/O operation could overlap
with all others. In practice, the running time (sorting excepted) is
linear in the number of records. Although we have not done so,
sorting can be replaced by merging as records for each rank are
already sorted.

Algorithm 1 Detecting overlaps
1: Sort tuples by 𝑜𝑠
2: for each tuple 𝑇𝑖 do
3: for each tuple 𝑇𝑗 , 𝑗 > 𝑖 do
4: if 𝑜𝑠 𝑗 > 𝑜𝑒𝑖 then
5: break ⊲ subsequent tuples will not overlap with 𝑇𝑖
6: else
7: 𝑃 [𝑟𝑖 , 𝑟 𝑗] ← 1 ⊲ 𝑇𝑖 and 𝑇𝑗 overlap

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

23

5.2 Detecting Conflicts
We use timestamps in the traces to determine the order of I/O
operations from different nodes. Since the timestamps come from
the local system clocks, large clock skews could result in incorrect
ordering. To reduce skew, we perform a barrier operation when
starting the run and adjust timestamps in the trace records using
the exit time from the barrier as 𝑡𝑖𝑚𝑒 = 0. We found that clock drift
on the system we used can be ignored, because clock skews in the
traces we collected are less than 20 microseconds, while potentially
conflicting I/O operations are 10’s of milliseconds apart.

In order to further validate our methodology, we analyzed traces
of the FLASH application (Section 6.3), which was the one appli-
cation that exhibited conflicting I/O accesses. We matched sends
to receives and collective functions invocations, so as to determine
the execution order imposed by the communications between pro-
cesses: e.g., a send starts before the receive completes, and a barrier
starts at all nodes before it completes at any node. We found that
conflicting I/O operations were properly synchronized by the MPI
calls: If call A and B performed conflicting I/O accesses, and call
A had a lower timestamp than call B, then A necessarily executed
before B, due to the program synchronization logic. Thus, we can
assume that timestamp order of conflicting I/O operations matches
their execution order, and that this execution order is enforced by
the program logic. (The order of non-conflicting I/O operations
does not affect the computation.)

Now we can describe the algorithm for detecting conflicts. Two
tuples (𝑡1, 𝑟1, 𝑜𝑠1, 𝑜𝑒1, 𝑡𝑦𝑝𝑒1) and (𝑡2, 𝑟2, 𝑜𝑠2, 𝑜𝑒2, 𝑡𝑦𝑝𝑒2), where 𝑡1 <

𝑡2, are a conflict pair if the following conditions are satisfied:

(1) The pair overlaps: either 𝑜𝑠1 ≤ 𝑜𝑠2 ≤ 𝑜𝑒1 or 𝑜𝑠2 ≤ 𝑜𝑠1 ≤ 𝑜𝑒2.
(2) The first operation is a write: 𝑡𝑦𝑝𝑒1 = 𝑤𝑟𝑖𝑡𝑒 .
(3) For commit semantics: process 𝑟1 does not execute any com-

mit operation after 𝑡1 and before 𝑡2.
(4) For session semantics: there is no close operation on process

𝑟1 with 𝑡𝑐 and open operation on process 𝑟2 with 𝑡𝑜 so that
𝑡1 < 𝑡𝑐 < 𝑡𝑜 < 𝑡2

We expand the overlap detection algorithm presented above
(Section 5.1) to identify those overlaps that correspond to a read-
after-write conflict or a write-after-write conflict, and whether the
two conflicting accesses are on the same process or on distinct
processes. In order to test the third condition, we need to find, for
each write, what is the earliest succeeding commit executed by
the same process. In order to test the fourth condition, for each
I/O operation we need to find the earliest time an ensuing close is
executed and the latest time a preceding open is executed by the
same process. We expand each record (𝑡, 𝑟, 𝑜𝑠, 𝑜𝑒, 𝑡𝑦𝑝𝑒) with two
additional fields: 𝑡𝑜 , the time of the last preceding open and 𝑡𝑐 , the
time of the first succeeding close or commit by process 𝑟 . Then
(𝑡1, 𝑟1, 𝑜𝑠1, 𝑜𝑒1, 𝑡𝑦𝑝𝑒1, 𝑡𝑜1, 𝑡𝑐1) and (𝑡2, 𝑟2, 𝑜𝑠2, 𝑜𝑒2, 𝑡𝑦𝑝𝑒2, 𝑡𝑜2, 𝑡𝑐2), with
𝑡1 < 𝑡2, conflict in commit semantics if they overlap, 𝑡𝑦𝑝𝑒1 = 𝑤𝑟𝑖𝑡𝑒 ,
and 𝑡𝑐1 > 𝑡2; they conflict in session semantics if they overlap,
𝑡𝑦𝑝𝑒1 = 𝑤𝑟𝑖𝑡𝑒 , and it is not the case that 𝑡1 < 𝑡𝑐1 < 𝑡𝑜2 < 𝑡2.

We can mark records with the time of the last preceding open
and next following commit or close by traversing the records of
each process in timestamp order. Alternatively, we can create a table
of successive commit and close operations and a table of successive
open operations for each process. Conditions three and four can

be checked by performing one or two binary searches in the table.
Since the number of open, close, and commit operations usually is
very small the overhead for the binary searches will be negligible.

6 RESULTS
Here, we present the results of our investigation of the I/O pat-
terns of HPC applications and of our algorithm for detecting I/O
access conflicts. First, we explore our findings of the access patterns
from both the application’s level and a PFS’s perspective. Next, we
present the conflicts detected under different consistency seman-
tics. Finally, we show the metadata operations observed from each
application and I/O layer.

