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Abstract
Serverless computing has emerged as a new paradigm for running
short-lived computations in the cloud. Due to its ability to handle
IoT workloads, there has been considerable interest in running
serverless functions at the edge. However, the constrained nature
of the edge and the latency sensitive nature of workloads result in
many challenges for serverless platforms. In this paper, we present
LaSS, a platform that uses model-driven approaches for running
latency-sensitive serverless computations on edge resources. LaSS
uses principled queuing-based methods to determine an appropri-
ate allocation for each hosted function and auto-scales the allocated
resources in response to workload dynamics. LaSS uses a fair-share
allocation approach to guarantee a minimum of allocated resources
to each function in the presence of overload. In addition, it utilizes
resource reclamation methods based on container deflation and
termination to reassign resources from over-provisioned functions
to under-provisioned ones. We implement a prototype of our ap-
proach on an OpenWhisk serverless edge cluster and conduct a
detailed experimental evaluation. Our results show that LaSS can
accurately predict the resources needed for serverless functions in
the presence of highly dynamic workloads, and reprovision con-
tainer capacity within hundreds of milliseconds while maintaining
fair share allocation guarantees.
CCS Concepts
• Computer systems organization→ Cloud computing; • The-
ory of computation→ Scheduling algorithms.
Keywords
cloud computing, edge computing, serverless computing, Function-
as-a-Service (FaaS), service-level agreement (SLA), queueing theory
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1 Introduction
Serverless computing has emerged as a new paradigm of cloud
computing for running short-lived computations. Unlike traditional
Infrastructure-as-a-Service (IaaS) clouds [25] that involves leasing
server resources for longer time periods, serverless computing of-
fers a Function-as-a-Service (FaaS) abstraction [22] that is designed
for infrequent or bursty short-lived cloud computations. The server-
less model involves running code in the form of functions that are
dynamically invoked by the cloud platform for execution upon
the arrival of new requests or data to an application. The invoked
function runs often inside a virtualized container on a cloud server
to process a request, after which the container terminates [42].

Serverless computing is attractive for application development
for two reasons. In case of infrequent requests, it eliminates the need
to lease persistent cloud servers that stay idle between successive
requests. Serverless platforms only charge for the CPU time spent
in executing incoming requests and do not charge for idle cycles.
Second, in case of bursty computations, it eliminates the need to
pre-provision cloud servers to handle the peak load during a burst
and also avoids server overloads if the burst of requests exceeds
the provisioned capacity. Serverless platforms offer the abstraction
of an “infinitely scalable” cloud through built-in auto-scaling with
the number of containers allocated to execute concurrent requests
for a function automatically scaled up or down based on the incom-
ing workload. Since containers are lightweight to provision, such
scaling can be done in a near instantaneous fashion allowing for
quick reaction to incoming bursts of requests.

Serverless platforms have recently been the focus of many re-
search efforts [22, 30, 50]. In addition, all major commercial cloud
providers have serverless cloud offerings[9–11]. However, a less
studied form of this emerging paradigm is serverless computing
at the edge. Edge computing involves deploying computational re-
sources at the edge of the network close to end-users, making it par-
ticularly well-suited for latency-sensitive or bandwidth-intensive
applications [41, 45]. In many cases, the computational needs of
such applications may be bursty and processing may involve short-
lived computations, making a serverless model attractive for edge
computing [19]. Consider the following motivating example of IoT
data processing in the edge.
Example 1: Consider an IoT device such as a motion-activated
smart camera that captures and streams video frames only when
it senses motion, yielding a bursty data stream. This video data
needs to be analyzed using some object detection and recognition
deep learning inference model [33, 51]. The inference needs to be
performed in near real-time to generate alerts in case of the detec-
tion of a suspicious object in the video. Such application workload
can benefit from both edge computing and serverless computing;
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Since the video data has high bandwidth needs, especially for high-
definition (HD) cameras, processing this data at the edge saves
network resources compared to sending such high-volume data to
a distant cloud. Further, since video data is not continuous and is
only generated upon detecting motion, the serverless paradigm that
allocates resources to a function on demand is better than a long-
running edge application that stays idle between requests wasting
resources. Since edge resources are constrained, serverless comput-
ing makes more efficient use of the scarce edge resources over a
persistent edge resource allocation. These observations motivate
our focus on serverless edge computing in this paper.

Serverless computing at the edge raises a different set of re-
search challenges compared to traditional serverless in the cloud.
First, while the cloud can offer the illusion of “infinite capacity” to
auto-scale serverless functions, edge clusters are more resource-
constrained by virtue of having fewer servers imposing limits on
auto-scaling. Hence, serverless edge platforms may occasionally
face resource pressure when multiple hosted functions from differ-
ent users see simultaneous bursts. Second, since serverless com-
putations are supposed to be transient and short-lived, typically,
cloud platforms impose hard time limits on the maximum execu-
tion time allocated to each function invocation– the computation
is terminated if it doesn’t finish execution within a limit. Commer-
cial cloud platforms have typically imposed a time limit of up to
60 seconds for each function invocation, although more recently,
they have begun to raise this limit to a few hundreds of seconds
accommodating a broader set of serverless workloads [1]. Likewise,
edge servers will need to judiciously allocate scarce resources to
latency-sensitive computations such that they can finish execution
before the revocation deadline.

To address the above challenges, this paper presents LaSS, a plat-
form for managing Latency Sensitive Serverless computations. We
address the challenges described above by designing model-driven
resource management algorithms for latency-sensitive serverless
computations in edge clusters. In designing, implementing and
evaluating our system, we make the following contributions:

• We present a principled approach for allocating edge re-
sources to latency-sensitive serverless functions using queu-
ing models so as to meet their SLO deadlines. We use our
models to design an algorithm to dynamically scale the re-
source allocation of each function up or down based on
time-varying workload demands.
• In the absence of resource pressure, our model-driven ap-
proach dynamically allocates the necessary resources to each
function based on its observed workload. When the sys-
tem experiences resource pressure or overloads, LaSS uses a
weighted fair-share resource allocation approach that guar-
antees a minimum fair share of the edge cluster resources to
each function in proportion to its weight. We also present
resource reclamation policies based on container termina-
tion and container deflation to reclaim resources from over-
allocated functions that are using more than their fair share
and allocate them to under-provisioned functions.
• We implement a full prototype of our model-driven approach
and fair-share reclamation policy on a serverless edge cluster
based on the open-source OpenWhisk platform.

• We conduct a detailed experimental evaluation of our system
using a diverse set of serverless workloads including multi-
ple edge-based machine learning inference models for bursty
video processing, Geofencing, image resizing, and malicious
file detection. Our results show the ability of our system to
quickly react to fluctuations in the workload seen by func-
tions (within tens of milliseconds when load increases by 10%
and within hundreds of milliseconds when load increases by
100%), adjusting their container allocations in order to meet
their SLO deadlines. Our results also show that our deflation
and termination-based reclamation policies enables LaSS to
operate with fair-share allocation guarantees in overload
scenarios where vanilla OpenWhisk will result in cascad-
ing failures in the workloads. We further show that using
deflation for resource reclamation improved utilization by
about 6% in highly packed edge clusters compared to using
the termination policy.

2 Background
In this section, we discuss background on serverless and edge com-
puting, as well as our problem statement.
2.1 Serverless Computing
A serverless computing platform offers a Function-as-a-Service
(FaaS) abstraction where application code is deployed at the gran-
ularity of a function and is invoked upon an event (e.g., request
arrival or new data produced). A key advantage of the FaaS abstrac-
tion is that application owners do not need to worry about server
deployment considerations, such as how many servers to allocate
to an application or how to auto-scale the server allocation up or
down. Serverless platforms offer built-in elasticity dynamically scal-
ing container resources allocated to a function on-demand. AWS
Lambda [9], Azure Functions [10], and Google’s cloud Functions
[11] are examples of FaaS offerings from major cloud providers.

