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Logic locking is a prominent technique to protect the integrity of hardware designs throughout the integrated
circuit design and fabrication flow. However, in recent years, the security of locking schemes has been
thoroughly challenged by the introduction of various deobfuscation attacks. As in most research branches,
deep learning is being introduced in the domain of logic locking as well. Therefore, in this paper we present
SnapShot: a novel attack on logic locking that is the first of its kind to utilize artificial neural networks to
directly predict a key bit value from a locked synthesized gate-level netlist without using a golden reference.
Hereby, the attack uses a simpler yet more flexible learning model compared to existing work. Two different
approaches are evaluated. The first approach is based on a simple feedforward fully connected neural network.
The second approach utilizes genetic algorithms to evolve more complex convolutional neural network
architectures specialized for the given task. The attack flow offers a generic and customizable framework
for attacking locking schemes using machine learning techniques. We perform an extensive evaluation of
SnapShot for two realistic attack scenarios, comprising both reference combinational and sequential benchmark
circuits as well as silicon-proven RISC-V core modules. The evaluation results show that SnapShot achieves
an average key prediction accuracy of 82.60% for the selected attack scenario, with a significant performance
increase of 10.49 percentage points compared to the state of the art. Moreover, SnapShot outperforms the
existing technique on all evaluated benchmarks. The results indicate that the security foundation of common
logic locking schemes is build on questionable assumptions. Based on the lessons learned, we discuss the
vulnerabilities and potentials of logic locking uncovered by SnapShot. The conclusions offer insights into the
challenges of designing future logic locking schemes that are resilient to machine learning attacks.

CCS Concepts: • Security and privacy→ Security in hardware;

Additional Key Words and Phrases: IP protection, logic locking, deep learning, neuroevolution, RISC-V

1 INTRODUCTION
The Integrated Circuit (IC) design and fabrication flow is nowadays heavily steered by short time-
to-market and reduced design costs. This trend has led to a horizontal business model in which IC
design houses have to rely on third party Intellectual Property (IP) and outsourcing the fabrication
to off-site foundries. The involvement of untrusted parties in both IC design and fabrication has
raised countless security concerns, ranging from IP piracy to the insertion of malicious circuit
modifications known as hardware Trojans [29, 37].
One promising solution to ensure the integrity of ICs is known as logic locking [39]. The core

idea behind this technique is the insertion of additional logic into a gate-level netlist in order to
make the original IP design functionally dependent on a secret key. For example, XOR/XNOR gates
can be disseminated in the netlist in a way that the original functionality remains preserved only
if a correct key drives the additional gates. Since the key is only known to the original IP owner,
the IP design remains concealed while passing through the hands of untrusted external (layout)
designers and the foundry [3]. Hereby, the security of logic locking is based on the assumption that a
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malicious entity has to first uncover the correct activation key before being able to reverse engineer
and understand the design. Only thereafter, a meaningful hardware Trojan can be implemented.

In the past decade, a wide spectrum of logic locking schemes [28, 30, 39] as well as key-recovery
attacks [7, 8, 22, 33, 35, 40] have been introduced. However, the efficiency and applicability of
these attacks greatly depend on the assumed attack model. Most attacks in the past have relied
on the availability of a golden reference, i.e., an oracle with I/O access in the form of an activated
IC (available from the semiconductor market) or a set of golden I/O patterns (e.g., test vectors).
Based on this assumption, powerful oracle-guided attacks have been devised, such as Boolean
Satisfiability (SAT) based attacks [40] and path-sensitization [28].

Motivation: Several important observations indicate the diminishing applicability of oracle-
guided attacks. First, it has recently been shown that having physical access to an activated IC allows
the adversary to get hold of the secret key, even in the presence of a tamper-proof memory [27].
Secondly, it is possible to design hardware Trojans that leak the secret key to an adversary once
the IC is activated, regardless of the locking scheme or key protection mechanism [15]. These two
observations originate in the problem of storing and protecting the secret logic locking key on
the fabricated chip. Finally, the most powerful attacks, including SAT-based attacks, often rely on
having full access to an activated IC, including an open scan-chain; otherwise, most attacks become
infeasible [40]. Interestingly, this assumption is not realistic, since genuine IC vendors never leave
a scan-chain open or at least use some form of authentication [21]. These observations yield two
important conclusions: (𝑖) currently, the only realistic attacks on logic locking are oracle-less attacks,
since the oracle offers no advantage due to the mentioned pitfalls and (𝑖𝑖) the primary focus of
logic locking is shifting towards the protection of an IP design in its first production round before
an oracle is available. Despite the inherent difficulty of not having a golden reference, a powerful
oracle-less attack known as SAIL has recently been reported [7]. SAIL aims at recovering local
logic structures from a locked IC using Machine Learning (ML) without the necessity of oracle I/O
access. The success of SAIL emerges out of the simple, predictable and often deterministic changes
introduced by logic locking schemes. With the introduction of SAIL, a new ground for oracle-less
attacks on logic locking using ML techniques has been established.

Contributions: Inspired by SAIL, this work introduces SnapShot; a novel oracle-less attack
on logic locking that utilizes Artificial Neural Networks (ANNs) to directly predict key values by
analyzing "snapshots", i.e., excerpts of a locked gate-level netlist. The significance of SnapShot lies
in the following:

• SnapShot is applicable without a golden reference, thereby following a realistic attack scenario.
The adversary only needs access to the gate-level netlist or layout, upon which the netlist
can be extracted.
• The attack is applicable for any known gate-insertion-based scheme. The general applicability
of the SnapShot attack flow is provided by the representation used for processing netlists
with a machine learning model. This representation is capable of incorporating any kind of
netlist structures through customization (elaborated in Section 4.2).
• SnapShot is suitable for both combinational and sequential ICs. This is another feature
provided by the netlist representation format which is easily expandable to incorporate
flip-flops in sequential ICs (evaluated in Section 5).
• SnapShot has a linear time complexity with respect to the key length. This feature is given
by the nature of the attack: each key input can be processed separately.
• The attack flow can be customized for attack exploration: any supervised learning model can
be used for the training process irrespective of the locking scheme (Section 4.3).
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Based on the aforementioned advantages, the key contributions of this work can be summarized as
follows:
• The introduction of SnapShot: an oracle-less attack on logic locking that is the first of its kind
to directly predict a key value from a locked synthesized gate-level netlist thereby utilizing
neuroevolutionary and deep learning techniques. The applicability of SnapShot is showcased
using two approaches. The first one is based on a simple neural network with fully con-
nected layers. The second approach utilizes a neuroevolutionary mechanism to automatically
evolve Convolutional Neural Network (CNN) architectures with genetic algorithms, thereby
mitigating the complexity of manually drafting suitable CNN architectures. The evolved
networks are targeted towards maximizing the attack efficiency for specific benchmarks and
attack scenarios. SnapShot achieves an average activation key prediction accuracy of 82.60%,
thereby outperforming the state-of-the-art attack by 10.49 percentage points.
• A new representation of a selected subcircuit that is expandable to sequential ICs and adaptive
in terms of how much information is stored for a given circuit. This representation allows
the processing of any gate-insertion-based logic locking scheme and is well suited for the
training of ANNs.
• The evaluation of SnapShot on two realistic attack scenarios, including both commonly used
benchmarks and silicon-proven RISC-V processor modules. To the best of our knowledge,
the attack scenario based on a generalized set of netlists has not been evaluated before.
• An analysis of the emerging challenges in the design of logic locking schemes that are resilient
to ML-based key-guessing attacks.

The rest of the paper is organized as follows. Section 2 introduces the basic theoretical concepts used
throughout this work. Section 3 presents the related work. The SnapShot attack flow is presented
in Section 4, and the experimental evaluation and results are discussed in Section 5. A discussion on
the challenges of ML-resilient locking is given in Section 6. Limitations and research opportunities
are outlined in Section 7. Finally, Section 8 concludes the paper.

2 PRELIMINARIES
2.1 Logic Locking
Logic locking is used for protecting the integrity of ICs throughout the design and fabrication flow.
Usually, logic locking is implemented by inserting different types of key-bounded gates (known as
key gates) into a netlist. The key bit for each key gate is provided through the input pins of the
netlist. For example, the random insertion scheme known as EPIC disseminates XOR/XNOR gates
at random locations in the netlist [30]. XOR gates bound to a key bit 0 and XNOR gates bound to
a key bit 1 always buffer the second gate input, thereby preserving the original IC functionality.
One example is given in Fig. 1 (a). Here the key gate KG1 is added into the netlist. If driven by
the correct key bit (𝑘1 = 0), the signal 𝑠 is buffered through KG1, thereby preserving its original
value. The security foundation of this scheme lies in the difficulty of guessing whether an inverter
of the XNOR or XOR+INV gate belongs to the original circuit or not; otherwise, a simple removal
would be possible. In the past decade, a wide range of locking schemes has been introduced [39],
all relying on the insertion of some form of key-controlled redundant hardware into a netlist.