6.1 System and Application Configurations
We performed our experiments on the Quartz system at Lawrence
Livermore National Laboratory (LLNL). Each Quartz node consists
of an Intel Xeon E5-2695 with two sockets and 36 cores in total,
with 128GB memory; the nodes are connected via Omni-Path. The
operating system is TOSS 3. Slurm is used to manage user jobs. The
PFS is an LLNL customized version of Lustre, 2.10.6_2.chaos.

We selected 17 HPC applications: 11 real-world scientific appli-
cations, 4 I/O benchmarks (MACSio, pF3D-IO, VPIC-IO and HACC-
IO), and one machine learning application (LBANN). The full list
of these applications and their configurations is given in Table 5.
The applications are representative of the typical workloads at a su-
percomputing center and span a variety of domains. They perform
I/O using the POSIX API and a variety of I/O libraries: MPI-IO [19],
HDF5 [23], Silo [48], NetCDF [41] or ADIOS2 [24].

An application’s I/O patterns depend on its intrinsic I/O opera-
tions but also on configuration parameters of the I/O libraries and
the underlying file systems. Because of this, for applications that
can employ multiple I/O libraries, we run the application using
each of the I/O libraries supported by the application. We expect
the I/O patterns, especially with respect to I/O conflicts, should not
depend on the scale of runs. To confirm this, we ran all applications
at two different scales: (1) 8 nodes with 8 processes per node, for
64 MPI ranks in total; and (2) 32 nodes with 32 processes per node,
for 1024 MPI ranks in total. Our results confirmed our expectation,
as we found no differences due to scale in the I/O patterns for any
application we studied. Thus, for ease of presentation, we focus on
the results collected from 64-process runs in the rest of this paper.

As much as possible, we used the same compiler and library
versions for our runs, but needed to make exceptions in some
cases for dependency and compatibility issues. Overall, we used
three different compiler and I/O library combinations to build 15
applications from source. We only had access to the binaries of the
remaining two (pF3D-IO and VASP). We summarize the build and
link information in Table 2.

6.2 Access Patterns Overview
We first categorize the applications we study according to the high-
level I/O access patterns they exhibit in Table 3 to show our coverage
of the possible behaviors of applications. In our categorization, we
use an 𝑋 −𝑌 notation where 𝑋 represents the number of processes
performing I/O, and 𝑌 represents the number of files accessed.
𝑋 = 𝑁 indicates that all processes perform I/O operations, while

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

24

Table 2: Build and link configurations for the applications in our experiments. We do not have access to the source code of
pF3D-IO and VASP, the information reported here is retrieved from the ldd command. The versions for other I/O libraries
whenever used are: ADIOS 2.5.0, NetCDF 4.3.3.1 and Silo 4.10.2.

Applications Compiler MPI HDF5

ENZO, NWChem, GAMESS, LAMMPS, QMCPACK, Nek5000, GTC, MILC-QCD, HACC-IO,
VPIC-IO

Intel 19.1.0 Intel MPI 2018 HDF5 1.12.0

pF3D-IO, VASP Intel 18.0.1 MVAPICH 2.2
LBANN GCC 7.3.0 MVAPICH 2.3 HDF5 1.10.5
ParaDiS, Chombo, FLASH, MACSio Intel 19.1.0 Intel MPI 2018 HDF5 1.8.20

𝑋 = 𝑀 indicates that I/O is executed by a subset of processes.
An 𝑁 − 𝑁 pattern typically indicates that each process accesses
a distinct file; an 𝑀 − 𝑀 pattern typically indicates that each of
the 𝑀 processes aggregates the I/O requests of a subset of 𝑁 /𝑀
processes, and each aggregator accesses a distinct file.

We categorize the access patterns in the files as: consecutive,
monotonic or random: Let 𝑜𝑖 and 𝑛𝑖 be the offset and the number
of consecutive bytes accessed by the 𝑖-th I/O operation. The con-
secutive pattern requires 𝑜𝑖+1 = 𝑜𝑖 + 𝑛𝑖 . The monotonic pattern
only requires that 𝑜𝑖+1 > 𝑜𝑖 + 𝑛𝑖 . All other accesses are considered
random. Consecutive and monotonic accesses are often strided or
strided cyclic: At each I/O phase, process 𝑖 accesses the file at offset
𝑎𝑖 +𝑏 and all processes access the same number of bytes (except for
a small amount of extra metadata that could be introduced by the
I/O library). We see that the applications we have chosen for our
study provide good coverage of the possible space of I/O patterns
exhibited by HPC applications. Surprisingly, many of the applica-
tions exhibit a 1-1 pattern for accessing files. We anticipated that
nearly all applications would perform parallel I/O of some sort, but
we see that is not the case. We note that most applications show
a 1-1 pattern when reading input files, but for space reasons we
do not include that aspect in our table. Also note that Table 3 only
shows the patterns we observed. Our runs are not exhaustive across
all possible configurations for these applications, which may show
different patterns. For example MILC-QCD, with the 𝑠𝑎𝑣𝑒_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
parameter (MILC-QCD Parallel), uses an N-1 pattern for checkpoint-
ing, whereas with the 𝑠𝑎𝑣𝑒_𝑠𝑒𝑟𝑖𝑎𝑙 parameter (MILC-QCD Serial), it
uses only one rank for I/O. FLASH is another example, which will
be discussed in more details in Section 6.2.2.

Now we discuss the low-level access patterns of our applications.
Figure 1(a) shows the global access patterns from the perspective of
the PFS, and Figure 1(b) shows the aggregated local access patterns
from the perspective of individual processes. We compute the per-
centage of each access type by dividing the number of accesses for
that type by the number of total accesses, across all files accessed by
the application. Each bar in the charts represents a single execution
of an application configuration.