There are three important characteristics of serverless functions
that are relevant to our work. First, our work assumes that a server-
less function is simply a piece of code written in any language of
choice that is capable of executing inside an OS container. This
feature is already supported by most major serverless platforms
[3, 4, 7]. Beyond the ability to observe the container’s behavior
from the outside and control the resource allocation to a container,
the platform does not have any specific knowledge of the function
itself.

Second, since serverless functions are supposed to be short-lived
computations, FaaS platform impose a hard time limit on the execu-
tion of each function. The computation is terminated if it does not
complete execution within this limit. Cloud serverless platforms,
for instance, have enforced execution time limits of between 60s to
up to 900s to allow a single function to process longer input streams
[1]. In our case, edge applications are also assumed to have latency-
sensitive needs. Hence, from a resource management standpoint,
we abstract both of these constraints using an SLO deadline—the
platform needs to ensure that a high percentile of the requests (e.g.,
99%) complete by their SLO deadline. In practice, the SLO deadline
is determined based on the latency requirements of the application
and the hard limit imposed by the serverless platform.

Session: Resource Management HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

240



f1 f2 f n

IoT Data

IoT devices 

Request 
queue

Edge Server/Cluster

Containers hosting 
serverless functions

Figure 1: An Edge cluster running serverless computations
that process dynamic IoT data.

Third, function requests are assumed to arrive asynchronously
at a certain stochastic rate, and upon a new arrival, the control node
determines whether to forward the request to an existing container
for that function (if one exists) or to spin up a new container (via
auto-scaling).

From a platform standpoint, we assume that the serverless cluster
comprises a dispatcher node where requests or events arrive, a
control node that make resource allocation decisions, and a group
of worker nodes each of which run one or more containers that
execute functions. Popular open-source FaaS platforms such as
OpenWhisk [20] and Kubeless [12] employ such an architecture.
2.2 Edge computing
Edge computing has emerged as a complement to cloud computing
for running latency- and bandwidth-sensitive applications in close
proximity to end-users and their devices [41, 45]. Edge computing
is particularly well-suited for processing data generated by IoT
devices in domains such as smart homes, mobile health and smart
transportation. Some researchers have even argued that video ana-
lytics over IoT data is the “killer application” for edge computing
[17]. A large number of these workloads will depend on “AI at the
edge”, where the edge application runs, for example, a deep learning
(DL) model to perform inference over IoT data (e.g., a smart traffic
intersection camera). In our work, edge processing is assumed to
be performed using serverless functions, each of which processes a
small amount of the incoming data stream.

In this paper, we focus on the problem of scheduling and resource
allocation for latency-sensitive serverless functions inside a single
resource-constrained edge cluster. We do not consider the problem
of job distribution across multiple edge clusters or the problem
of job scheduling over heterogeneous edge devices. On the other
hand, although we mainly discuss running serverless functions at
the edge in this paper, most of the algorithms and techniques can
be applied to cloud-based FaaS systems as well.

Figure 1 depicts the serverless edge platform considered in this
paper. Edge clusters are resource-constrained. So long as end-users
or devices produce data bursts at different times, the cluster has
enough resources to scale each function to the desired number of
containers to process this incoming burst in parallel (and meet SLO
requirements). However, whenever multiple functions belonging
to different users see concurrent workload, the cluster may see a
temporary overload where it lacks capacity to service the aggregate
workload. In this case, it will need to carefully and fairly allocate

resources across competing serverless functions. Doing so may
require reclaiming resources from functions that are using more
than their fair share and reassigning them to under-provisioned
functions. Thus, the edge cluster should offer auto-scaling to server-
less computations in the absence of resource pressure falling back
to fair share allocation during periods of high loads.
2.3 Problem Statement
Consider an edge cluster with 𝑁 edge servers and a control node.
Let 𝑓1 .....𝑓𝑘 denote 𝑘 functions that are hosted on this cluster. Let 𝜆𝑖
denote the mean inter-arrival time of requests or data for function
𝑖 . Let 𝑑𝑖 denote the the SLO deadline for function 𝑖 , where the
SLO requires a certain high percentile of requests (e.g., 95% of the
requests) to complete execution by the deadline. Let 𝜇𝑖 denote the
mean execution time of function 𝑖 . To finish by the deadline 𝑑𝑖 , we
require that 𝜇𝑖 +𝑞𝑖 ≤ 𝑑𝑖 for a high percentage of the requests, where
𝑞𝑖 is the time spent waiting in the edge system for a container.

Under normal load, the control node should allocate enough
containers to each function so that incoming events can finish
by the deadline 𝑑𝑖 by ensuring the waiting time to be scheduled
onto a “container” is smaller than (𝑑𝑖 − 𝜇𝑖 ). In the presence of
resource pressure or overload, SLAs may be temporarily violated
but such violations should be kept to a minimum by ensuring that
each function gets a minimum, fair-share allocation. This is done by
assigning a weight𝑤𝑖 to each function that determines its allocation
relative to other functions.

Our goal is to design an edge serverless system that dynamically
allocates 𝑐𝑖 containers to function 𝑓𝑖 such that the response time
of incoming requests, i.e., 𝜇𝑖 + 𝑞𝑖 , is less than the SLO deadline 𝑑𝑖
for a high percentile of the requests. As the workload 𝜆𝑖 fluctuates
over time, the number of allocated containers 𝑐𝑖 should be varied
so as to ensure adequate capacity is allocated to function 𝑓𝑖 to
meet its SLO deadlines. During overload scenario (i.e.,

∑
𝑖 𝑐𝑖 ≥ total

cluster capacity), each function 𝑓𝑖 should be allocated a minimum
guaranteed container capacity that is in proportion to its weight𝑤𝑖

(by reassigning container capacity from functions that are using
more than their fair share allocation to under-allocated functions).
3 Model Driven Resource Allocation
We next present our model-driven approach to determine the con-
tainer capacity that should be allocated to each function’s incoming
workload to meet its SLO deadline. We also present an algorithm
that uses these model estimates to scale the number of containers
allocated to each function and map them to nodes in the cluster.
3.1 Queuing Theoretic Model
To estimate the number of containers required for each function
𝑓𝑖 , we assume that time is partitioned into epochs. Let 𝜆𝑖 denote
the observed arrival rate of requests to function 𝑓𝑖 in the previous
epoch. Let us assume the function 𝑓𝑖 needs 𝑐𝑖 containers to service
this workload 𝜆𝑖 while meeting the SLO deadline 𝑑𝑖 . Our goal is to
determine an appropriate value of 𝑐𝑖 .

Initially, let us assume that all 𝑐𝑖 containers are homogeneous—
they have identical CPU and memory allocations. Since contain-
ers allocated to a function have the same resource capacity, we
can model them using the same service rate 𝜇𝑖 for processing re-
quests. Hence, service time (execution time) of a request is given
by 𝑠𝑖 = 1/𝜇𝑖 . If we assume that request arrivals are Poisson and
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that services times are exponential, we can model this system using
a M/M/c/FCFS queuing system with 𝑐 queuing servers to process
incoming requests. In our case, each queuing “server” is a container
that processes requests rather than an actual server. For function
𝑓𝑖 , 𝑐 = 𝑐𝑖 , since there are 𝑐𝑖 concurrent containers, each of which
processes incoming requests to this functions in an FCFS manner.