2.2 Logic Locking in the IC Design and Fabrication Flow
Logic locking introduces a secret key into the IC design and fabrication flow, as presented in
Fig. 1 (b). The IP owner (trusted regime) generates a gate-level netlist and uses a secret key to
lock the design with a selected locking scheme. Afterwards, the locked design proceeds in the
untrusted regime. This typically includes an external design house (for layout generation) and the
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Fig. 1. (a) Example Logic Locking and (b) Logic Locking in the IC Design and Fabrication Flow

foundry. After fabrication, the chip is returned to the owner for activation. Since the secret key is
only known to the IP owner, logic locking protects the design while in the untrusted regime.

Note that the external design house is sometimes not included in the flow since some IP owners
have internal front end (RTL and logic synthesis) and back end (layout generation) teams. However,
especially smaller companies often subcontract parts of the design services, e.g., back end, to an
external design house due to tight deadlines, cost reduction and the lack of necessary skills [36].
Moreover, the secret key induced by the locking mechanism is not required for a successful layout
design and chip production.

2.3 Terminology
The mentioned IC design flow includes the usage of netlists in different formats. In this work,
we often use the term resynthesized netlist. A netlist is regarded as resynthesized as it has to be
synthesized once more after logic locking is applied to maximize the structural changes induced
by a locking scheme. Therefore, it is important to differentiate a pre-resynthesized and a post-
resynthesized netlist. As shown in Fig. 1 (b), a locked pre-resynthesized netlist is a netlist which has
not been resynthesized after logic locking is applied. A locked post-resynthesized netlist is locked
and resynthesized. In the rest of the paper, we refer to a gate-level netlist as netlist.
In this work, schemes that are resilient against key-guessing (prediction) attacks of a machine

learning model, are referred to as ML-resilient. In the general case, schemes that are resilient against
guessing attacks performed by any system (human or artificial), are referred to as learning-resilient.
In this context, ML resiliency is a subset of learning resiliency.

2.4 Attack Model
As previously discussed, the effectiveness and applicability of different logic locking schemes
strongly depend on the assumed attack model. In this work, we assume the most restrictive attack
model from the attacker’s point of view: the adversary has only access to the locked netlist (directly
as a rogue external designer or by reverse-engineering the GDSII in the foundry). Since an activated
IC is not available, a comparison to golden I/O patterns is not possible. By definition, this attack
model forces an attacker to recover the key based on the least amount of information available.

Furthermore, it is assumed that the locations of the key inputs (pins) are known to the adversary.
Only the key itself remains a secret. These are commonly accepted assumptions regardless of the
availability of an oracle IC [3, 39, 40].

2.5 Deep Learning and Neural Networks
Artificial neural networks represent a general class of machine learning algorithms. In this work,
we exploit the capabilities of convolutional neural networks; one of the most significant networks
in the landscape of deep learning techniques [24]. CNNs are a specific type of neural networks
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Fig. 2. Architecture of a Convolutional Neural Network

which were initially designed for 2-dimensional convolutions, inspired by the biological process of
the visual cortex of animals [20]. Since their introduction, CNNs have successfully pioneered the
field of object classification and detection in the spectrum of deep learning. Their achievements
are further fueled by the increasing availability of fast computation and vast amounts of data. The
key enabling factor for their superior performance is their ability to extract meaningful features
by exploiting hierarchical data patterns, i.e., recognizing spatial and temporal correlation in data.
Moreover, CNNs are well suited for object detection in unstructured data such as images.
For this work, it is important to understand the very basic structure of a CNN. A general

CNN architecture blueprint is presented in Fig. 2. The input to the network is an image. The
output is typically a classification prediction (e.g., whether the key bit value is 0 or 1). The two
major components of the network include the feature extraction and the classification. The feature
extraction is based on the typical CNN layers that we refer to as internal layers (sometimes also
referred to as hidden layers). The classification part is built using a fully connected neural network.
The term "fully connected" implies that every neuron in the previous layer is connected to every
neuron of the next layer. In general terms, the fully connected layers are trained to classify images
based on the features extracted using the internal layers. The internal layers are typically a sequence
of two layer types: convolution and pooling.
Convolution layers extract features from the input image by detecting local conjunctions of

features from previous layers. The result of the convolution is typically further processed using
an activation function to increase the non-linearity. A commonly used activation function is the
Rectified Linear Unit (ReLU). Furthermore, pooling layers perform the down sampling of feature
maps, thereby progressively reducing the spatial size of the representation to reduce the amount of
data and computation in the network. The most common approach used in pooling is known as
max pooling.
After the feature extraction, the flattening layer converts the data into a 1-dimensional array

that is fed as input to the fully connected layers. These layers assemble a traditional multi-layer
network that use a softmax activation function in the final output layer. As mentioned before, the
internal layers extract high-level features of the input image. Based on these features, the fully
connected layers classify the input image into various classes. More details can be found in [19, 20].
Another important type of ANN is known as Multi-Layer Perceptron (MLP). An MLP is a

feedforward neural network which consists of multiple layers. An MLP takes flattened vectors
as inputs rather than 2D or 3D data (similar to the classification part in Fig. 2 (b)). In this work,
we apply a simple MLP with fully-connected layers and compare the results to the more complex
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CNNs. Even though MLPs are nowadays succeeded by the more efficient CNNs, they are still a
popular choice in machine learning for a variety of classification tasks.

Motivation for ANNs: In this work, it turns out that the problem of predicting a correct key bit
can be represented in the form of images that are suitable for processing with ANNs. The images
show a clear correlation between key values and recognizable netlist structures, especially offering
the potential for feature extraction using CNNs. Further justification is presented in Section 4.5
after introducing all relevant concepts.

2.6 Genetic Algorithms and Neuroevolution
Genetic Algorithms (GAs) belong to the class of evolutionary algorithms that represent population-
based meta-heuristic optimization techniques inspired by biological evolution [12]. The solutions
in a population compete based on their quality (fitness) that is evaluated using a fitness function.
Throughout multiple generations, solutions with a higher fitness are evolved by reapplying the
genetic operators (selection, crossover and mutation) to the current population. A key component
of GAs is the specific representation (encoding) of a solution as presented to the evolutionary
algorithm. This manipulable representation is referred to as genotype. The actual solution to a
problem, i.e., manifestation of the genotype is known as phenotype. An important feature of
evolutionary algorithms is their ability to work with black-box optimization problems, i.e., the
algorithms do not need any domain-specific knowledge to perform the optimization.

The evolution of neural networks by using evolutionary algorithms is referred to as neuroevolu-
tion [2]. In this case, the task of the evolutionary process is to automatically evolve CNN architectures
that are suitable for a selected problem domain. In general, neuroevolution can be used to evolve
the network weights, structure or both. In this work, the genotype denotes a series of rules for
constructing the CNN, while the phenotype represents a fully constructed CNN architecture. Note
that neuroevolution is only one of many Neural Architectural Search (NAS) methods available [13].
NAS belongs to AutoML; a research area that focuses on methods to make machine learning more
efficient and automated. More details are available in [14].

Motivation for neuroevolution: The reason for using neuroevolution in this work is twofold.
First, selecting a suitable CNN architecture used for feature extraction is a challenging task, since it
depends on the problem domain itself and often includes optimizing different hyperparameters.
By using GAs to automatically evolve the architecture, the neuroevolutionary approach facilitates
the exploration and selection of CNNs that are specifically drafted for the given problem domain.
Hereby, the evolution is focused on resolving the issue of finding a suitable number and type of
internal layers in the feature extraction component of the CNN. The reason why we focus on this
aspect of the architecture is that all other components can be set to standard values which are
often used in literature, while the selection of the internal layers highly depends on the problem
domain. Secondly, the evolution process drastically speeds up the architecture selection as we
assume a limited amount of time and resources to perform the task. Therefore, iterating through
all possible CNN architectures is not a viable option. Interestingly, this showcases an important
result: a potential attacker is able to efficiently attack locking schemes with SnapShot even without
specialized knowledge about designing CNN architectures in a limited amount of time and with
limited resources. Finally, by focusing on the architectural aspect of CNNs, we are able to learn
about the complexity of the underlying classification problem based on the evolved networks
(discussed in Section 5.6). Note that neuroevolution can be used for simple MLPs as well. However,
since MLPs tend to have only a few layers, we design and evaluate the MLP architectures manually.
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Fig. 3. SAIL Attack Flow

3 RELATEDWORK
Only a few oracle-less attacks have been reported so far. The first is the desynthesis attack [26].
Based on the observation that the locked and the original netlist should be similar in terms of the
number and type of gates, the attack resynthesizes the netlist with a random key. Afterwards, the
attack uses Hill Climbing search to find a key that yields a maximum similarity between the locked
and resynthesized netlist. However, this attack is not scalable for larger key lengths and presumes
a sound knowledge of the synthesis tool. Therefore, its efficiency for large-scale designs remains
uncertain. In comparison, SnapShot scales linearly with the key length.