From the perspective of a single process, random accesses to a
file are rare. From the global perspective of the PFS, accesses are
sometimes much more random (e.g., FLASH-nofbs and LBANN),
but global random accesses are still rare. The global access pattern
is same as the local pattern when each process accesses a distinct
file. It is also regular when all processes access the same file and
the accesses are closely coordinated, as is the case for collective
I/O. These results clearly indicate that PFS performance can be

improved by read-ahead or by aggregating delayed writes, both at
the client and at the server side.

(a) Global pattern from the perspective of the PFS.

(b) Local pattern from the perspective of individual processes.

Figure 1: Overview of low-level access patterns

In the interest of space, we are not able to inspect the detailed I/O
patterns of each application we studied. Instead, in the remainder of

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

25

Table 3: High-level access patterns of applications studied.

Consecutive Strided Strided Cyclic
N-N ENZO, pF3D-IO, HACC-IO, NWChem
N-M MACSio
N-1 LBANN, VASP Chombo, FLASH-nofbs, ParaDiS-HDF5, ParaDiS-

POSIX, MILC-QCD Parallel
M-M GAMESS, LAMMPS-Adios2
M-1 LAMMPS-MPIIO FLASH-fbs, VPIC-IO
1-1 GTC, Nek5000, NWChem, QMCPACK, VASP,

MILC-QCD Serial, LAMMPS-HDF5, LAMMPS-
NetCDF, LAMMPS-POSIX

this section we focus on four representative applications: LAMMPS,
ParaDiS, FLASH, and LBANN.

6.2.1 LAMMPS and ParaDiS. We highlight LAMMPS and ParaDiS
because both of these applications can employ multiple I/O libraries
and show different I/O patterns for each library. For both LAMMPS
and ParaDiS, we note that when using the POSIX API, all I/O ac-
cesses are consecutive from both the local and global perspectives.
However, when the applications use higher-level I/O libraries, ran-
dom accesses are introduced. This is primarily due to bookkeeping
and optimizations performed by the I/O libraries, e.g., HDF5 stores
and accesses metadata that is interspersed within the user file, lead-
ing to random accesses.

6.2.2 FLASH. We selected the FLASH application because it can be
configured to employ independent or collective I/O. If the parameter
“block size” is set to be dynamic, then independent I/O is used
(FLASH-nofbs), and if the parameter is fixed, collective I/O is used
(FLASH-fbs). As expected, with collective I/O, the global access
pattern is much less random.

Figure 2 shows detailed file access patterns (write-only) for the
two configurations of FLASH (64 ranks run) for accessing check-
point and plot files. The charts in (a) and (d) show the access pat-
terns generated by writing a checkpoint file in the two I/O modes
(collective vs. independent). When independent I/O is used, every
process participates in the I/O activity, whereas when collective
I/O is enabled, the MPI-IO library (via calls from HDF5) aggre-
gates I/O accesses and only six aggregator processes access the PFS.
The small I/O accesses at the beginning of the file are HDF5 meta-
data operations. Because ∼ 30 processes are involved in metadata
writes, it suggests that the MPI-IO aggregators are not employed
for metadata. Figure 2(c) shows the access patterns of a plot file
with collective I/O, where only rank 0 writes data to the plot file,
but around 30 ranks participate in HDF5 metadata operations.

The independent I/O behavior of FLASH-nofbs shown in Fig-
ure 1(a) exhibits ∼50% random accesses. We plot the accesses to a
checkpoint file over time in Figure 2(b) and (e). As Figure 2(e) shows,
there is a large amount of parallelism in those accesses, which is
expected. However, we see a different pattern when we focus on a
single rank as show in Figure 2(f), where for rank 0, the accesses
are mostly monotonic.

6.2.3 LBANN. We chose to highlight LBANN because it is an exam-
ple of a read-intensive application, which differs from the majority
of scientific simulations that are write-intensive. All processes in

LBANN concurrently execute the POSIX API read() call to load
the entire dataset into memory. Similar to FLASH-nofbs, from the
global view of the PFS, there are a large portion of random accesses
because all reads are issued in parallel. However, from the local
view of a single process, all reads are consecutive because every
rank reads all bytes of the file from the beginning to the end.

6.3 Access Conflicts with Different Semantics
Here, we report our findings on the semantics needs of scientific
applications and show support for the assumption that strong con-
sistency semantics are rarely required. We use the algorithm from
Section 5.2 to detect conflicts for the 17 applications under session
semantics and commit semantics 2, and show the results for session
semantics in Table 4. Seven of our applications exhibit conflicting
I/O accesses under session semantics, but in only one application
(FLASH) the conflict involves two distinct processes. Since all but
one of the PFSs we studied can correctly handle RAW and WAW
conflicts on the same process (BurstFS being the exception), all the
applications but FLASH will run correctly with session semantics.

We employed our conflict detection algorithm for commit se-
mantics, and the conflicts in FLASH disappeared, but the conflict
pattern of the other applications was unchanged. The conflicts in
FLASH are caused by the flushes of HDF5 metadata. During the
checkpoint step, FLASH calls H5Fflush() (which flushes both data
and metadata) after having written one dataset. The file is closed
once all datasets have been written. Before the file close, session
semantics do not guarantee the latest updates are seen by other
processes so the conflict is inevitable. In comparison, the commit
operation (fsync() called by H5Fflush()) in commit semantics
makes the updates visible to all processes and avoids the conflict.
No conflicting accesses are generated by LAMMPS when using
POSIX, MPI-IO, and HDF5 for I/O. The conflicts appeared only
when NetCDF or ADIOS are used, where the conflicts are caused
by library metadata operations. For example, in LAMMPS-ADIOS
the conflict is due to the overwriting of a single byte of the ADIOS
metadata file (*/md.idx).