While the arrival process of requests for a serverless function
may not be Poisson in the long run, we argue that on shorter
time scales they can be approximated as a Poisson process. For
instance, in the motion triggered camera example the request rate
is approximately a Poisson process over a short time window after
the camera is triggered. Therefore, we can use a moving window
approach to estimate the current request rate of each function, and
every time the algorithm runs it uses the arrival rate calculated
over the previous epoch as the input arrival rate

Queuing analysis of an M/M/c system is well known in the
literature and yields a closed-form equation the probability 𝑃𝑛 that
an incoming requests sees 𝑛 other requests in the system. The
steady state probability 𝑃𝑛 for an M/M/c system is given as [28]

𝑃𝑛 =

{
𝑟𝑛

𝑛! 𝑃0 0 ≤ 𝑛 ≤ 𝑐.
𝑟𝑛

𝑐𝑛−𝑐𝑐!𝑃0 𝑛 ≥ 𝑐.
(1)

where,

𝑃0 =

(
𝑟𝑐

𝑐!(1 − 𝜌) +
𝑐−1∑︁
𝑛=0

𝑟𝑛

𝑛!

)−1
(2)

The term 𝑟 is shorthand for 𝑟 = 𝜆𝑖/𝜇𝑖 , 𝑐 = 𝑐𝑖 , and 𝜌 denotes the
utilization of the system given by 𝜌 = 𝜆𝑖/𝑐𝑖𝜇𝑖 . We can use these
steady-state probabilities of the system to derive the waiting time
distribution and bounds on a higher percentile of the waiting time
(which can then be used to meet the SLO deadline 𝑑𝑖 ).

Specifically, let 𝑛 denote the number of requests seen by an
incoming request for the function. Since there are 𝑐𝑖 containers, if
𝑛 < 𝑐𝑖 there is at least one idle container and the request does not
see any queuing delay and can immediately be serviced by an idle
container. If𝑛 ≥ 𝑐𝑖 all 𝑐𝑖 containers are serving existing requests and
the request must wait until a container becomes idle. Since requests
are processed at mean rate 𝜇𝑖 and 𝑐𝑖/𝜇𝑖 requests get processed per
unit time, the expected waiting time is (𝑛𝑖 −𝑐𝑖 +1)/𝜇𝑖𝑐𝑖 Let 𝑡 denote
the upper bound on the waiting time (we discuss how to derive 𝑡
using the deadline below). therefore,

𝑛 − 𝑐𝑖 + 1
𝜇𝑖𝑐𝑖

≤ 𝑡 (3)

This yields𝑛 ≤ 𝑡𝑐𝑖𝜇𝑖+𝑐𝑖−1, which implies that the expected waiting
time is less than t when the number of requests 𝑛 is less than or
equal 𝜇𝑖𝑐𝑡 + 𝑐𝑖 − 1. The probability of seeing no more than 𝜇𝑖𝑐𝑖𝑡 +
𝑐𝑖 − 1 customers can be derived from the steady state probability
as

∑𝑐𝑖
𝑛=0 𝑃𝑛 . Hence the probability of bounding the waiting time 𝑄

by 𝑡 is

𝑃 (𝑄 ≤ 𝑡) =
𝑐𝑖∑︁
𝑛=0

𝑃𝑛 (4)

In our case, the SLO deadline 𝑑𝑖 must be satisfied for a high
percentile of the requests (say the 99th percentile). In the worst
case, a request sees a high service time (e.g. 99th percentile of
service time distribution) and a high wait time (99th percentile)
and the sum of the two should still be less than 𝑑 . Hence, we can

set 𝑡𝑝99 = 𝑑 − 1/𝜇𝑝99 where 𝑡𝑝99 denotes the 99th percentile of
the waiting time distribution and 1/𝜇𝑝99 is the 99th percentile of
the service time. We can then substitute 𝑡𝑝99 into equations 2 and
3 iteratively to find the smallest 𝑡 such that the right-hand sum
equals the 0.99. Algorithm 1 denotes this iterative procedure. We
note that this calculation converges rapidly to the correct number
of servers. Our queuing model allows us to compute the number of
containers 𝑐𝑖 needed to service the observed incoming workload 𝜆𝑖
while meeting deadline SLO 𝑑𝑖 for a high percentile of the requests.

Inputs: The request arrival rate 𝜆, the service rate 𝜇, 𝑡𝑝99
Output: The number of containers required 𝑐

1 𝑐 ← number of containers in the system ;
2 while 𝑃 ≤ 0.99 do
3 𝑐 ← 𝑐 + 1;
4 𝐿 ← ⌊𝑡𝑐𝜇 + 𝑐 − 1⌋;
5 𝑃 =

∑𝐿
𝑛=0 𝑝𝑛 ;

6 return c
Algorithm 1: Iterative algorithm for finding 𝑐

3.2 Modeling Heterogeneous Containers
Our above model assumed all containers, 𝑐𝑖 , allocated to function
𝑓𝑖 have homogeneous CPU and memory allocations. However, due
to the resource reclamation techniques discussed in Section 4, the
allocation of the 𝑐𝑖 containers may not be identical, leading to
different service rates. To model this scenario, let us assume that
𝜇
𝑗
𝑖
denotes the service rate of the 𝑗𝑡ℎ container, where 1 ≤ 𝑗 ≤

𝑐𝑖 , without loss of generality, assume 𝜇1
𝑖
≤ · · · ≤ 𝜇

𝑐𝑖
𝑖

We can
compute the steady state probabilities 𝑃𝑛 of seeing 𝑛 requests in
the system based on the worst case analysis in Alves et al. [16].
The worst case analysis is based on the observation that, under
heavy traffic, the probability of having a job running on the slowest
container(s) is higher than having a job running on the fastest
one, which can then be used to derive a bound on the waiting
time less than or equal to 𝑡𝑝99. As this is worst-case analysis, we
assume, like Alves et al., that the scheduler will always make the
worst decision, scheduling jobs first on the slowest container(s),
and last on the fastest container(s). Alves et al. show that the upper
bound probability 𝑃𝑛 that an incoming request sees 𝑛 requests in
the system when 𝑛 < 𝑐𝑖 is:

𝑃𝑛 = 𝑃0
𝜆𝑛∏𝑛

𝑘=1 (
∑𝑘

𝑗=1 𝜇 𝑗 )
, (5)

and in case of overload when 𝑛 > 𝑐𝑖 is:

𝑃𝑛 = 𝑃0

𝑐∏
𝑘=1

(
𝜆∑𝑐

𝑘=1 𝜇𝑘

) [ 𝑛∏
𝑘=𝑐+1

(
𝜆∑𝑐

𝑘=1 𝜇𝑐

)]
. (6)

We are mostly interested in the case when 𝑛 > 𝑐𝑖 , which typically
results in multiple functions being deflated, as we describe in the
next section, and thus having wide differences in service rates. LaSS
thus implements Equation 6 in an iterative algorithm similar to
Algorithm 1 described previously. As we will show experimentally
in §6, our simple iterative algorithm scales well to very large number
of serverless functions, making the use of queuing models practical
in serverless edge platforms. Finally, we note that this worst-case
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analysis assumes that the scheduler uses a heuristic that picks the
absolute slowest container(s) first, thus adding to the queuing and
delays, instead of, e.g., using the fastest containers first.
3.3 Container Allocation Algorithm
The above model yields the number of containers 𝑐𝑖 that should be
allocated to each function 𝑓𝑖 to handle the expected workload 𝜆𝑖 .
To implement our model-driven approach, the control node in our
serverless edge cluster monitors the incoming workload 𝜆𝑖 for each
function within each epoch. At the end of an epoch, it recomputes
the number of containers 𝑐𝑖 to be allocated to each function 𝑓𝑖
hosted within the cluster based on the above models. In order to be
responsive to bursts of requests, epochs are relatively short in our
system (e.g., tens of seconds to a minute). The observed request rate
in each epoch yields a time series of per-epoch observations that
is subjected to an exponential weighted moving average (EWMA)
with a high weight given to the most recent epoch. The resulting
workload 𝜆𝑖 for a function 𝑓𝑖 , the observed service time 𝜇𝑖 , and
the SLO deadline 𝑑𝑖 are used as inputs to our model to compute a
container allocation 𝑐𝑛𝑒𝑤

𝑖
for each function.