The recently introduced redundancy attack reveals a novel vulnerability of logic locking schemes
based on identifying logic redundancies introduced by incorrect key bits [22]. The attack prunes
out the incorrect values of a key when it introduces a significant level of functional redundancy.
However, a recent work has devised a locking scheme that is resilient against this attack [23].
Therefore, we do not conduct a comparison to this attack. Note that SnapShot is also applicable to
the mentioned resilient locking since it is based on key gate insertion.
Another oracle-less attack is known as SWEEP [1]. This attack exploits the structural changes

induced during the synthesis process to extract correct key values. It works as follows. The attack
hard-codes both the correct and the incorrect key bit value for each key input based on a training
set of locked benchmarks. For each value of each key input, the attack reoptimizes the design
and performs a synthesis analysis. Based on the synthesis report, the attack identifies any design
features that are correlated to the correct key values. Finally, the same procedure is repeated for the
target netlist. Based on a comparison using a scoring algorithm to evaluate each design feature, the
attack identifies the correct key bits with a high confidence. However, this attack is not applicable
to XOR/XNOR-based locking, therefore we do not perform a comparison to this attack.

The recent oracle-less Topology-Guided Attack (TGA) is based on the intuition that basic func-
tions in a logic cone are typically repeated multiple times in a netlist [43]. These are referred to as
Unit Functions (UFs). In case a key gate is placed in an instance of a UF, the correct key bit value
can be recovered by searching through equivalent UFs that are constructed using all hypothesis
key values by self-referencing the given netlist. This attack is similar to our work in the sense that
it exploits the fact that limited XOR/XNOR-induced changes are mostly same for similar portions
of a netlist. To prevent TGA, the authors present a scheme in which either a key gate is placed in a
unique UF or all equivalent UFs are locked simultaneously. Both result in the TGA search being
unsuccessful. Note that even if this scheme is used, it does not affect the way a single key gate is
inserted. Therefore, the solution still exhibits the same vulnerabilities in terms of SnapShot.
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In recent times, several ML and Evolutionary Computation (EC) based attacks have emerged. The
BOCANet attack utilizes deep recurrent neural networks to compromise hardware obfuscation [35].
GenUnlock formulates logic locking as an optimization problem and utilizes genetic algorithms
to perform an attack [9]. Similarly, the particle swarm optimization guided attack uses EC to find
an approximate key that produces correct outputs in most cases [17]. Even though these attacks
utilize similar algorithmic models as SnapShot, they all depend on having access to input/output
observations taken from an activated IC. Therefore, these do not fall into the oracle-less category.
The most relevant attack for a comparison with SnapShot is SAIL [7]. SAIL is a structural

attack on logic locking that utilizes ML algorithms to retrieve local logic structures from the
locked post-resynthesized netlist (referred to as target netlist). The applied algorithms include a
support vector machine, random forest and a multi-layer neural network. The SAIL attack flow is
presented in Fig. 3. The attack strategy is as follows. Pre- and post-resynthesized locked designs
are provided as training data to train two different models: the Change Prediction Model (CPM)
and the Reconstruction Model (RM). Given a netlist subgraph (locality) extracted near the selected
key input, i.e., key gate, CPM predicts whether a structural change has occurred, i.e, whether the
synthesis tool has induces any changes around the inserted key gates. If a change is predicted,
RM is utilized to predict the pre-resynthesized subgraph, i.e., it reverses the changes of the logic
synthesis. Out of the reconstructed subgraph, the key value is determined based on the properties of
XOR-based locking: an XOR gate is inserted for key bit 0, and XNOR for a key bit 1 [7, 8].

Advantages of SnapShot: To understand the advantages of SnapShot, we need to analyze the
limitations of SAIL. The major comparison points are as follows:

• SAIL is only applicable to XOR-based locking, since it relies on its inherent security properties
(XOR bound to 0 and XNOR bound to 1). Therefore, it is not possible to utilize SAIL to predict
a key for schemes that do not rely on the mentioned XOR/XNOR property, such as a MUX-
based locking scheme. In comparison, due to the nature of the attack and the customizable
representation, SnapShot can be applied to a wide range of schemes and netlist structures.
Note that the actual prediction accuracy depends on the security foundation of the evaluated
locking schemes, yet the applicability is ensured.
• In essence, SAIL learns to reconstruct the synthesis changes to predict the original netlist struc-
ture. Therefore, the key prediction in SAIL is only possible for reconstructed or unchanged
netlist localities. This implies that the success of SAIL heavily depends on the complexity of
the synthesis procedure that is used after logic locking is applied. Consequently, the attack
success depends on having access to the original synthesis tool that was used in the design
flow of the netlist under attack, thereby introducing another obstacle for the adversary. In
comparison, SnapShot allows a direct prediction of the key bit values based on the provided
netlist localities, since the attack is using only post-resynthesized netlists. Therefore, the
direct prediction enables a simpler and more flexible attack vector for an adversary.
• Finally, SAIL depends on training two different models (CPM and RM), while SnapShot
includes the training of only one model, thereby offering another advantage for an adversary.
Even with a simplified learning model, SnapShot achieves a significant improvement in the
key prediction accuracy.

4 THE SNAPSHOT ATTACK
The objective of SnapShot is the immediate prediction of a key bit value based on the extracted
locality (subgraph of gates) around each key gate. The reasoning to this attack is as follows. As per
attack model, the adversary is aware of the exact locations of all key inputs. For each key input, the
exact key gate (or structure) can be identified by simply following the key input signal. This can be
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Fig. 4. SnapShot Attack Flow

repeated for each bit of the key individually. For XOR/XNOR locking schemes, the key gate is the
first gate that is connected to a given key input. Since current gate insertion-based locking schemes
only induce limited local changes to the netlist [7], it is possible for the underlying neural network
to predict which key bit value is expected for a selected locality around a specific key gate.
The SnapShot attack flow is presented in Fig. 4. The input of the flow includes a target netlist,

the number of samples used for the data generation (𝑁 ) and the key length (𝐾 ). The target netlist is
a locked and resynthesized netlist (see Section 2.3 for details). The final output of the attack is the
predicted activation key for the target netlist. The flow consists of four stages: setup, extraction,
ANN design and deployment. In the following, all steps are discussed in detail in the given order,
thereby referencing the flow in Fig. 4.

4.1 Setup
The setup includes the preparation of a data set upon which a training set is extracted in the next
stage (Fig. 4 (step 𝑖)). First, it is important to understand the difference between these two sets. The
data set represents a set of locked benchmark netlists, i.e., a set of post-resynthesized netlists locked
with a selected locking scheme. The training set denotes the actual labeled localities in the form of
vectors that are extracted from the data set for each key input of every benchmark (explained in
the next stage). The setup can be configured to target two realistic attack scenarios: the Generalized
Set Scenario (GSS) and the Self-Referencing Scenario (SRS).

GSS: In GSS, the adversary tries to predict the correct key for a locked target netlist using an ML
model that is trained based on the extracted data from a generalized data set. The generalized data
set is generated by locking a large number of other (different from target) netlists with random
keys with the selected scheme. Note that the generalized data set does not contain the target netlist
and that the netlists can implement any functionality. Each netlist, out of the 𝑁 selected netlists in
the generalized set, is locked with a single key of length 𝐾 . After locking, all locked netlists are
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Fig. 5. Example: Netlist Transformation

resynthesized, resulting in 𝑁 locked and resynthesized netlists. These are used to train the model
and attack the target. The reasoning behind GSS is that in a real-life attack, an adversary can use
any available circuits (e.g., open-source or in-house designs) to train the model. To the best of our
knowledge, this scenario has not been addressed in existing literature so far.

SRS: In SRS, instead of using other netlists, the adversary can create a data set by relocking, i.e.,
self-referencing, the locked target netlist with additional keys. This is performed by copying the
target netlist 𝑁 times and relocking all 𝑁 copies with separate keys of length 𝐾 . Finally, the 𝑁
locked netlists are resynthesized. SRS implies that each relocked netlist has two sets of key inputs:
the original target key inputs under attack that are same for every netlist and the additional key
inputs from the relocking phase that are different for every netlist. Afterwards, the additional key
inputs of the generated set are used to train the ML model to predict the key of the target netlist. In
both attack scenarios, the training is done based on a set of locked netlists. However, in GSS the set
consists of a variety of different designs, while in SRS it consists of many copies of the target netlist.
Nevertheless, SRS has the advantage that an adversary does not need to possess other netlists to
train the ML model and that the training is based on data that is closely related to the actual target.
The latter has a positive impact on the prediction capabilities of SnapShot, as discussed in Section 5.