Some conflicts can be avoided with little effort, especially when
they are introduced by I/O libraries. For example, in FLASH the con-
flicts are caused by flushes of metadata, and to avoid the conflicts
we can either enable the HDF5 collective metadata mode (which
would have only rank 0 perform all metadata I/O) or simply remove

2Our test for a commit operation is positive if fsync, fdatasync, fflush, fclose
or close are called by the application or I/O library.

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

26

(a) Collective I/O per rank, checkpoint. (b) Collective I/O over time, checkpoint. (c) Collective I/O per rank, plot file.

(d) Independent I/O per rank, checkpoint. (e) Independent I/O over time, checkpoint. (f) Rank 0 independent I/O over time, checkpoint.

Figure 2: Collective I/O write patterns of FLASH-fbs (a, b, c) and independent I/O write patterns of FLASH-nobfs (d, e, f).

the call to H5Fflush(). In the latter case, correctness is still guar-
anteed in the absence of failures since the H5Fclose() in the end
implies an H5Fflush(). With a single line code change, FLASH can
run correctly on all file systems that support session semantics or
commit semantics.

In summary, all but one of the applications we studied can ex-
ecute correctly with session semantics, provided that conflicts on
the same process are properly handled. The one exception can be
handled with a single line change to an I/O library. Under commit
semantics, the results are similar since applications do not make
much use of fsync or other commit operations.

6.4 Metadata Operations
Because metadata operations can introduce performance bottle-
necks, PFS developers may choose to relax POSIX metadata require-
ments. For example, it is rare for a scientific application to access
the atime attribute of its data files. A PFS developer may choose
to update atime only once at the end of the execution in order to
reduce the number of update messages sent to the metadata server
(or to avoid invalidation messages if client-side caches are used).
Figure 3 shows POSIX I/O metadata and utility I/O operations 3

used in the applications we studied. We indicate where the invo-
cations occur, in the MPI library, in HDF5, or in the application or

3The operations we monitored were: mmap, mmap64, msync, stat, stat64, lstat, lstat64,
fstat, fstat64, getcwd, mkdir, rmdir, chdir, link, linkat, unlink, symlink, symlinkat,
readlink, readlinkat, rename, chmod, chown, lchown, utime, opendir, readdir, closedir,
rewinddir, mknod, mknodat, fcntl, dup, dup2, pipe, mkfifo, umask, fileno, access,
faccessat,tmpfile, remove, truncate, ftruncate

another library. (We cannot further refine the last category Since
Recorder does not trace other libraries.)

Figure 3: Metadata operations used by applications.

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

27

Table 4: Conflicts with session semantics. ‘S’ indicates the
conflicting operations are called by the same process; ‘D’ in-
dicates that the conflict involves multiple processes. Under
commit semantics, the conflicts from FLASH disappeared.

Application I/O Library WAW RAW
S D S D

FLASH HDF5 ! !

ENZO HDF5 !

NWChem POSIX ! !

pF3D-IO POSIX !

MACSio Silo !

GAMESS POSIX !

LAMMPS ADIOS !

LAMMPS NetCDF !
LAMMPS HDF5
LAMMPS MPI-IO
LAMMPS POSIX
MILC-QCD POSIX
ParaDiS HDF5
ParaDiS POSIX
VASP POSIX
LBANN POSIX
QMCPACK HDF5
Nek5000 POSIX
GTC POSIX
Chombo HDF5
HACC-IO MPI-IO
HACC-IO POSIX
VPIC-IO HDF5

We see that each application configuration uses only a small
set of metadata operations, and many operations like rename(),
chown() and utime() are not used by any application. I/O libraries
introduce more metadata operations than direct use of the POSIX
API, and each library introduces a different set of operations. For ex-
ample, compared to ParaDiS-POSIX, ParaDiS-HDF5 uses three more
metadata operations, lstat(), fstat(), and ftruncate(). Simi-
larly in LAMMPS, only two operations are observed for LAMMPS-
POSIX, but LAMMPS using I/O libraries introduces additional oper-
ations such as getcwd() and unlink(). In some cases, we observed
a POSIX call in the source code but did not found it in our traces.
This is the case for unlink() in ENZO. This could be due to the
chosen run configurations, or to dead code in the application.

7 DISCUSSION
The results of our work provide HPC users a methodology for ex-
amining the I/O patterns of their applications to determine whether
using a relaxed-consistency PFS is appropriate. We have made all
the data and code used in this paper public (https://github.com/uiuc-
hpc/Recorder) so that the community can use and build upon it. The
data includes traces files, input/output files, and a detailed report
for each application run, including information such as I/O sizes,
function counters, conflicts detected for each file, etc. The code
implements the algorithms we used for analyzing the I/O traces.

Moving forward, our hope is that our approach can impact the
community by providing a basis for determining the semantics and
operations needed by applications and provided by PFSs. Unfortu-
nately today, it is difficult for HPC users to know what operations
are supported by non-POSIX PFSs as the support is often poorly
documented. Better documentation of the supported operations,
deviations from POSIX semantics, and more uniformity in termi-
nology across PFSs will greatly impact the HPC community.

For future work, we plan to expand our conflicts detection algo-
rithm to support metadata operations and complex HPC workflows
consisting of multiple applications. In addition, we plan to investi-
gate other semantics properties, such as safety and order semantics,
in order to define a more precise semantics model for PFSs.

ACKNOWLEDGMENTS
This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. LLNL-CONF-814852. This material
is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research
under the DOE Early Career Research Program and by NSF CCF
grant 17-63540.

The views and opinions of the authors do not necessarily reflect
those of the U.S. government or Lawrence Livermore National
Security, LLC neither of whom nor any of their employees make
any endorsements, express or implied warranties or representations
or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of the information contained herein.