If the current container allocation 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑖

is greater than 𝑐𝑛𝑒𝑤
𝑖

,
the function is over-provisioned and (𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑖
− 𝑐𝑛𝑒𝑤

𝑖
) containers

with the lowest resource allocations are marked for termination.
On the other hand, if 𝑐𝑛𝑒𝑤

𝑖
> 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑖
, the function needs more

resources, and the controller node needs to start 𝑐𝑛𝑒𝑤
𝑖
− 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑖
additional containers to handle the workload. Hence, the control
node first finds a cluster node with enough spare capacity or finds
a number of nodes that can collectively host 𝑐𝑛𝑒𝑤

𝑖
− 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑖
new

containers. It then signals the invoker on each node to start these
additional containers. If insufficient idle resources are available, any
container marked for termination for over-provisioned functions is
actively terminated, and those resources are reallocated to under-
provisioned functions. Note that in absence of resource pressure, the
cluster is guaranteed to find adequate resource capacity to run 𝑐𝑛𝑒𝑤

𝑖
containers for each function. In the overload scenario, Equation 6
is used. Finally, note that containers marked for terminations are
reclaimed in a lazy fashion and only when needed. Doing so allows
them to be reused if the load increases again.
4 Fair-share Resource Allocation and

Reclamation
The previous section assumed an absence of resource pressure
where each function could receive its desired container allocation as
computed by our model. However, edge clusters are more resource-
constrained than a centralized cloud in terms of their server capac-
ity, and occasionally an edge cluster may face resource pressure
where the total resource capacity needed to host all containers
for all functions exceeds the cluster capacity. In this section, we
describe techniques for handling resource pressure based on (i) fair
share allocations and (ii) resource reclamation.
4.1 Fair Share Resource Allocation
To deal with scenarios when the edge cluster sees an overload, our
system guarantees a minimum resource allocation to each func-
tion. In the absence of resource pressure, a function’s container
allocation is allowed to exceed this minimum share since our goal
is to allocate sufficient capacity to meet SLO deadlines of latency-
sensitive requests. An overload is set to occur when the aggregate

container capacity across all functions (
∑
𝑖 𝑐

𝑛𝑒𝑤
𝑖

) exceeds the total
cluster capacity. Hence, when an overload occurs, any function
that is allocated more container capacity than its guaranteed min-
imum share is reduced to no less than minimum allocation, and
functions that have allocations under their guaranteed limit are
given additional resources up to this limit.

To ensure fairness in capacity allocation during overloads, each
function is assigned a weight 𝜔𝑖 by its owner. The guaranteed
minimum fair share allocation of each function is proportional
to its weight – each function is guaranteed 𝜔𝑖/

∑
𝑗 𝜔 𝑗 fraction of

cluster resources. Doing so ensures a minimum rate of execution
for a function under overload and avoids starvation or unfairness
where a function with greater workloads takes an unfair share of
cluster capacity.

Our system then uses the following algorithm to determine the
container allocations for each function. It first uses the queuing
models from the previous section to determine the desired con-
tainer allocation 𝑐𝑛𝑒𝑤

𝑖
for each function. In the presence of overload∑

𝑖 𝑐
𝑛𝑒𝑤
𝑖

> 𝐶 where C denotes the total cluster capacity in terms of
number of containers. Let 𝑐𝑔𝑢𝑎𝑟

𝑖
denote the guaranteed minimum

share for function 𝑖 (again in terms of containers), where

𝑐
𝑔𝑢𝑎𝑟

𝑖
=


∑︁
𝑗

𝜔𝑖

𝜔 𝑗
·𝐶

 . (7)

If 𝑐𝑛𝑒𝑤
𝑖
≤ 𝑐

𝑔𝑢𝑎𝑟

𝑖
, then resource demand for function 𝑖 is equal to

or below its guaranteed minimum share, and hence is allocated its
desired capacity 𝑐𝑛𝑒𝑤

𝑖
as computed by our model. Such functions

are “well behaved” and do not require any reduction in the desired
container capacities. Thus, for well-behaved functions 𝑐𝑎𝑑 𝑗

𝑖
= 𝑐𝑛𝑒𝑤

𝑖
,

where 𝑐𝑎𝑑 𝑗
𝑖

denotes the adjusted allocation of function 𝑓𝑖 .
Let 𝐶 = 𝐶 − ∑

𝑘 𝑐
𝑛𝑒𝑤
𝑘

denote the remaining capacity in the
cluster after allocating capacity to all well-behaved functions 𝑘 .
The remaining functions are those where 𝑐𝑛𝑒𝑤

𝑖
> 𝑐

𝑔𝑢𝑎𝑟

𝑖
, i.e., their

desired capacity exceeds their guaranteed minimum share. Each
such function in then allocated the remaining cluster capacity 𝐶 ′
in proportion to their weight.

𝑐
𝑎𝑑 𝑗
𝑖

=

⌊∑︁
𝑚

𝜔𝑖

𝜔𝑚
𝐶

⌋
(8)

where𝑚 denotes the set of overloaded functions.
The above algorithm guarantees that all overloaded functions

receive at least their guaranteed fair share allocation as shown in
the following lemmas.
Lemma 1: In the scenario where all functions are overloaded,
𝑐𝑛𝑒𝑤
𝑖

> 𝑐
𝑔𝑢𝑎𝑟

𝑖
, our algorithm allocates the guaranteed fair share

𝑐
𝑔𝑢𝑎𝑟

𝑖
to each.

Proof. Since all functions are overloaded, there are no well-behaved
functions in the system. Since the set 𝑘 of well-behaved functions
is empty, the expression 𝐶 = 𝐶 − ∑

𝑘 𝑐
𝑛𝑒𝑤
𝑘

reduces to 𝐶 = 𝐶 . By
substituting for 𝐶 = 𝐶 in Equation 8, it follows that each function
is allocated exactly its guaranteed share

⌊∑
𝑚

𝜔𝑖

𝜔𝑚
𝐶

⌋
Lemma 2: In the case where only some functions are overloaded,
each such function receives no less than its guaranteed minimum
share 𝑐𝑔𝑢𝑎𝑟

𝑖
.
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Proof. Since each well-behaved function is allocated its desired
allocation 𝑐𝑛𝑒𝑤

𝑖
which is less than or equal to its guaranteed share

𝑐
𝑔𝑎𝑢𝑟

𝑖
, it following that for all well-behaved functions

∑
𝑘 𝑐

𝑛𝑒𝑤
𝑘
≤∑

𝑘 𝑐
𝑔𝑎𝑢𝑟

𝑘
, where 𝑘 denotes the set of well behaved functions. Since

𝐶 = 𝐶−∑𝑘 𝐶
𝑛𝑒𝑤
𝑘

, it follows that the remaining capacity𝐶 is greater
than or at least equal to to the guaranteed share of the remaining
overloaded functions. That is 𝐶 ≥ ∑

𝑚 𝑐
𝑔𝑢𝑎𝑟
𝑚 , where 𝑚 is the set

of overloaded functions. This remaining capacity is assigned in
proportion to weights of the overloaded functions as per Equation
8, giving each function a share that is greater than or equal to its
fair share allocation.
4.2 Resource Reclamation Algorithms
Once our algorithm determines the new allocations 𝑐𝑎𝑑 𝑗

𝑖
for each

function, our system needs to adjust the current allocations to
these new values. This typically involves reclaiming resources from
overloaded functions and reducing their allocation to a 𝑐𝑎𝑑 𝑗

𝑖
, which

is at least the guaranteed share. The reclaimed capacity is given
to any function that requires a capacity increase—where the new
allocation 𝑐𝑎𝑑 𝑗

𝑖
is higher then the current allocation 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑖
.