Transformation: In both GSS and SRS, we perform one essential step after the resynthesis: the
netlist transformation. This step ensure the translation of the synthesized netlists into a generic
technology-independent format. We perform this step by instructing the underlying synthesis
tool to map the design to a generic technology library and store it using plain Verilog. When
storing, the synthesis tool transforms each technology cell into its equivalent Boolean function.
This function is represented using simple combinational assignments in Verilog. These assignments
are parsed, transformed into three-address code and finally stored using primitive Verilog gates.
An example transformation for the sum operation (output S) of a Full Adder (FA) is shown in Fig. 5.
First, the output S of the technology-dependent FA is written out as a Verilog assignment. Finally,
the Verilog expression is transformed into primitive Verilog gates. Therefore, the resulting file is a
technology-independent gate-level netlist.

For logic synthesis and mapping, we utilize the Synopsys Design Compiler and its accompanying
generic technology library. Being technology-independent has the advantage of not specializing
the attack for a particular technology node, since using a specific library can negatively influence
the generalization of the approach. Moreover, an adversary can always resynthesize a design with
a generic library regardless of the underlying technology.

The transformation step offers one more feature. Since the Verilog assignments can be processed
in the form of three-address code, the transformation step enforces that every gate in the resulting
netlist has a maximum of two inputs. Only BUF and INV gates have one input. This property is
further utilized in the extraction stage of SnapShot.

Table 1. Locality Vector Encoding

Gate Type NOT AND NAND OR XOR NOR XNOR BUF FF
Code 1 2 3 4 5 6 7 8 9
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Algorithm 1 LVE: Locality Vector Extraction
Input: Locked Generic Netlist (𝑁𝑒𝑡 ), Backward Path Depth (𝐷𝑏 ), Forward Path Depth (𝐷𝑓 ), Fan-In (𝐹𝑖𝑛 ), Fan-Out (𝐹𝑜𝑢𝑡 ),

Encoding Table (𝐸) and Activation Key (optional) (𝐾𝑎𝑐𝑡 )
Output: Set of Locality Vectors (𝐿)
1: 𝐿 ← [∅] // Prepare locality vector set
2: 𝐾 ← |𝑁𝑒𝑡 .𝐾𝑖𝑛 | // Length of key input
3: 𝑇 ← {𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑, 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 } // BFS type

4: for 𝑖 = 0 to 𝐾 do
5: 𝐾𝐺𝑖 ← GateConnectedTo(𝑁𝑒𝑡 .𝐾𝑖𝑛[i])
6: 𝐺𝑖 ← InputGatesOf(𝐾𝐺𝑖 )[1]

7: /* Extract values */
8: 𝑙𝑏 ← BFS(𝑇 .𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝐺𝑖 , 𝐸, 𝐷𝑏 , 𝐹𝑖𝑛 )
9: 𝑙𝑘𝑔 ← 𝐸[Type(𝐾𝐺𝑖 )]
10: 𝑙𝑓 ← BFS(𝑇 .𝐹𝑜𝑟𝑤𝑎𝑟𝑑,𝐾𝐺𝑖 , 𝐸, 𝐷𝑓 , 𝐹𝑜𝑢𝑡 )

11: /* Merge values */
12: 𝐿 [𝑖 ] ← {𝑙𝑏 , 𝑙𝑘𝑔, 𝑙𝑓 }

13: /* If 𝐾𝑎𝑐𝑡 given: label the locality */
14: if 𝐾𝑎𝑐𝑡 ! = {∅} then
15: 𝐿 [𝑖 ] ← {𝐾𝑎𝑐𝑡 [𝑖 ], 𝐿 [𝑖 ] }
16: end if
17: end for
18: return 𝐿

4.2 Extraction
Once the data set is prepared, the next step is to assemble the training set (Fig. 4 (step 𝑖𝑖)). This
set consists of a large number of labeled localities. Remember that a locality is simply a subgraph
around a selected key gate that is connected to a particular (1-bit) key input. The extraction of
the localities is not uniquely defined, i.e., a variety of extraction strategies are viable. However, a
selected strategy must ensure that all necessary information that is crucial for the ANN learning
and prediction process is captured in the extracted representation of a locality. This information
includes the number of gates, the gate types and their relationship (how the gates are connected).

Locality Vector: As specifically CNNs work well with unstructured image data, it is advanta-
geous to represent all subgraphs in a form that can be translated into images. Hereby, the prediction
problem is represented as the classification of the extracted image (locality) as key bit 0 or 1. For
this purpose, we propose a locality vector representation. A locality vector is a sequence of numbers
representing the extracted subgraph. The vector reflects the actual netlist subgraph in the following
way. Each entry in the vector represents a single location in the netlist. A location can be filled
by a single gate or remain empty (no gate present). The actual value of the entry simultaneously
determines two properties of a location: the existence of a gate on that location and the gate type.
These properties are defined by a selected encoding of the gate types. We selected the encoding in
Table 1. Note that this encoding includes all possible primitive gate types that can occur in a design.
A particular value uniquely identifies the gate type. The existence of a gate is encoded indirectly:
an empty location is marked with the value 0. If the value is greater than 0, the location is filled by
a gate of a particular type.

Extraction Procedure: So far, we have discussed how the locality vector is able to store infor-
mation about the existence of particular gates as well as their types. The next step is to understand
how the relationship of the gates is stored. The way the gates are connected is reflected by the
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position of each value in the vector. This means that based on the location of a value in the vector,
we can determine its input and output gates. As before, encoding the relationship in the position is
not uniquely defined. For this purpose, we define the Locality Vector Extraction (LVE) procedure
shown in Algorithm 1. LVE works as follows. The main LVE loop repeats for every (1-bit) key
input (line 4). In the first step (line 5), LVE finds the first gate (𝐾𝐺𝑖 ) connected to the currently
observed key input (𝑁𝑒𝑡 .𝐾𝑖𝑛 [𝑖]), as well as the first non-key input connected to 𝐾𝐺𝑖 (𝐺𝑖 , line 6). In
the second step, LVE extracts three independent sections of a locality vector. The first section is
extracted by performing a Breadth-First Search (BFS) starting from 𝐺𝑖 towards the netlist inputs
(backward path, line 8). The backward BFS starts from𝐺𝑖 since we already know that the first input
of 𝐾𝐺𝑖 is a key input. The second section extracts the encoding of the "center" gate 𝐾𝐺𝑖 by looking
up the encoding table 𝐸 (line 9). Note that 𝐸 is defined in Table 1. The third section is extracted by
performing a BFS starting from 𝐾𝐺𝑖 in the direction of the netlist outputs (forward path, line 10).
Finally, all three sections are concatenated to form a locality vector (line 12). In case an activation
key (𝐾𝑎𝑐𝑡 ) is provided, each locality is labeled with its respective activation key-bit by prepending
the value to the locality vector (lines 14-16). 𝐾𝑎𝑐𝑡 is an optional argument since LVE can be used to
generate a training set (labeled vectors) as well as a test set (unlabeled vectors).
The BFS used in LVE for the extraction of the backward and the forward path is shown in

Algorithm 2. The BFS receives the following inputs: the BFS type (𝑇𝑏𝑓 𝑠 ) defining whether a backward
or forward search is performed, the root gate (𝑅), the encoding table (𝐸), the maximum allowed
search depth for the backward (𝐷𝑏 ) and forward (𝐷 𝑓 ) path, the fan-in (𝐹𝑖𝑛) and fan-out (𝐹𝑜𝑢𝑡 ) size
per gate. Note that the depths and fan-sizes are each represented by one variable (𝐷 and 𝐹 ). The
algorithm itself is a standard BFS with variable properties as discussed in the following.