REFERENCES
[1] 2010. The Gyrokinetic Toroidal Code. http://phoenix.ps.uci.edu/GTC
[2] 2016. MILC Code Version 7. http://www.physics.utah.edu/~detar/milc/milc_qcd.

html
[3] 2016. PIOK: Parallel I/O Kernels. https://code.lbl.gov/projects/piok
[4] 2018. HACC IO Kernel from the CORAL Benchmark Codes. https://asc.llnl.gov/

coral-benchmarks#hacc
[5] 2018. IEEE Standard for Information Technology–Portable Operating System

Interface (POSIX(TM)) Base Specifications, Issue 7. IEEE Std 1003.1-2017 (Revision
of IEEE Std 1003.1-2008) (2018), 1–3951.

[6] 2019. Flash Center for Computational Science. http://flash.uchicago.edu
[7] 2020. IBM Spectrum Scale Version 5.0.0 Administration Guide.

https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.0/com.ibm.
spectrum.scale.v5r00.doc/pdf/scale_adm.pdf

[8] 2020. Lustre Software Release 2.x Operations Manual. https://lustre.org/
documentation

[9] 2020. POSIX EXTENSIONS. https://www.pdl.cmu.edu/posix
[10] 2020. The OrangeFS Project. http://www.orangefs.org
[11] Mark Adams, Peter O Schwartz, Hans Johansen, Phillip Colella, Terry J Ligocki,

Dan Martin, ND Keen, Dan Graves, D Modiano, Brian Van Straalen, et al. 2015.
Chombo Software Package for AMR Applications-Design Document. Technical
Report.

[12] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczynski, James
Nunez, Milo Polte, and Meghan Wingate. 2009. PLFS: A Checkpoint Filesystem
for Parallel Applications. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis. IEEE, 1–12.

[13] Julian Borrill, Leonid Oliker, John Shalf, and Hongzhang Shan. 2007. Investiga-
tion of Leading HPC I/O Performance Using a Scientific-Application Derived
Benchmark. In Proceedings of the 2007 ACM/IEEE conference on Supercomputing.
1–12.

[14] Kevin J Bowers, BJ Albright, L Yin, B Bergen, and TJT Kwan. 2008. Ultrahigh
Performance Three-Dimensional Electromagnetic Relativistic Kinetic Plasma
Simulation. Physics of Plasmas 15, 5 (2008), 055703.

[15] Peter Braam. 2019. The Lustre Storage Architecture. arXiv preprint
arXiv:1903.01955 (2019).

[16] Greg L Bryan, Michael L Norman, Brian W O’Shea, Tom Abel, John H Wise,
Matthew J Turk, Daniel R Reynolds, David C Collins, Peng Wang, Samuel W

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

28

https://github.com/uiuc-hpc/Recorder
https://github.com/uiuc-hpc/Recorder
http://phoenix.ps.uci.edu/GTC
http://www.physics.utah.edu/~detar/milc/milc_qcd.html
http://www.physics.utah.edu/~detar/milc/milc_qcd.html
https://code.lbl.gov/projects/piok
https://asc.llnl.gov/coral-benchmarks##hacc
https://asc.llnl.gov/coral-benchmarks##hacc
http://flash.uchicago.edu
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/pdf/scale_adm.pdf
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/pdf/scale_adm.pdf
https://lustre.org/documentation
https://lustre.org/documentation
https://www.pdl.cmu.edu/posix
http://www.orangefs.org

Table 5: Application Input and Run Configuration Information

Application Version I/O Library Configuration Description
FLASH [6] 4.4 HDF5 2D 512x512 Sedov explosion problem. 100 time steps; Checkpointing at every

20 steps.
Nek5000 [36] v19.0rc1 POSIX Eddy solutions in doubly-periodic domain with an additional translational

velocity. This case monitors the error for an exact 2D solution to the Navier-
Stokes equations. 1000 timesteps; Checkpointing at ever 100 steps.

QMCPACK [32] 3.9.2 HDF5 A short diffusion Monte Carlo calculation of a water molecule. 100 warmup
steps; 40 computation steps; Checkpointing at every 20 steps.

VASP [61] 5.4.4 POSIX Simulate elastic properties and energies for zinc-blended GaAs at a given volume
and pressure.

LBANN [65] 0.1000 POSIX Train and test Autoencoder with CIFAR-10 dataset. The CIFAR-10 dataset con-
tains 60,000 32x32 color images in 10 different classes.

LAMMPS [56] 20Mar 3 ADIOS
NetCDF
HDF5
MPI-IO
POSIX

2D LJ flow simulation. 100 steps in total and checkpointing at every 20 steps.
Dump only atoms unscaled coordinates. Different I/O libraries are usd for
writing the dump file.

ENZO [16] enzo-dev 20200623 HDF5 Non-cosmological Collapse test: a sphere collapses until becoming pressure
supported.

NWChem [64] 6.8.1 POSIX 3-Carboxybenzisoxazole Gas-phase Dynamics at 500K. 5 equilibration steps, 30
data gathering steps and print output every 5 steps. Write out solute coordinates
to the trajectory file every step.

ParaDiS [17] 2.5.1.1 HDF5
POSIX

Use fast multipole method for far-field forces to simulate dislocations in a sample
copper.

Chombo [11] 3.2.7 HDF5 A 3D variable-coefficient AMR Poisson solve in which the RHS and the coeffi-
cients are sinusoidals.