There are twomechanisms to reclaim resources from over-allocated
functions: container termination and container deflation.

(1) Termination. Termination simply involves gracefully shut-
ting down the Container and reclaiming its CPU and mem-
ory resources. Unlike lazy termination where resources were
reclaimed in a lazy manner in the absence of resource pres-
sure, container termination is immediate during overload
situations.

(2) Deflation. Resource deflation is a recently proposed ap-
proach for reclaiming resources by reducing the CPU and
memory allocation of a virtual machine. The deflation ap-
proach proposed in [26, 44] is based on the observation that
virtual machines have slack in their resource allocation (since
their allocated resources may not be 100% utilized by the
application code executing inside them) and reclaiming a
fraction of the VM’s allocated resource can be done without
a proportionate degradation in application performance. The
deflation study in [26] has analyzed millions of production
VMs in the Azure cloud and showed that typical slack can
be up to 50%.
We adopt the VM deflation idea to containers. Since contain-
ers are allocated a certain CPU and RAM allocation by the
OS, this allocation can be dynamically changed using system
calls to implement the notion of deflation for OS containers.
Since our containers are latency-sensitive functions, such
deflation must not be too aggressive to avoid performance
degradation that causes SLO deadline violations. We do limit
the impact on performance by specifying a maximum thresh-
old on the fraction of resources reclaimed from a deflated
container. While this threshold is application-dependent, in
our current implementation we set this value conservatively
(e.g., 𝜏 = 30%) to limit the performance impact.

These two options for resource reclamation yields two different
policies to reclaim resources from over-allocated functions during
an overload. The termination-based reclamation policy examines all

over-allocated functions where we 𝑐𝑎𝑑 𝑗
𝑖

> 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑖

and terminates
𝑐
𝑎𝑑 𝑗
𝑖
−𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑖
containers for each such function. Using the freed up

resources, it then reallocates those resources to all under-allocated
functions by increasing their allocation to the computed value 𝑐𝑎𝑑 𝑗

𝑖
.

The deflation-based reclamation policy examines over-provisioned
functionswhere 𝑐𝑛𝑒𝑤

𝑖
> 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑖
and iteratively deflates the 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑖
containers of each such function by up to a threshold amount, in
small increments. After each incremental iteration, it checks if the
total CPU capacity allocated to the deflated 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑖
containers

equals the total CPU allocation of the desired 𝑐
𝑎𝑑 𝑗
𝑖

non-deflated
containers. If not, it iteratively deflates all 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑖
container by

another increment, up to a threshold to 𝜏 , until sufficient resources
have been reclaimed (i.e., the aggregate capacity of the deflated
containers equals the total capacity of 𝑐𝑎𝑑 𝑗

𝑖
non-deflated ones.

If sufficient CPU capacity is not reclaimed even after deflating
each container by themaximum value defined by 𝜏 , some containers
are terminated until the aggregate CPU allocation of the deflated
containers equal that of 𝑐𝑛𝑒𝑤

𝑖
non-deflated ones. A key advantage

of the deflation approach is that it allows a function to have strictly
more containers than the termination-based reclamation approach.
This allows more concurrency where requests can be processed in
parallel reducing waiting time and reducing SLO deadline violations
or the magnitude of the violations. As long as deflation is done
conservatively, the service time should see only a small degradation
while benefiting from higher concurrency (see §6).
5 LaSS Implementation
Our system is implemented based on of Apache OpenWhisk [2], a
popular open-source serverless framework implemented in Scala.
The architecture of OpenWhisk is shown in Figure 2a (components
of less relevance have been omitted for clarity). In OpenWhisk,
when a function is invoked, either by event trigger or by direct
request, the invocation request is sent to a controller. The load
balancer in the controller will schedule the invocation to one of
the worker nodes based on their health and load status. When the
request reaches the assigned worker node, the invoker on that node
will execute the invocation request inside a container.

One major issue of OpenWhisk is that the control path and the
data path are coupled, whichmakes it unsuitable for running latency
sensitive computations at the edge. In OpenWhisk, the controller
is in charge of deciding which invoker an invocation should be
scheduled to, but the container level decisions (e.g., whether to reuse
an existing container or create a new one) are made by the invoker.
This design leads to a gap between control and information in the
system—invokers make decisions of creating/removing function
instances but it only has local information; controller, on the other
hand, has more global information but does not have direct access to
the containers. This makes it impossible to provide SLO guarantee
in the absence of resource pressure or to enforce fairness during
overload, since there is no way to control the exact number of
containers in the system for a particular function.

Figure 2b shows how we integrate LaSS into OpenWhisk. Our
changes are mainly localized to OpenWhisk’s controller and in-
voker components. We separated the control path (the dashed line)
and the data path (the solid line) by adding a dedicated LaSS mod-
ule in the controller. The LaSS module has direct control over all
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(a) Architecture of OpenWhisk.
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(b) Architecture of the LaSS prototype based on OpenWhisk.

Figure 2: Architectures of OpenWhisk and the LaSS Proto-
type.

containers in the system and can also read arrival rate statistics
from the load balancer. Using the arrival rate information our LaSS
module can periodically update the containers allocated to each
function using the resource allocation algorithm we discussed in
the previous two sections, as well as the load balancer configura-
tion. Knowing all the containers and their size information, the
load balancer uses the weighted round robin (WRR) algorithm to
directly schedule function invocation request to each individual
container. The invoker is now much simplified, it no long make
any decisions on scheduling or container operation, it only exe-
cutes commands from the controller. These enhancements allow
our system to allocate the desired container capacity to meet SLOs
in the normal case, while also providing fairness guarantee under
overload.

Another major change we made to OpenWhisk is to allow users
to directly specify the CPU request/requirement for a function.
OpenWhisk does not allow that but it does provide the user with
the ability to set memory allocation per function when creating a
function. CPU resources are then automatically allocated in propor-
tion to the memory. However, this is inadequate for latency critical
serverless functions since; (1) It is variable and machine dependent
– the amount of CPU allocated depends on the physical machine
and the other functions that are co-located on the same host, and
(2) Functions have different resource requirement patterns. For ex-
ample, some functions may be CPU-constrained requiring a lot of
CPU, but much less memory resources. Therefore we have added
the ability for users to control both CPU and memory allocation
for their functions to better serve latency sensitive computations.

For function scheduling, we implemented a two level hierarchical
scheduling tree by adding the notion of weight to user (namespace)
and actions. LaSS uses these weights to calculate the fair of re-
sources for each action. Our model can be extended to a hierarchical
scheduling tree with arbitrary levels.

In our implementation, OpenWhisk components are deployed
using Kubernetes (to streamline the deployment process), while
the functions run in native Docker containers. This is because
to implement deflation we need to have the ability to update the

resources of a container “in place”, i.e., to adjust the resources
allocated to a running container without interrupting the running
function. Kubernetes currently does not support that, instead it
will first create a new container with the new specifications and
then destroy the old one. On the other hand, although it is possible
to update the resource allocation of a Docker container during
runtime, deflation of memory is non-trivial: a container may get
killed for exceeding its memory limit if the updated limit is less than
the memory already in use. Therefore, we currently only implement
CPU deflation in LaSS, and the memory allocation of a function
instance will not change when its CPU allocation gets deflated.