The search direction is selected by 𝑇𝑏𝑓 𝑠 . For a backward search, the neighbor gates are all input
gates of the currently processed gate 𝐺𝑖 (line 10). For a forward search, the neighbor gates are all
output gates of𝐺𝑖 (line 12). The algorithm assumes a fixed number of possible inputs (for backward
BFS) or outputs (for forward BFS) per gate. This property is defined by 𝐹 . As the transformation in
the setup stage of SnapShot ensures that each gate has a maximum of two inputs (see Section 4.1),
for a backward BFS, 𝐹𝑖𝑛 is set to 2 (LVE line 8). However, a single gate can have any number of
possible output gates connected to it. Therefore, for a forward BFS, the number of output gates
is defined by 𝐹𝑜𝑢𝑡 (LVE line 10). Fixing the number of inputs/outputs ensures that each locality
has the same length regardless of the actual netlist subgraph it represents. In case a single gate
deviates from the fixed value, the BFS algorithm creates additional empty gates (lines 15-17). The
encoding for an empty gate is the value 0. Finally, the BFS terminates when the selected search
depth is reached (lines 34-36).
The actual locality vector 𝑙 is assembled by extracting the encoding for each visited neighbor

(lines 25-29). Hereby, the encoding of the currently processed neighbor 𝑁 𝑗 is either prepended (for
backward BFS) or appended (for forward BFS) to 𝑙 . The reason for using different insertion methods
depending on𝑇𝑏𝑓 𝑠 is to reflect the topological order of the gates in the locality vector. If we assume
that the key gate is placed in a central position in 𝑙 , then gates that are closer to the netlist inputs
are placed towards the left end of 𝑙 . Consequently, gates that are closer to the netlist outputs are
placed towards the right end of 𝑙 .

One example extraction for a single 1-bit key input (marked red) is shown in Fig. 6. The parameters
are set as follows: 𝐷𝑏 = 3, 𝐷 𝑓 = 2, 𝐹𝑖𝑛 = 2 and 𝐹𝑜𝑢𝑡 = 3. Using the encoding in Table 1 and the
proposed LVE procedure, one labeled locality vector is extracted in the format [𝐾𝑎𝑐𝑡 , 𝑙𝑏, 𝑙𝑘𝑔, 𝑙𝑓 ]. The
example also visualizes empty gates (marked with 0).
This representation has the following beneficial properties. It is complete in the sense that all

types of subgraphs can be represented by traversing the netlist. The amount of data stored in one
vector can be adapted by adjusting the depth of the backward and forward path as well as the

2020-12-01 02:24. Page 12 of 1–25.



on Emerging Challenges and Solutions in Hardware Security
preprint - accepted by ACM JETC Special Issue

Challenging the Security of Logic Locking Schemes in the Era of Deep Learning 13

Algorithm 2 BFS Extraction Procedure
Input: BFS Type (𝑇𝑏𝑓 𝑠 ), Root Node (𝑅), Encoding Table (𝐸), Max Depth (𝐷) and Fan-In/Out (𝐹 )
Output: Locality Vector (𝑙 )
1: 𝑙 ← {∅}; 𝑄 ← [∅] // Prepare locality vector and FIFO queue
2: 𝑑𝑜𝑛𝑒 ← 𝐹𝐴𝐿𝑆𝐸;𝐷𝑖 ← 1 // Prepare control variable and set current depth
3: 𝑄.Enqueue(R) // Add root gate
4: 𝑅.Visited← 𝑇𝑅𝑈𝐸 // Set root as visited

5: while !IsEmpty(𝑄) && !𝑑𝑜𝑛𝑒 do
6: 𝐺𝑖 ← 𝑄.Dequeue()
7: 𝑁 ← [∅]

8: /* Returns {∅} for empty gate & primary IOs */
9: if 𝑇𝑏𝑓 𝑠 ==𝑇 .Backward then
10: 𝑁 ← InputGatesOf(𝐺𝑖 )
11: else
12: 𝑁 ← OutputGatesOf(𝐺𝑖 )
13: end if

14: /* Ensures: gate has 𝐹 ins or outs; Note: if |𝑁 | == 𝐹 , no empty gate is added */
15: for 𝑗 = |𝑁 | to 𝐹 do
16: 𝑁 [ 𝑗 ] ← NewEmptyGate()
17: end for

18: /* Visit neighbors */
19: for 𝑗 = 0 to 𝐹 do
20: 𝑁 𝑗 ← 𝑁 [ 𝑗 ]
21: if !𝑁 𝑗 .Visited then
22: 𝑄.Enqueue(𝑁 𝑗 )
23: 𝑁 𝑗 .Visited← 𝑇𝑅𝑈𝐸

24: /* Extract value */
25: if 𝑇𝑏𝑓 𝑠 ==𝑇 .Backward then
26: 𝑙 .Prepend(𝐸[Type(𝑁 𝑗 )])
27: else
28: 𝑙 .Append(𝐸[Type(𝑁 𝑗 )])
29: end if
30: end if
31: end for

32: /* Check if max depth reached */
33: 𝐷𝑖 ← 𝐷𝑖 + 1
34: if 𝐷𝑖 == 𝐷 then
35: 𝑑𝑜𝑛𝑒 ← 𝑇𝑅𝑈𝐸

36: end if
37: end while
38: return 𝑙

fan-in/out size. Finally, the representation is expandable to sequential circuits by simply adding an
encoding for a flip-flop.
To verify that no information about the subgraph is lost, we can perform a simple test. By

"reversing" the LVE procedure on a vector using the selected parameters, it is a trivial task to
reconstruct the representing netlist subgraph. Therefore, it stands to reason that no information
loss occurs. However, it is important to consistently follow the same deterministic steps in the
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Fig. 6. Example: Localities Extraction and Representation

extraction. Let us consider the 𝑙𝑏 section of the locality at 𝐷𝑏 = 3 in Fig. 6. It is not relevant
whether the extraction order is 𝑙𝑏 = [5, 1, 0, 3] or 𝑙𝑏 = [3, 0, 1, 5] as long as the same order is applied
consistently for all sections and all localities.

The proposed locality representation gives SnapShot one more advantage: universal applicability.
For example, in MUX-based locking, a MUX is simply a collection of gates that can be represented
with localities or the complete MUX can be encoded with a separate value. Moreover, the described
setup and extraction stage of SnapShot can be used for any attack that exploits information from
the netlist subgraphs.

4.3 ANN Design
In this stage, a suitable ANN model is generated based on the prepared training set (Fig. 4 (step
𝑖𝑖𝑖)). In this work, we focus on two neural network types: simple fully connected MLPs and more
complex CNNs. Note that any ML model can be used at this stage. Due to the relatively simple
structure of MLPs, we define the suitable MLPs manually (Section 5.2). On the other hand, the
architecture of CNNs is evolved and trained as discussed in the following. The CNN evolution
contains four important components: the genetic algorithm, the genotype, the phenotype and the
fitness function (see Fig. 7).

Genetic Algorithm: GAs are a suitable tool for black-box optimization problems. In SnapShot,
the GA is utilized to automatically find a fitting CNN feature extraction architecture for the given
classification problem, thereby releasing the attacker from having to manually draft a suitable CNN.
The GA internally works with a population of solutions to a specific problem. The solutions are
adapted through the application of the genetic operators. Fig. 7 visualizes the exact operators (bit-
flip mutation, two-point crossover and tournament selection) that are used in the implementation
as well. This manipulation results in advancing the quality of the solutions through multiple
generations (Fig. 7 (step 𝑖)). To utilize a GA, it is necessary to define how a solution is represented
(genotype), decoded (phenotype) and how it is evaluated (fitness function).

Genotype:As explained in Section 2.5, a complete CNN architecture consists of two components:
the feature extraction and the classification. These components are defined by a set of properties
(e.g., number of layers, layer types, input/output dimensions and others). Some of these properties
must remain fixed to provide a foundation for valid CNN architectures. Therefore, we define a fixed
frame that includes the following: the first convolutional (input) layer and the last two layers (a fully
connected layer and the final output layer). Note that flattening is applied before the fully connected
layer. This frame is based on common CNN architectural features, where the first internal layer is
always a convolutional layer and the classification is typically assembled of two fully connected
layers. On the other hand, the variable properties are the ones being evolved by the GA. These include
the number and type of internal layers. The type includes max pooling and 2D convolution. These
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Fig. 7. CNN Architecture Evolution with GA

properties must be represented with a suitable genotype, i.e., the encoded representation of a
concrete solution as presented to the GA. For SnapShot, the genotype is encoded as a bitstring of
size 2 · 𝐿, where the first 𝐿 bits denote the presence of the individual internal layer ([𝑥𝑝1 , . . . , 𝑥

𝑝

𝐿
])

and the last 𝐿 bits the layer types ([𝑥𝑡
𝐿+1, . . . , 𝑥

𝑡
2𝐿]), as shown in Fig. 7 (step 𝑖𝑖). For example, if

𝑥
𝑝

𝑖
= 1, the 𝑖-th internal layer is present and its type is defined by 𝑥𝑡

𝑖+𝐿 . Using this genotype, we fix
the classification component and evolve the architecture of the feature extraction component.

Phenotype: The discussed genotype is just a blueprint, i.e., a set of instructions defining how
an architecture is assembled. Before a solution is evaluated, its genotype must be decoded into a
concrete CNN instance, i.e., the phenotype. This is done by processing the genotype from left to
right, thereby placing the existing internal layers between the fixed layers according to the defined
layer type, as presented in Fig. 7 (step 𝑖𝑖𝑖). The given input and output dimensions of the fixed layers
are selected based on the input image size and the used hyperparameters (explained in Section 5).