GTC [1] 0.92 POSIX Built-in example run (gtc.64p.input) of the Gyrokinetic Toroidal code.
GAMESS [25] June 30, 2019 R1 POSIX Closed shell functional test on a C1 conformer of ethyl alcohol.
MILC-QCD [2] 7.8.1 POSIX MILC collaboration code for lattice QCD calculations.
MACSio [21] 1.1 Silo Simulate the I/O behaviours of ALE3D [50]. Silo is used for I/O.
pF3D-IO - POSIX Simulates one pF3D [39] checkpoint step. The total output of one process is

about 2GB.
HACC-IO [4] 1.0 MPI-IO

POSIX
The HACC I/O benchmark captures the I/O patterns of the HACC [26] simu-
lation code. This includes the checkpoint and restarts as well as the analysis
outputs produced by the simulation. It also captures the various I/O interfaces
used in HACC, namely, POSIX I/O, MPI collective I/O and MPI independent I/O.

VPIC-IO [3] 0.1 HDF5 VPIC [14] is a scalable particle physics simulation. The I/O pattern of VPIC-IO
is a 1D particle array of a given number of particles where each particle has
eight variables.

Skillman, et al. 2014. Enzo: An Adaptive Mesh Refinement Code for Astrophysics.
The Astrophysical Journal Supplement Series 211, 2 (2014), 19.

[17] Wei Cai and Vasily V Bulatov. 2004. Mobility Laws in Dislocation Dynamics
Simulations. Materials Science and Engineering: A 387 (2004), 277–281.

[18] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang, and Kather-
ine Riley. 2009. 24/7 Characterization of Petascale I/O Workloads. In 2009 IEEE
International Conference on Cluster Computing and Workshops. IEEE, 1–10.

[19] Peter Corbett, Dror Feitelson, Sam Fineberg, Yarsun Hsu, Bill Nitzberg, Jean-
Pierre Prost, Marc Snir, Bernard Traversat, and Parkson Wong. 1995. Overview of
the MPI-IO Parallel I/O Interface. In IPPS’95 Workshop on Input/Output in Parallel
and Distributed Systems. 1–15.

[20] DDN. 2020. DDN INFINITEMEMORY ENGINE. https://www.ddn.com/products/
ime-flash-native-data-cache

[21] James Dickson, Steven Wright, Satheesh Maheswaran, Andy Herdman, Mark C
Miller, and Stephen Jarvis. 2016. Replicating HPC I/O Workloads with Proxy
Applications. In 2016 1st Joint International Workshop on Parallel Data Storage
and data Intensive Scalable Computing Systems (PDSW-DISCS). IEEE, 13–18.

[22] Viacheslav Dubeyko. 2019. Comparative Analysis of Distributed and Parallel File
Systems’ Internal Techniques. arXiv preprint arXiv:1904.03997 (2019).

[23] Mike Folk, Albert Cheng, and Kim Yates. 1999. HDF5: A File Format and I/O
Library for High Performance Computing Applications. In Proceedings of super-
computing, Vol. 99. 5–33.

[24] William F Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins, Greg Eisen-
hauer, Junmin Gu, Philip Davis, Jong Choi, Kai Germaschewski, Kevin Huck,
et al. 2020. ADIOS 2: The Adaptable Input Output System. A Framework for
High-Performance Data Management. SoftwareX 12 (2020), 100561.

[25] Mark S Gordon and Michael W Schmidt. 2005. Advances in Electronic Structure
Theory: GAMESS a Decade Later. In Theory and applications of computational
chemistry. Elsevier, 1167–1189.

[26] Salman Habib, Adrian Pope, Hal Finkel, Nicholas Frontiere, Katrin Heitmann,
David Daniel, Patricia Fasel, Vitali Morozov, George Zagaris, Tom Peterka, et al.
2016. HACC: Simulating Sky Surveys on State-of-the-Art Supercomputing Ar-
chitectures. New Astronomy 42 (2016), 49–65.

[27] Jaehyun Han, Deoksang Kim, and Hyeonsang Eom. 2016. Improving the Perfor-
mance of Lustre File System in HPC Environments. In 2016 IEEE 1st International
Workshops on Foundations and Applications of Self* Systems (FAS* W). IEEE,
84–89.

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

29

https://www.ddn.com/products/ime-flash-native-data-cache
https://www.ddn.com/products/ime-flash-native-data-cache

[28] Frank Herold, Sven Breuner, and Jan Heichler. 2014. An Introduction to BeeGFS.
(2014). https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_
ThinkParQ.pdf

[29] John H Howard, Michael L Kazar, Sherri G Menees, David A Nichols, Mahadev
Satyanarayanan, Robert N Sidebotham, and Michael J West. 1988. Scale and
Performance in a Distributed File System. ACM Transactions on Computer Systems
(TOCS) 6, 1 (1988), 51–81.

[30] IBM. 2020. Burst Buffer Shared Checkpoint File System. https://github.com/
IBM/CAST/tree/master/bscfs

[31] Jeffrey Thornton Inman, William Flynn Vining, Garrett Wilson Ransom, and
Gary Alan Grider. 2017. MarFS, a Near-POSIX Interface to Cloud Objects. ; Login
42, LA-UR-16-28720; LA-UR-16-28952 (2017).

[32] Jeongnim Kim, Andrew D Baczewski, Todd D Beaudet, Anouar Benali, M Chan-
dler Bennett, Mark A Berrill, Nick S Blunt, Edgar Josué Landinez Borda, Michele
Casula, David M Ceperley, et al. 2018. QMCPACK: an open source ab initio
quantum Monte Carlo package for the electronic structure of atoms, molecules
and solids. Journal of Physics: Condensed Matter 30, 19 (2018), 195901.

[33] Michael Kuhn. 2013. A Semantics-Aware I/O Interface for High Performance
Computing. In International Supercomputing Conference. Springer, 408–421.

[34] Michael Kuhn. 2015. Dynamically Adaptable I/O Semantics for High Performance
Computing. In International Conference on High Performance Computing. Springer,
240–256.