In order to use queueing theory based models to predict the
capacity needed for a latency sensitive function, the controller
needs to know the service time distribution. In the scenario where
the deflation policy is used, the controller needs to know multiple
service time distributions under different container sizes. LaSS
supports two approaches for this purpose: 1) load offline profiling
results which may be measured by either the user or the service
provide, and 2) use an online learning algorithm to learn the service
time distribution(s) over time.

Finally, for auto scaling, LaSS also need to estimate the arrival
rate of a function. In our prototype LaSS accomplish this bymonitor-
ing two sliding windows every 5 seconds: a 2-minute long window
and a 10-second short window. When no burst is detected, the ar-
rival rate is calculated using the long window, but when there is a
burst, i.e., if the arrival rate in the short window is twice as high as
the arrival rate in the long window, LaSS switches to calculating
the arrival rate based on the short window. This is largely inspired
by another system, Knative [6]. Note that we don’t imply this is the
best way to estimate arrival rate. It can be argued that predicting
arrival rate using time series analysis or machine learning tech-
niques may be more effective. However that is out of the scope
of this paper. We chose this implementation merely because of
its simplicity. One can also plug in any load prediction method of
choice into LaSS with ease.

Our modifications to OpenWhisk were distributed across 55
files in the OpenWhisk code-base, adding over 2300 lines of code.
Source code for our LaSS prototype is available publicly at https:
//github.com/umassos/lass-serverless.
6 Experimental Evaluation
In this section, we conduct a detailed experimental evaluation of our
approach presenting our experimental methodology, and results.
6.1 Experimental Setup
Hardware. Our experiments are conducted on a small edge clus-
ter of 3 nodes with each node comprising a 4-core Intel Xeon E5
processor with 16GB RAM and 10 Gbps Ethernet. All nodes run
Ubuntu 18.04 LTS Server and our OpenWhisk-based prototype. We
chose this relative small cluster setup because it is easier to create
resource contention, which helps us evaluate the resource reclama-
tion algorithms and policies. However, it is worth noting that our
system can scale to much larger clusters, as we will demonstrate
later in §6.3.
Functions.We use six realistic serverless functions chosen from
various edge computing applications in addition to amicro-benchmark
functions. The programming languages used for implementation

Session: Resource Management HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

245

https://github.com/umassos/lass-serverless
https://github.com/umassos/lass-serverless


Function Programming
Language(s)

Standard Size

Micro-benchmark Python 0.4 vCPU + 256 MB
MobileNet v2 Python 2 vCPU + 1024 MB
ShuffleNet v2 Python 1 vCPU + 512 MB
SqueezeNet Python 1 vCPU + 512 MB
BinaryAlert Python 0.5 vCPU + 256 MB
GeoFence JavaScript 0.3 vCPU + 128 MB
Image Resizer JavaScript,

WASM (C)
0.8 vCPU + 256 MB

Table 1: Functions used in our evaluation experiments

and size of a standard container of each function is show in Table
1. The details of all the functions are described below:

• First we implemented a configurablemicro-benchmark server-
less function that performs mathematical computations. We
have the ability to control the amount of CPU cycles con-
sumed by each invocation by passing a parameter with the
invocation request.
• We also chose three deep neural network (DNN) inference
models:MobileNet v2 [40], ShuffleNet v2 [37], and SqueezeNet
[31]. These DNN inference models are all designed for light-
weight image classification and object detection, therefore
commonly used by image/video processing applications in
edge environments. These functions are set to emulate a
motion activated camera that sends a burst of image data
upon detecting motion. The image data is fed to one of the
three DNN models for inference and object detection. Each
ML inference task on an image is a separate invocation of the
serverless function running one of these DNN models. We
used the reference implementations from the torchvision
package [8] and wrapped them in Docker as OpenWhisk
blackbox functions.
• Our next function is BinaryAlert [5], an open-source server-
less real-time framework for detecting malicious files. It was
originally designed to run on AWS Lambda.We have adapted
BinaryAlert to run on OpenWhisk for our experiments.
• Geofencing enables users to create virtual perimeters for
some objects, e.g., drones, notifying the application owner
when the objects come-in or go-out of the geofence. This
application lends itself well to the serverless paradigm. Our
sixth workload is a geofencing service that triggers an alert
if an object leaves the virtual perimeter.
• Our final function is an image resizing service where images
are sent for resizing. This is a very common use case for
serverless computing.

In order to simulate the diverse set of functions that may be
running simultaneously in an edge cluster, we run a mix of deep
learning functions along with regular functions in each experiment.
For all our experiments, we use a default SLO deadline of 100 ms for
our serverless computation unless specified otherwise and require
that 95th of waiting time should be under this deadline (i.e., 95%
of requests should start being processed by one of the function
instances within 100 ms) unless specified otherwise.

Workload. For each of these serverless functions, we implemented
a configurable IoT workload generator. We use the IoT workload
generator to generate invocation requests and send the requests to
the edge cluster for processing. The generator can adjust the arrival
rate of requests using on one of the following approaches:

• Static. The requests are generated at a static arrival rate 𝜆.
• Discrete change. The arrival rate changes at certain discrete
time instants and remains constant in between.
• Continuous change. The arrival rate is adjusted after each
request.

Azure Traces. In addition to synthetic traces, we also used traces
from the Azure Public Dataset [42] in our evaluation. Since the
function invocation traces in the Azure dataset are aggregated per
minute, we made our load generator work in the discrete change
mode that adjusts the arrival rate each minute when using these
traces. Results using these traces are discussed in Section 6.7.
6.2 Model Validation
Our first experiments evaluate the efficacy of our queueing models
for homogeneous/heterogeneous containers by validating their
predictions experimentally.

6.2.1 Homogeneous Containers In this experiment, we use our
micro-benchmark serverless function and configure it with two
different service times (100 ms service time corresponding to 𝜇 = 10
req/s, and 200 ms service time corresponding to 𝜇 = 5 req/s). We
also tested under two different SLO deadlines (100 ms and 200
ms). We vary the arrival rate from 10 to 50 in steps of 10 and
compute the container allocation 𝑐 using our model. The function
is then configured with 𝑐 containers and we empirically measure
the waiting time seen by requests and compute the 95th percentile
of waiting times. Each experiment is run for 30 minutes.

Figure 3 shows the required 95th percentile waiting time with
the red dashed lines, and our empirically measured waiting times
when using LaSS with the 95th waiting time in blue, along with a
box and whiskers plot showing the waiting time range. As can be
seen the empirically observed P95 waiting time are below or close
to the SLO deadline, which shows that our queueing models are
able to provision adequate container capacity 𝑐 for different arrival
and service rates while meeting the SLO deadline.

6.2.2 Heterogeneous Containers To validate the queueing model
for heterogeneous containers; We run the SqueezeNet function
for 10 minutes under static load using LaSS with no resource con-
straints to provision just enough homogeneous containers. Then we
randomly select a certain proportion (25, 50, 75, and 100%) of all pro-
visioned containers and deflate each selected container randomly.
This way, the function will be under-provisioned with heteroge-
neous containers and LaSS will react by adding more containers
using the queuing model discussed in §3.2. We empirically mea-
sured the waiting time for 20 minutes after the manual deflation.