Fitness Function: Once the genotype is decoded into a concrete CNN architecture, the fitness
evaluation can be performed (Fig. 7 (step 𝑖𝑣)). The CNN is trained based on the training set prepared
in the extraction stage of the SnapShot attack flow. A single CNN instance is trained to classify the
training localities into 0 or 1 bit values for a selected amount of epochs. The number of epochs
equals the number of times the complete training set is fed into the CNN. To evaluate the fitness,
we define the performance measure of the CNN prediction as the Key Prediction Accuracy (KPA).
The KPA equals the percentage of correctly predicted key bits for a specific netlist, where each
key bit input is predicted individually. For example, a KPA of 70% indicates that 70% of the bits
of a single key are correctly predicted. This fitness function steers the evolution mechanism to
evolve internal CNN layers which maximize the feature extraction process and result in higher
classification accuracy for this particular problem.
Once the KPA for a particular CNN architecture is calculated for the training set, it is assigned

to the respective solution in the GA population. After a selected number of generations, the GA
terminates and returns the best solution (architecture), i.e., the one with the highest KPA. This final
solution is further used in the next stage of SnapShot.

4.4 Deployment
Once the ANN architectures are fixed, the ANN prediction model (the best available trained
CNN architecture or defined MLP) is deployed to predict the key for the locked target netlist
(Fig. 4 (step 𝑖𝑣)). To perform the prediction, the target netlist is transformed into a generic netlist
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(a) 0-Labeled Localities Image
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(b) 1-Labeled Localities Image

Fig. 8. Vector Images for 0 and 1 Key Bit Values

(same procedure as described in Section 4.1) and its localities are extracted into a test set. The
only difference to a training set is that now the localities are not labeled (since the correct key
is unknown). Afterwards, each locality is presented to the prediction model to predict its key bit
value, resulting in the final SnapShot output: the predicted key. Since each key bit value can be
predicted (attacked) independently, SnapShot is easily scalable to larger designs.

4.5 Application of ANNs
To justify the selection of ANNs (in particular CNNs) for this particular problem, we present the
following example. We perform the setup stage of SnapShot for a randomly selected circuit locked
with EPIC using 64-bit keys. In the next step, we extract 400 localities for both labels 0 and 1, using
a pre-selected depth resulting in vectors of length 400. Finally, all 0 and 1 localities are stacked
horizontally to form two images: the first one represents all 0-labeled vectors, and the second
represents all 1-labeled vectors. The result is shown in Fig. 8. Through careful examination, it is
possible to determine repeating patterns specific to each key bit value. Example patterns are marked
in both images with dashed lines. In this case, the difference, i.e., the correlation between the key bit
values and the represented images is clearly recognizable (even by a human). Since extracting and
learning correlation in data is a key feature of CNNs, it stands to reason that CNNs are a suitable
choice for this classification problem.

5 EVALUATION
5.1 Experimental Setup
Benchmarks: For evaluation, three open-source benchmark sets have been selected (Table 2):
ISCAS’85 [6], ITC’99 [11] and a set of modules selected from the 64-bit RISC-V processor core
Ariane [41]. Note that ITC’99 contains sequential circuits with Flip Flops (FF). We evaluated both the
generalized set scenario and the self-referencing scenario. SRS is relevant for comparing SnapShot
to the state-of-the-art attack SAIL, while GSS has not been evaluated before. The GA is used for
evolving CNNs for each benchmark and attack scenario separately.
Environment: The scripting is done using two Python frameworks: Keras/Tensorflow for deep

learning and DEAP for evolutionary computation. The evaluation was performed on an Intel Core
i5 CPU@3.2 GHz with 16 GB of RAM and a single Nvidia GeForce RTX 2080 Ti graphic card.
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Input Formatting: The localities are extracted using the described LVE procedure for the
following parameters: 𝐷𝑏 = 5, 𝐷 𝑓 = 5, 𝐹𝑖𝑛 = 2, 𝐹𝑜𝑢𝑡 = 3 and the encoding from Table 1. The
extracted localities are trimmed to a length of 400 (removing excess empty locations) and normalized
to values between 0 and 1. The MLP model uses these 1D vectors as input. To process the localities
with the CNN model, the data is reshaped to the dimension 20𝑥20𝑥1. The reshaping is done with
the standard methods provided by the Python library numpy.

Locking Scheme: The EPIC scheme has been selected to evaluate the effectiveness of SnapShot.
The reasoning is twofold. First, EPIC is a superset of other XOR/XNOR-based locking schemes,
as other methods insert gates with a more selective choice of locations compared to a random
insertion, thereby inserting the same key gates as EPIC. Therefore, the only differentiation to other
schemes is the location selection. For example, SLL inserts key gates based on their relationship to
hamper path sensitization attacks [28]. However, even if SLL performs a selective insertion, the key
gates itself are identical to the ones in EPIC. Moreover, a random selection can inherently include
all variations of location selections. The second reason is the generalization of the attack; a more
selective insertion can only lead to more information leakage compared to a fully random choice.

Performance Measure: We evaluate the ANN prediction results using the key prediction
accuracy (KPA) as defined in Section 4.3.

5.2 MLP Model Setup
As discussed earlier, MLPs typically consist of only a few hidden layers; otherwise the amount
of trainable parameters easily explodes. We evaluated multiple MLP architectures manually by
varying the number of hidden layers as well as the number of units per layer for both SRS and GSS.
All layers are fully connected. The input layer consists of 400 units (same as locality length). The

Table 2. Benchmark Circuits Used for Evaluation

(a) ISCAS’85 Benchmarks

IC #Ins #Gates #Outs
c1355 41 546 32
c1908 33 880 25
c2670 233 1193 140
c3540 50 1669 22
c5315 178 2307 123
c6288 32 2416 32
c7552 270 3512 108

(b) ITC’99 Benchmarks

IC #Ins #Gates #FFs #Outs
b15 37 6931 447 70
b21 34 7931 494 22
b22 34 12128 709 22
b17 38 21191 1407 97
b18 37 49293 3308 30
b19 47 98726 6618 40

(c) Ariane RISC-V Modules

IC #Ins #Gates #Outs
iscan 32 240 139

commit 985 1584 417
brunit 342 1655 328
decoder 518 2169 362
pcselect 521 3333 128
brpredict 814 4669 333

alu 206 7412 65

Table 3. ANN Hyperparameters

(a) MLP

Parameter Value
Layer Types Dense

Input Layer Act. Func. ReLU
Hidden Layer Act. Func. ReLU
Output Layer Act. Func. Softmax
GSS #Units per Layer 400x1000x256x2
SRS #Units per Layer 400x512x128x2

Batch Size 128

(b) CNN

Parameter Value
Input/Conv./Dense Layer Act. Func. ReLU

Output Layer Act. Func. Softmax
Loss Functions Sparse Cat. Cross Entropy

Input/Conv. Layer Kernel Size 3x3
# Filters in Input/Conv. Layer 64/128
# Units in Dense/Output Layer 128/2

Pool/Stride Size 2x2/1
Batch Size 128

Optimizer/Learning Rate/Beta_1/Beta_2 Adam/0.001/0.9/0.999
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output layer consists of two outputs (one per key bit value). After the exploration, we fixed one
architecture for each scenario based on the best performance achieved in the tuning phase. All MLP
hyperparameters are listed in Table 3 (a). In this case, due to no evident performance difference,
the same MLP architecture is applied to all benchmarks in SRS. The final networks are trained for
100 epochs before deployment.

5.3 CNN Evolution Setup
CNN Architecture: The CNN evolution is performed as discussed in Section 4.3. All other fixed
hyperparameters are listed in Table 3 (b). We selected the standard parameters that are commonly
used in literature for modern CNNs [32, 34]. Dropout is not used since overfitting has not been
observed in the evaluation. The maximum number of internal layers is limited to seven. This value
is selected through preliminary testing with up to fourteen layers. Moreover, the number of layers
in the evolved CNNs (discussed in Section 5.6) tends to be much lower than seven, since a lower
number of internal layers results in more efficient networks. This confirms that seven layers are
sufficient for the architecture exploration for this particular problem.

GA Setup: All relevant GA parameters are listed in Table 4. The GA parameters are selected
based on a preliminary tuning phase as well as commonly used parameters and operators. However,
both the notion and the implementation of all GA and CNN parameters are beyond the scope of
this work and more details can be found in [2, 12, 20].