[35] Michael Kuhn, Julian Martin Kunkel, and Thomas Ludwig. 2009. Dynamic File
System Semantics to Enable Metadata Optimizations in PVFS. Concurrency and
Computation: Practice and Experience 21, 14 (2009), 1775–1788.

[36] Argonne National Laboratory. 2020. NEK5000 v19.0. https://nek5000.mcs.anl.gov
[37] Lawrence Livermore National Laboratory. 2020. UnifyFS: A File System for Burst

Buffers . https://github.com/LLNL/UnifyFS.
[38] Leslie Lamport. 1978. Time, Clocks and the Ordering of Events in a Distributed

System. Commun. ACM 21, 7 (1978), 558.
[39] Steven H Langer, Abhinav Bhatele, and Charles H Still. 2014. pF3D Simulations of

Laser-Plasma Interactions in National Ignition Facility experiments. Computing
in Science & Engineering 16, 6 (2014), 42–50.

[40] Rob Latham, Neil Miller, Robert Ross, Phil Carns, et al. 2004. A next-generation
parallel file system for Linux cluster. LinuxWorld Mag. 2, ANL/MCS/JA-48544
(2004).

[41] Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur, William
Gropp, Robert Latham, Andrew Siegel, Brad Gallagher, and Michael Zingale.
2003. Parallel netCDF: A High-Performance Scientific I/O Interface. In SC’03:
Proceedings of the 2003 ACM/IEEE conference on Supercomputing. IEEE, 39–39.

[42] Glenn Lockwood. 2017. What’s so bad about POSIX I/O? https://www.
nextplatform.com/2017/09/11/whats-bad-posix-io/. The Next Platform.

[43] Jay Lofstead, Fang Zheng, Qing Liu, Scott Klasky, Ron Oldfield, Todd Korden-
brock, Karsten Schwan, and Matthew Wolf. 2010. Managing Variability in the
IO Performance of Petascale Storage Systems. In SC’10: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1–12.

[44] Jay F Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and Chen Jin.
2008. Flexible IO and Integration for Scientific Codes Through the Adaptable IO
System (ADIOS). In Proceedings of the 6th international workshop on Challenges
of large applications in distributed environments. 15–24.

[45] Jakob Lüttgau, Michael Kuhn, Kira Duwe, Yevhen Alforov, Eugen Betke, Ju-
lian Kunkel, and Thomas Ludwig. 2018. Survey of Storage Systems for High-
Performance Computing. Supercomputing Frontiers and Innovations 5, 1 (2018),
31–58.

[46] Huong Luu, Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin
Harms, Mr Prabhat, Suren Byna, and Yushu Yao. 2015. A Multiplatform Study of
I/O Behavior on Petascale Supercomputers. In Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing. 33–44.

[47] Ethan L Miller and Randy H Katz. 1991. Input/Output Behavior of Supercomput-
ing Applications. In Proceedings of the 1991 ACM/IEEE conference on Supercom-
puting. 567–576.

[48] Mark Miller. 2009. Silo–A Mesh and Field I/O Library and Scientific Database.
Lawrence Livermore National Laboratory. https://wci.llnl.gov/ simulation/computer-
codes/ silo (2009).

[49] Alberto Miranda, Ramon Nou, and Toni Cortes. 2018. echofs: A Scheduler-Guided
Temporary Filesystem to Leverage Node-local NVMs. In 2018 30th International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD). IEEE, 225–228.

[50] Charles R Noble, Andrew T Anderson, Nathan R Barton, Jamie A Bramwell, Arlie
Capps, Michael H Chang, Jin J Chou, David MDawson, Emily R Diana, Timothy A
Dunn, et al. 2017. ALE3D: An Arbitrary Lagrangian-Eulerian Multi-Physics Code.
Technical Report. Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States).

[51] Sarp Oral, Sudharshan S Vazhkudai, Feiyi Wang, Christopher Zimmer, Christo-
pher Brumgard, Jesse Hanley, George Markomanolis, Ross Miller, Dustin Lev-
erman, Scott Atchley, et al. 2019. End-to-end I/O Portfolio for the Summit
Supercomputing Ecosystem. In Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis. 1–14.
[52] Anastasios Papagiannis, Giorgos Xanthakis, Giorgos Saloustros, Manolis Maraza-

kis, and Angelos Bilas. 2020. Optimizing Memory-mapped I/O for Fast Storage
Devices. In 2020 USENIX Annual Technical Conference (USENIX ATC 20). 813–827.

[53] Barbara K Pasquale and George C Polyzos. 1993. A Static Analysis of I/O Char-
acteristics of Scientific Applications in a Production Workload. In Proceedings of
the 1993 ACM/IEEE conference on Supercomputing. 388–397.

[54] Barbara K Pasquale and George C Polyzos. 1994. Dynamic I/O Characterization
of I/O Intensive Scientific Applications. In Supercomputing’94: Proceedings of the
1994 ACM/IEEE Conference on Supercomputing. IEEE, 660–669.

[55] Tirthak Patel, Suren Byna, Glenn K Lockwood, and Devesh Tiwari. 2019. Re-
visiting I/O Behavior in Large-Scale Storage Systems: the Expected and the
Unexpected. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–13.

[56] Steve Plimpton. 1995. Fast Parallel Algorithms for Short-Range Molecular Dy-
namics. Journal of computational physics 117, 1 (1995), 1–19.

[57] Robert B Ross, Rajeev Thakur, et al. 2000. PVFS: A Parallel File System for Linux
Clusters. In Proceedings of the 4th annual Linux showcase and conference. 391–430.

[58] Frank B Schmuck and Roger L Haskin. 2002. GPFS: A Shared-Disk File System
for Large Computing Clusters.. In FAST, Vol. 2.