The results are shown in Figure 4. The x-axis represents the
invocation rates we tested (from 10 to 100 in steps of 10). The differ-
ent colors of lines represent the proportion of containers deflated
among all provisioned containers. The SLO deadline of 100 ms wait-
ing time is shown with the red dashed line. As can be seen in all
cases LaSS was able to provision adequate containers to maintain
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(a) 𝜇 = 5, sla objective = 100𝑚𝑠 (b) 𝜇 = 10, sla objective = 100𝑚𝑠 (c) 𝜇 = 5, sla objective = 200𝑚𝑠 (d) 𝜇 = 10, sla objective = 200𝑚𝑠

Figure 3: Measurement of P95 waiting time for functions with homogeneous containers

the 95th waiting time well below the SLO deadline, which indicates
our queueing model for heterogeneous containers is effective.
6.3 Model Scalability
We now focus on the scalability of allocation algorithm discussed
in §3.3. As the number of applications running at the edge increase,
the number of containers LaSS manages also increases. Hence, it
is important for LaSS to be able to scale to hundreds or even thou-
sands of containers with sub-second system response time to handle
load bursts. We implemented the container allocation algorithms
in both Scala—since our system is based on OpenWhisk—and Julia,
a popular language for scientific computing that accelerates the
computations. Figure 5 shows for one function, when experiencing
a spike of 10% increase in request rate, how the number of allocated
containers affects the time LaSS takes to react to the spike. The
Figure shows that the Julia implementation of our allocation algo-
rithm provides much higher scalability, being able to react to spikes
within less than 100 ms even with a 1000 running containers.

Since the burst size can affect the computation time of LaSS, we
run an experiment where the workload doubles instead of gradually
increasing. The orange line in Figure 5 shows the time required by
LaSS to decide resource allocation using the Julia implementation
(the Scala implementation was not able to compute the results in
some cases due to its precision limitations). We note that while
there is a significant increase in the number of requests, LaSS is
still able to scale-up the resources to meet the target SLO in sub-
second time. Since the computation of the allocation algorithms is a
relatively separate module, we were able to integrate our prototype
with the Julia module. Note that the the allocation algorithms can
be computed in parallel for different functions. This is an important
feature of our system as it enables LaSS to handle many functions
with thousands of containers and react to load dynamics within a
second.
6.4 Model-driven Auto Scaling
Our next experiment shows that the ability of Lass to react to
time varying workloads by allocating an appropriate number of
containers to handle an increase or decrease in workload. Our
experiment uses two of our six functions: the micro-benchmark
function and the MobileNet v2 deep learning function. In the first
half of the experiment we keep the arrival rate of the MobileNet
v2 function static while the arrival rate of the micro-benchmark
function is increased from 5 req/s to 30 req/s in increments of 5 then
decreased back to 5 req/s. In the second half of the experiment, the
arrival rate of the micro-benchmark function is kept static while
the arrival rate of the MobileNet v2 function is gradually increased

from 3 req/s to 8 req/s then decreased back to 3 req/s. There is no
resource pressure throughout this experiment.

The resulting workload is shown in the upper part of Figure
6. The number of containers allocated to each function is shown
in the lower part of Figure 6. As can be seen, in the absence of
resource pressure, LaSS can use our queueing models to accurately
estimate the capacity needed and adjust the number of allocated
containers in responding to both sudden and gradual workload
increase/decrease. This experiment demonstrates that in the ab-
sence of resource pressure, our LaSS system can quickly react to
workload change and auto-scale the container capacity to ensure
low response times.
6.5 Efficacy of deflation
Our next experiment demonstrates the efficacy of container defla-
tion as a viable approach for resource reclamation. As explained in
section 4, normally an application running inside a container does
not use all of the CPU and memory allocated to it. Hence, reclaim-
ing this spare capacity has negligible or small performance impact.
Larger amounts of deflation can however introduce a proportionate
performance impact.

To measure the impact of CPU deflation on performance, we
run all six serverless functions inside containers and progressively
deflate the CPU allocation and measure the mean service time.
Figure 7 shows the impact of varying degrees of CPU deflation
on the six functions. As can be seen, for 5 of the functions tested,
deflating the CPU by 30% only yields a small penalty on service
time. As the degree of deflation further increases up to about 70%,
there is a linear increase in service time.

The MobileNet function shows a slightly different pattern be-
cause it is resource heavier compared to other functions: even if
the container is assigned with 2 vCPUs there is little headroom
and the function will run at close to 100% CPU utilization inside
container. This is almost the worst case for deflation. Still we can
see that small amounts of deflation – around 30% – yields roughly a
similar increase in inference time. Even high amounts of deflation
– up to 50% – does not come with any abnormal behavior and sees
a corresponding performance decrease.
6.6 Efficacy of Resource Reclamation
We now focus on how different resource reclamation policy affects
the system utilization. We run two functions, BinaryAlert malware
detection and MobileNet, in the same environment with very high
resource pressure and CPU overload.We assume that both functions
are given equal weights𝑤1 = 𝑤2 = 1.
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Figure 4: P95 waiting time for functions
with heterogeneous containers under dif-
ferent levels of heterogeneity.

Figure 5: Average computation time of
the allocation algorithm for one server-
less function with heterogeneous con-
tainers.

Figure 6: Two functions with dynamic
workloads (a) and the number of contain-
ers provisioned by the LaSS over time (b).

(a) Service time of the three non-DNN serverless workloads under
different deflation ratios, 100% container size mean 1 vCPU is
assigned to the container.

(b) Service time of the three deep neural networks under different
deflation ratios, 100% container size means 2 vCPUs are assigned
to the container.

Figure 7: Effects of deflation on function service time.

Fig 8a shows the workload seen by the malware detection and
deep learning serverless functions. Initially, only the malware de-
tection function is serving requests and there is no overload. At
𝑡 = 5 minutes, the MobileNet function starts receiving requests. At
this point the malware detection function needs less than its fair
share (as its load hasn’t changed) while the MobileNet function
needs more than its fair share. At 𝑡 = 10 minutes, the arrival rate
of the malware detection function increases which causes the func-
tion needing 1 more container but still less than its fair share. The
increasing workload seen by both functions causes an overload at
𝑡 = 10 minutes. The load of the malware detection function further
increases at 𝑡 = 15 minutes, at which point both functions need
more than their fair share. At 𝑡 = 20 minutes the load of the Mo-
bileNet function ceases, which makes all resources in the system
available to the malware detection function.

Fig 8b shows the behavior using the termination policy. The
different shades of orange and blue represent individual contain-
ers and capacity allocation of each. Under the termination policy,
the aggregate capacity allocated to MobileNet is reduced to 50%
at 𝑡 = 10 by terminating one of the containers and the capacity
is reassigned to the other function, even though the terminated

container is much larger in size than the container to create. At
𝑡 = 15, note that even though the workload of the CPU-intensive
function continues to rise, its share is capped to 50% which is its
fair share under overload. However, since container deflation is
disabled, there is a small fragment of capacity left unused because
a standard sized container of the malware detection cannot fit.

Fig 8c shows the system behavior under deflation. In this case the
capacity of the MobileNet containers also needs to be reduced, but
this is done by deflating orange containers. For example, at 𝑡 = 10,
the number of containers allocated to theMobileNet function stayed
deflated but three of them were proportionally deflated (depicted as
the width of the of the orange bars becoming narrower) to reclaim
just enough capacity to create one new container for the malware
detection function, while still allowing the MobileNet function to
use more than its fair share. Also at 𝑡 = 15 the malware detection
function was able to use all of its fair share allocation using a
deflated container. Compared to the termination policy, it can be
observed that there is no unused capacity under the deflation policy,
which leads to better resource utilization. We measure the system
utilization improved from 78.2% when using the termination policy
to 83.2% (an increase of 6.4%). Also note that at any time point
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(a) Workload seen by MobileNet and malware
detection serverless functions.