Stopping Criterion: In GA, every CNN architecture is trained for a selected number of epochs
until the stopping criterion for training is reached. In order to tune the number of epochs to an
amount that is sufficient for the CNN to converge for all benchmarks, we trained a randomly selected
architecture for each benchmark and attack scenario until an upper-limit of 80% KPA is reached
(Fig. 9). The reason why this limit has been selected is to extract the average amount of epochs
necessary for all CNNs to converge to a reasonable KPA. Based on the results, 80% upper-bound
is sufficient to capture the learning asymptote and filter out fitter solutions. Consequently, the
stopping criterion is set to 44 epochs. Note that this value is used in the training of CNNs during
the GA exploration phase where it is not necessary to train the CNN instances to their limits. Once
the best network is selected, the number of epochs can be increased before deployment.

5.4 Results: Generalized Set Scenario
For GSS, we trained the constructed MLP and the evolved CNNs using a training set compiled of all
ISCAS’85 and ITC’99 benchmarks mentioned in Table 2. Each training benchmark is locking 1,000
times with 64-bit keys, resulting in a total of 832,000 training localities. The test set consists of all

Table 4. GA Parameters

Parameter Value
GA Alg. Type Generational
Population Size 10
Representation Bitstring
Generations 20

Fitness KPA
Epochs 44

Mutation Op. Bit-Flip
Mutation Prob. 0.1
Crossover Prob. 0.9
Selection Op. Tournament (3)
Crossover Op. Two-Point

Gen. of Initial Population Random
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Fig. 9. Convergence Graph
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Fig. 10. Attack Evaluation for the Generalized Set and Self-Referencing Scenario

selected Ariane modules (Table 2 (c)), each locked 1,000 times with random 64-bit keys; resulting in
a total of 448,000 test localities (64,000 per target).
The average test KPA (Fig. 10 (b)) across all modules for GSS is 57.71% for MLP, and 61.56% for

CNN, with a maximum of 77.55% for the 𝑝𝑐𝑠𝑒𝑙𝑒𝑐𝑡 module (Fig. 10 (a)). This indicates the feasibility
of learning from other locked netlists to predict a key of a previously unseen netlist with an average
increase in accuracy of up to 11.56 percentage points compared to a random guess. Compared to
MLP, the CNN model offers a relatively small performance gain of 3.85% percentage points on
average. In general, GSS offers one advantage over SRS; only one universal training set needs to be
assembled regardless of the target, i.e, the relocking of the target netlist is avoided.

5.5 Results: Self-Referencing Scenario
SRS describes a more powerful scenario; learning and predicting on the same locked netlist. We
locked all ISCAS’85 and ITC’99 benchmarks shown in Table 2 with 64-bit (target) keys. The training
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set is generated by relocking the already locked benchmarks repeatedly 1,000 times with 64-bit
keys, resulting in 64,000 training localities per benchmark and iteration instance.

The achieved average test KPA for the SnapShot MLP and CNN models is shown in Fig. 10 (c) in
comparison to the state-of-art SAIL attack. The average KPA of CNN-SnapShot is 82.60%, resulting
in a significant improvement of 10.49 percentage points compared to SAIL, as shown in Fig. 10 (d).
Note that this average is based only the ISCAS’85 benchmarks to be consistent with the SAIL
evaluation. Moreover, SnapShot outperforms SAIL for all evaluated benchmarks. Another important
observation is that SnapShot achieves a minimum KPA of 78.43% (for 𝑐2670), whereas SAIL achieves
a KPA of 55.83% (for 𝑐1355); only 5.83 percentage points more than a random guess. Therefore,
the evolved CNNs are able to achieve a high KPA regardless of the circuit type. However, circuits
with more regular structures, such as 𝑐6288, result in a higher KPA since additional logic is easier
detected in repeating structures.

TheMLP-based approach in SnapShot achieves a relatively low average KPA of 68.00% (Fig. 10 (d)),
with lower performance values for almost all benchmarks compared to SAIL, and a lower perfor-
mance compared to all CNN-based KPAs.

To demonstrate the scalability of SnapShot, in addition to the values in (Fig. 10 (c)), we performed
another evaluation of SnapShot-based MLP and CNN attacks using larger sequential benchmarks.
As shown in Fig. 10 (e), both SnapShot variants result in consistently high KPA values (above 71.64%
for MLP and 79.92% for CNN). However, similarly to the previous evaluation, the evolved CNNs
outperform the MLP model for all benchmarks. The total average KPA across all combinational
(ISCAS’85) and sequential (ITC’99) circuits using SnapShot is 71.57% for MLP and 81.67% for the
CNNs (Fig. 10 (d)). Interestingly, the CNN approach achieves similar performance values regardless
of the circuit type. This strongly suggests that convolutional neural networks offer a reliable tool for
attacking XOR/XNOR-based logic locking schemes, while using a simpler and more flexible prediction
model compared to the state of the art.Moreover, the evaluation indicates that CNNs offer consistently
better performance values compared to standard MLPs for this particular key prediction problem.

Furthermore, compared to GSS, SnapShot achieves significantly higher KPA values for SRS. This
comparison offers novel insights into a previously untested scenario. Thereby, we can conclude that
SRS enables a more focused learning process targeted towards the specific locked netlist irrespective
of the underlying ML-model, offering a more favorable attack scenario for an adversary.

5.6 Evolved CNN Architectures
The best evolved architectures for all benchmarks and scenarios are presented in Table 5 and
Table 6 in the form of genotypes. For GSS, only one final network is evolved since the training set
is equivalent for all benchmarks. In comparison, SRS yields a single network for each benchmarks.
Interestingly, the evolved networks have a maximum of only five internal layers for GSS and up to
three layers for SRS. This offers the following insights. First, the GSS training set is more difficult
to learn, i.e., it requires a more refined feature extraction. This corresponds to the way the training
sets are generated, as in GSS a single large set of different relocked benchmarks is used while in SRS
a self-referencing set is generated. Secondly, the evolutionary process suggests that using a smaller
number of layers is sufficient, as no genotype using all layers has been reported as a fitter solution.
Therefore, starting with a limit of seven layers is more than enough for this particular problem.
Furthermore, the evaluated stopping criterion of only 44 epochs (Section 5.3) indicates that the
training process easily converges. These observations suggest that the classification of XOR and
XNOR localities to their correct activation bits is not a particularly difficult problem. Consequently,
the results imply that the security foundation of XOR/XNOR-based locking schemes is questionable
and that it must be revised.
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Table 5. Evolved CNN Architecture (Genotype) for GSS

IC [[Layer Presence], [Layer Type]]
Training Benchmarks [[0, 1, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 1, 0]]

Table 6. Evolved CNN Architectures (Genotypes) for SRS

(a) ISCASC’85

IC [[Layer Presence], [Layer Type]]
c1355 [[0, 1, 0, 0, 0, 0, 1], [1, 0, 1, 1, 1, 0, 1]]
c1908 [[0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0]]
c2670 [[0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1]]
c3540 [[0, 0, 0, 0, 1, 1, 0], [1, 0, 0, 0, 1, 0, 0]]
c5315 [[0, 0, 0, 0, 1, 1, 0], [1, 0, 0, 0, 1, 0, 0]]
c6288 [[0, 0, 0, 0, 1, 1, 0], [1, 0, 0, 0, 1, 0, 0]]
c7552 [[1, 1, 1, 0, 0, 0, 0], [0, 1, 0, 1, 0, 0, 1]]

(b) ITC’99

IC [[Layer Presence], [Layer Type]]
b15 [[0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 1, 1]]
b21 [[0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 1, 0, 0]]
b22 [[0, 0, 0, 0, 0, 0, 1,], [1, 1, 1, 0, 0, 0, 1]]
b17 [[0, 0, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0]]
b18 [[0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1, 1]]
b19 [[0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 1, 1]]

All networks can be reproduced based on the provided genotypes, hyperparameters (Table 3),
fixed layers (Section 5.3) as well as open-source benchmarks (Section 5.1).

5.7 Training Time Analysis
The neuroevolutionary mechanism facilitates the process of defining suitable layer configurations
for the feature extraction component of the neural network. Using the neuroevolutionary process,
an adversary is able to search through only a fraction of the possible configurations and still achieve
valuable results. This mirrors the scenario in which an adversary has only a limited amount of time
to acquire the correct activation key and proceed with reverse engineering. For example, after the
design has been sent to the foundry, typically only a few months are needed until the fabrication
is done. This window greatly limits the available time frame for performing an attack, since a
malicious change still has to be implemented before the final fabrication. Therefore, having an
attack that can converge more quickly is crucial for the success of the adversary.