[59] Spencer Shepler, Brent Callaghan, David Robinson, Robert Thurlow, Carl Beame,
Mike Eisler, and David Noveck. 2003. Rfc3530: Network File System (NFS) Version
4 Protocol.

[60] Shane Snyder, Philip Carns, Kevin Harms, Robert Ross, Glenn K Lockwood, and
Nicholas J Wright. 2016. Modular HPC I/O Characterization with Darshan. In
2016 5th workshop on extreme-scale programming tools (ESPT). IEEE, 9–17.

[61] Guangyu Sun, Jenö Kürti, Péter Rajczy, Miklos Kertesz, Jürgen Hafner, and Georg
Kresse. 2003. Performance of the Vienna Ab Initio Simulation Package (VASP)
in Chemical Applications. Journal of Molecular Structure: THEOCHEM 624, 1-3
(2003), 37–45.

[62] Houjun Tang, Suren Byna, François Tessier, Teng Wang, Bin Dong, Jingqing
Mu, Quincey Koziol, Jerome Soumagne, Venkatram Vishwanath, Jialin Liu, et al.
2018. Toward Scalable and Asynchronous Object-Centric Data Management for
HPC. In 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). IEEE, 113–122.

[63] Osamu Tatebe, Shukuko Moriwake, and Yoshihiro Oyama. 2020. Gfar-
m/BB—Gfarm File System for Node-Local Burst Buffer. Journal of Computer
Science and Technology 35, 1 (2020), 61–71.

[64] Marat Valiev, Eric J Bylaska, Niranjan Govind, Karol Kowalski, Tjerk P Straatsma,
Hubertus JJ Van Dam, Dunyou Wang, Jarek Nieplocha, Edoardo Apra, Theresa L
Windus, et al. 2010. NWChem: A Comprehensive and Scalable Open-Source So-
lution for Large Scale Molecular Simulations. Computer Physics Communications
181, 9 (2010), 1477–1489.

[65] Brian Van Essen, Hyojin Kim, Roger Pearce, Kofi Boakye, and Barry Chen. 2015.
LBANN: Livermore Big Artificial Neural Network HPC Toolkit. In Proceedings of
the Workshop on Machine Learning in High-Performance Computing Environments
(Austin, Texas) (MLHPC ’15). ACM, New York, NY, USA, Article 5, 6 pages. https:
//doi.org/10.1145/2834892.2834897

[66] Marc-André Vef, Nafiseh Moti, Tim Süß, Tommaso Tocci, Ramon Nou, Alberto
Miranda, Toni Cortes, and André Brinkmann. 2018. GekkoFS: A Temporary Dis-
tributed File System for HPC Applications. In 2018 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, 319–324.

[67] Murali Vilayannur, Samuel Lang, Robert Ross, Ruth Klundt, Lee Ward, et al. 2008.
Extending the POSIX I/O Interface: A Parallel File System Perspective. Technical
Report. Argonne National Lab.(ANL), Argonne, IL (United States).

[68] Murali Vilayannur, Partho Nath, and Anand Sivasubramaniam. 2005. Providing
Tunable Consistency for a Parallel File Store. In FAST, Vol. 5. 2–2.

[69] Chen Wang, Jinghan Sun, Marc Snir, Kathryn Mohror, and Elsa Gonsiorowski.
2020. Recorder 2.0: Efficient Parallel I/O Tracing and Analysis. In 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 1–8.

[70] Feng Wang, Qin Xin, Bo Hong, Scott A Brandt, Ethan L Miller, Darrell DE Long,
and Tyce T McLarty. 2004. File System Workload Analysis for Large Scale
Scientific Computing Applications. In Proceedings of the 21st IEEE/12th NASA
Goddard Conference on Mass Storage Systems and Technologies. 139–152.

[71] Teng Wang, Kathryn Mohror, Adam Moody, Weikuan Yu, and Kento Sato. 2015.
BurstFS: A Distributed Burst Buffer File System for Scientific Applications. In The
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[72] C Eric Wu. 1995. Parallel I/O Workload Characteristics Using Vesta. In in Proceed-
ings of the IPPS’95 Workshop on Input/Output in Parallel and Distributed Systems,
IEEE Computer Society. Citeseer.

[73] Qing Zheng, Kai Ren, and Garth Gibson. 2014. BatchFS: Scaling the File System
Control Plane with Client-Funded Metadata Servers. In 2014 9th Parallel Data
Storage Workshop. IEEE, 1–6.

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

30

https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
https://github.com/IBM/CAST/tree/master/bscfs
https://github.com/IBM/CAST/tree/master/bscfs
https://nek5000.mcs.anl.gov
https://www.nextplatform.com/2017/09/11/whats-bad-posix-io/
https://www.nextplatform.com/2017/09/11/whats-bad-posix-io/
https://wci.llnl.gov/simulation/computer-codes/silo
https://wci.llnl.gov/simulation/computer-codes/silo
https://doi.org/10.1145/2834892.2834897
https://doi.org/10.1145/2834892.2834897

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 HPC Applications and I/O Behavior
	2.2 POSIX I/O Interface and Semantics
	2.3 PFSs and POSIX

	3 PFS Consistency Semantics
	3.1 Strong Consistency Semantics
	3.2 Commit Consistency Semantics
	3.3 Session Consistency Semantics
	3.4 Eventual Consistency Semantics
	3.5 Discussion

	4 I/O Patterns
	4.1 Overlaps and Conflicts

	5 Detecting Overlaps and Conflicts
	5.1 Detecting Overlaps
	5.2 Detecting Conflicts

	6 Results
	6.1 System and Application Configurations
	6.2 Access Patterns Overview
	6.3 Access Conflicts with Different Semantics
	6.4 Metadata Operations

	7 Discussion
	Acknowledgments
	References