(b) Resource allocation to each function using
the termination policy.

(c) Resource allocation to each function using
the deflation policy.

Figure 8: Effects of different resource reclamation policies under overload, with two functions and synthetic workloads.

both functions get at least the same amount of resources under the
deflation policy compared to the termination policy, which means
they always get equal or better performance under the deflation
policy compared to the termination policy. In both cases, the burst
seen by MobileNet ceases at 𝑡 = 20 minutes. Since the system is
no longer under resource pressure, our models allocate additional
capacity to the malware detection function shown in blue, allowing
it to exceed its fair share in the absence of resource pressure.

We also run the same experiment with off-the-shelf Apache
OpenWhisk. However, OpenWhisk failed to finish the experiment.
Soon after the ML workload starts, all invokers become unrespon-
sive. Further inspection on system logs reveals that the default
scheduling algorithm implemented in OpenWhisk (called the shard-
ing pool load balancer) has caused a cascading failure. By default
OpenWhisk tries to schedule different functions onto different in-
voker nodes to provide some performance isolation and maximize
chances of container reuse. OpenWhisk also schedules functions
solely on memory requirements while ignoring CPU requirements.
Therefore, in this case, one of the invokers is over-packed with
MobileNet containers shortly after the ML workload starts, leav-
ing the invoker unresponsive. Then again the controller will try
to schedule all the ML workload on another invoker, eventually
causing all the invokers to fail. In contrast, LaSS ensures the system
can survive overload by fair share resource allocation and resource
reclamation.
6.7 Function Placement for Azure-like

workloads
Finally we want to study how different resource Reclamation pol-
icy works with multiple functions. In this experiment we have all
six functions running concurrently, and the entire cluster highly
utilized. We created two users, each running three functions. We
set the weight of user 2 to be twice the weight of user 1. Therefore,
when there is resource contention, ideally functions of user 1 can
use around 33% of the total system resources while functions of
user 2 can use around 66% of the total system resources.

For the workloads in this experiment we use the the Azure Func-
tions Trace 2019 [42] from the Azure Public Dataset. The trace is
collected in July 2019 and contains part of the production workload
in Microsoft’s Azure Functions offering. There are 14 csv files in the

dataset that contain the invocation count of each function recorded
over a 24-hour period, aggregated per minute. For each of the six
functions, we sampled a workload for one hour duration (11:00
am to 12:00 pm in the original dataset) from the Azure Functions
Trace. Figure 9a shows a trace of function invocation calls for all
six functions. It is worth noting here that the MobileNet workload
follows a highly sporadic pattern.

Figure 9b shows the resource allocation of each function over
time when only the termination policy is applied. The black dashed
line represents the ideal fair-share resource allocation for both
users. We can see that when the MobileNet function is not getting
requests, functions of user 1 can user more than their fair-share
resource allocation because the other two functions of user 2 do
not need all the fair-share resource allocation of user 2. However,
when theMobileNet function starts receiving requests, LaSS quickly
terminate some containers of the ShuffleNet function of user 1 in
order to reclaim the resources.

Figure 9c shows the resource allocation of each function over
time when the deflation policy is used for resource reclamation. We
can see that 1) Under the deflation policy there is less unused re-
sources (represented by the grey area in the graph) during overload.
We measure the system utilization improved from 87.7% to 93% (an
increase of 6.1%). This is because with deflation there is less resource
fragmentation. 2) In Figure 9b there are more transient change in
allocated capacity (e.g., around 𝑡 = 20 and 𝑡 = 25 for the SqueezeNet
function) compared to Figure 9c. This is because under the deflation
policy there are much less container creation/termination opera-
tions. From a user perspective this means the service can seem
more stable under the deflation policy since there are less cold
starts (due to container creation) and fewer requests that need to
be rerun (due to container termination). 3) Also note that under the
deflation policy all the functions get at least the same amount of
resources as under the termination policy, and different reclamation
policies have almost no affect on functions whose required resource
allocation doesn’t exceed their fair share.
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(a) Traces for the function invocation rate for
the six workloads.

(b) Resource allocation to each function using
the termination policy.

(c) Resource allocation to each function using
the deflation policy.

Figure 9: Effects of different resource reclamation policies under overload, with six functions and workloads sampled from
Azure Public Dataset.

7 Related work
Serverless runtimes and platforms. While Docker is currently
the most popular runtime for serverless functions, other runtimes
have emerged such as microVMs [14], and unikernels [48]. Run-
ning on top of these runtimes, many serverless platforms have
been designed and built by the research community [15, 23, 36],
including building real-time serverless platforms that provides an
invocation rate guarantee, a service-level objective (SLO) specified
by the application, that is delivered by the platform [38]. Other
platforms focus on the problem of state and data management in
the serverless paradigm [35, 56], which is one of the major weak-
nesses of the serverless paradigm [30, 50]. Due to the short-lived
nature of serverless functions, many of the assumptions on data
locality that modern CPU architectures make resulting in larger
switching and hardware caching overheads which can result in
up to 20x slowdowns compared to native execution [43]. However,
many case-studies have shown that serverless can save hosting cost
by up to 95% for web-services [13], and provide order of magnitude
performance speed-ups [39].
Scheduling and management of serverless functions. gg is a
framework that enables users to deploy, execute, and manage appli-
cations using serverless functions deployed on thousands of parallel
threads to achieve near-interactive completion times [24]. MPSC is
a framework for scheduling serverless functions across different
cloud providers based on the performance of each provider in a
given time [19]. FnSched [46] is a scheduler implemented on top of
OpenWhisk to regulate the resource usage of co-located functions
on each invoker in the system. Recent studies have shown the ex-
tremely high variability in invocation rates for serverless functions
with variations of 8 order of magnitude in the rate [42]. This prob-
lem is related to the bursty workload problem in traditional cloud
environments [32, 47]. Using queueing theory-based approaches
to model and manage the performance of distributed systems have
been extensively studied [27, 28, 34, 49, 52]. Several papers have
considered improving system performance by employing differ-
ent scheduling policies, e.g., the Shortest Remaining Processing
Time (SRPT) scheduling policy instead of FCFS due to its optimal
properties [21, 29].

Serverless real-time applications. While relatively new, server-
less computing is today being used for many real-time applications.
A popular class of applications that use serverless computing are
applications that include machine learning inference [54]. Another
popular class of applications are those involving real-time video
streaming processing [18, 55]. Sprocket [18] is a serverless based
video processing framework supporting both batch and stream-
ing video processing. Lavea [53] is a serverless-based edge video
analytic platform that is capable of providing between 1.3x to 4x
speedups compared to running the analytics locally.
8 Conclusion
We presented LaSS, a serverless platform designed for latency sen-
sitive computations at the edge. LaSS uses queueing theory based
models to determine the container capacity needed by a latency
sensitive function to meet its deadlines. LaSS also ensures fair share
resource allocation when the system is overloaded and can reclaim
resources from over-provisioned functions using different recla-
mation policies. We implemented a prototype system on top of
Apache OpenWhisk. Experimental results indicate that our mod-
els can make accurate predictions of required capacity for latency
sensitive workloads, and when the system is overloaded each func-
tion will get its guaranteed fair share with our resource allocation
algorithm. We also show that deflation can lead to better resource
efficiency compared to termination when resource reclamation is
needed.

There are a number of directions in which to extend this work.
For example, we have only considered Poisson arrival and service
processes.We can generalize ourmodels to other inter-arrival/service
time distributions. Another direction for further investigation is to
take composition of serverless functions into consideration when
making scheduling and resource allocation decisions [20, 42], so
that functions that belong to the same application can be scheduled
in a coordinated manner.
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