Genotype and Phenotype Search Space: The limit of 7 internal layers yields a genotype search
space of 214 different configurations, since 7 bits are needed to represent the existence of each layer
and 7 bits to represent their types. However, some different genotypes can map to an equivalent
phenotype. This is the case if a particular layer presence bit 𝑥𝑝

𝑖
= 0. In this case, the corresponding

layer type 𝑥𝑡
𝐿+𝑖 is not relevant for the construction of the phenotype (CNN architecture). Therefore,

the total phenotype search space is 37 = 2, 187. However, during the mutation and crossover
procedures, even different genotypes with an equivalent phenotype store potentially valuable
(and different) genetic material. Therefore, these genotypes must still be considered in the genetic
process. Nonetheless, to avid a dependency on the genotype, in the following we discuss the timing
comparison in terms of the phenotype search space.

Iterative Search: As mentioned, an iterative search has to consider 37 different configurations.
Neuroevolution: The size of the search space using the neuroevolutionarymechanism is defined

by two GA parameters (Table 4): the number of generations and the size of the population. Since a
generational GA is selected, in every generation, a new population is generated. This amounts to
20 · 10 = 200 configurations, i.e., only 9.14% of the total search space.

Time Comparison: The evaluation of a single configuration takes 44 epochs. Assuming the
existence of a single GPU (see Section 5.1), one epoch takes approximately 10 seconds. An iterative
search using this setup amounts to 11.13 days. In comparison, the neuroevolution takes 1.01 days.
In practice, neuroevolution takes even less time since equivalent genotypes are only evaluated
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once and the fitness function can be adapted to detect phenotypes that have been evaluated before.
It is evidently possible to distribute the search using multiple GPUs. However, this has not been
evaluated in this work as using a single GPU offers clear timing insights into the attack.

6 DISCUSSION AND ANALYSIS
To design learning-resilient logic locking, understanding the reasons for the vulnerabilities induced
by existing locking schemes is essential. Let us look at two aspects of logic locking: the location
selection and the introduced change. The location selection indicates how a locking scheme decides
where a change is introduced. If the selection or the actual change exposes information in some form,
an entity (human or artificial system) is able to learn about the key. Therefore, a locking scheme
that has no biased location selection and introduces unpredictable changes is learning-resilient. To
test this claim, we performed the following experiment. We locked multiple benchmarks with a
modified version of EPIC with randomly generated 64-bit keys, without another synthesis round.
The modified scheme inserts XOR/XNOR gates regardless of the key bit value. Obviously, this
scheme is functionally incorrect, however it serves its purpose; SnapShot reports KPA values of
50% for all benchmarks. In other words, the selected locking scheme forces the CNN to randomly
guess the key, as no information is leaked through the location selection or the introduced change,
as both are completely random and unpredictable.
From a different perspective, this experiment shows that a locking scheme can be learning-

resilient if two identical localities (same vector image) for two different key inputs result in different
labels, i.e., two equal images suggesting different labels. Consequently, such a behavior enforces a
random guess. Based on this analysis, we can conclude that a learning-resilient locking scheme should
be resilient against guessing attacks even before resynthesis, i.e., it should not depend on the changes
induced by a synthesis tool.

Interestingly, the experiment also suggests that EPIC leaks information based on the introduced
change, not the location selection. However, for EPIC, the information leakage is straightforward.
XOR is inserted for a key bit 0, and XNOR (XOR + inverter) for a key bit 1. This scheme implies
that an XOR locality is predicted to be a 1 only if XOR is by chance placed as input to an inverter
(similar for XNOR and 0). However, this case does not appear very often.

Moreover, a functionally correct learning-resilient scheme is revealed when looking at the cases
where SnapShot made a false prediction. For example, when two key gates are inserted (by chance)
back to back, they form a run of gates, e.g., XOR-XOR for the key 00. In this case, SnapShot is not
able to guess whether the key is 00 or 11 as both result in a correct buffering. However, a run of
gates can easily be detected and replaced by a single gate, thereby dissolving the learning-resilience.
Another conclusion can be drawn based on the attack complexity. SnapShot (as well as SAIL)

can attack each key input individually since the key gates typically exhibit a very local dependency
without interacting with other key-driven gates in the netlist. The reason for this is simple; each key
gate is driven by a separate key input which does not rely on other key inputs for its correctness.
Increasing the complexity of the mutual dependencies among key inputs also increases the difficulty
of guessing a correct key bit, since (in theory) multiple key bits must be considered at the same
time. A possible mitigation can be found in embedded key-generation units that ensure a highly
interdependent key set [18]. However, these units represent an add-on mitigation. Therefore, it is
more relevant to look into schemes that are learning-resilient by design. The learning resiliency of
key-generation units remains to be evaluated.

Lessons Learned: Based on the provided data and analysis, we can conclude that ML-based
attacks offer a novel pathway to uncover critical vulnerabilities in logic locking schemes. The
SnapShot attack has showcased that it is possible to successfully attack the fundamental security
assumption of XOR-based locking, leading to the conclusion that an adversary can make an
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educated guess about the key bits based on the inserted key gate types. Evidently, this goes against
the assumed security foundation of XOR-based locking. Interestingly, a vast amount of attacks,
including the most powerful SAT-based attacks [40], do not rely on this assumption at all, but rather
focus on secondary security aspects of locking schemes (e.g., functional corruption for incorrect
keys). Challenging the security foundation with machine learning can lead to novel insights for the
design of next-generation locking schemes and a new landscape of key-recovery attacks.

7 LIMITATIONS AND RESEARCH OPPORTUNITIES
A limitation of prediction-based attacks is the uncertainty of the prediction for each key bit. Even
though the key can be retrieved with a high accuracy, it still remains a challenge to determine which
key bits are correctly predicted. However, the predicted result can be used as a seed for subsequent
attacks to further refine the key, as showcased in [8]. Furthermore, a predicted key can be fixed in
the design to "remove" the redundant logic with reoptimization. This step can facilitate the process
of identifying different components of a larger design through similarity matching (an important
step in modern reverse engineering [4]).

The attack flow of SnapShot includes a black box optimizationmechanism. Therefore, the flow can
be extended for automatic attack exploration using a variety of representations (locality extraction
strategies) and ML models for supervised learning. However, due to the nature of the representation
(Section 4.2) as well as the existing correlation in data (Section 4.5), neural networks are a suitable
tool for this problem.
Furthermore, GSS outlines a new research opportunity; assembling a generic benchmark suite

covering a large spectrum of locked netlists. In the long run, this benchmark suite can be utilized
for training a model to automatically design learning-resilient schemes. Moreover, an interesting
research task is to analyze the impact of the locality size on the prediction accuracy.

Recently, a great variety of more advanced logic locking schemes has been introduced that offer
protection even against SAT-based attacks [16, 25, 39]. However, some of these schemes, such
as Anti-SAT [38] and CAS-Lock [31], rely on the mentioned XOR/XNOR property to encode the
correct user-defined key. Therefore, the evaluation in this work provides insights into a fundamental
security issue that even spans across the latest logic locking schemes. Nonetheless, directly attacking
these schemes with SnapShot remains part of the future work.

Another potentially suitable deep learning model for attacking logic locking schemes are Graph
Neural Networks (GNNs) [5]. These networks perform inference on data that is described in the
form of graphs. GNNs have been evaluated on circuit-related problems as well [42]. In particular,
GNNs have been used for attack time estimation on logic locking [10]. In this sense, GNNs offer
a potentially fruitful research ground in the domain of hardware security. Moreover, it might be
possible to transfer existing convolutional neural architectures to this specific classification problem.
However, since this problem domain and the used representation are novel, we decided to let the
evolution optimize the structure of the CNN for this particular key prediction challenge.

8 CONCLUSION
In this work, we presented SnapShot; a novel oracle-less attack on logic locking based on multi-layer
perceptrons and convolutional neural networks. The attack is the first of its kind that is able to
immediately predict a key value out of a locked netlist using neural networks, without reconstructing
the original design. Moreover, the neuroevolutionary approach showcases the agile development of
a powerful attack using limited resources. We proposed a flexible representation of netlist subgraphs
that can be utilized for ML-based approaches. The attack was evaluated on two realistic attack
scenarios, including the previously untested generalized set scenario. SnapShot reports a significant
improvement of 10.49 percentage points in key prediction accuracy, thereby achieving an average
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accuracy of 82.60%; outperforming the state-of-the-art approach for all evaluated benchmarks.
Furthermore, we have shown that CNNs achieve a higher performance compared to standard MLPs.
Finally, we analyzed the critical vulnerabilities of logic locking that enable ML-based attacks. As a
limitation, in its current format, the applicability of SnapShot to novel schemes which do not rely
on XOR/XNOR gates remains to be evaluated. With SnapShot, we encourage more research on
exploring the challenges of logic locking design in the deep learning era. Based on the presented
insights, in future work, we plan to investigate the design of learning-resilient locking schemes.
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