
An embedding-based topic model for document classification

Abstract

Topic modeling is an unsupervised learning task that discovers the hidden topics
in a collection of documents. In turn, the discovered topics can be used for sum-
marizing, organizing and understating the documents in the collection. Most of the
existing techniques for topic modeling are derivatives of the Latent Dirichlet Allocation
which uses a bag-of-word assumption for the documents. However, bag-of-word models
completely dismiss the relationships between the words. For this reason, this paper
presents a two-stage algorithm for topic modelling that leverages word embeddings
and word co-occurrence. In the first stage, we determine the topic-word distributions
by soft-clustering a random set of embedded n-grams from the documents. In the
second stage, we determine the document-topic word distributions by sampling the
topics of each document from the topic-word distributions. This approach leverages
the distributional properties of word embeddings instead of using the bag-of-word as-
sumption. Experimental results on various data sets from an Australian compensation
organization show the remarkable comparative effectiveness of the proposed algorithm
in a task of document classification.

1 Introduction

Advances in new technologies have led to a rapid increase in the amount of data, particu-
larly unstructured text in the form of news, blogs, web pages, articles, books, image and
video captions, speech-to-text conversions, and postings on social networks. Conversely,
the possibility to manually annotate such data remains inherently limited and calls for au-
tomated tools that do not rely on human supervision. Among the approaches offered by
natural language processing, topic modelling stands out as an unsupervised approach that
can help organize, summarize and understand such vast collections of textual information.

Topic models such as Latent Dirichlet Allocation (LDA) [4] have been successfully
used for discovering hidden topics in text collections for years. Their most attractive
feature is that they can perform their analysis from modelling assumptions without the
need for manual supervision. The first model credited as a proper topic model is due to
Hoffman [11], who overlaid a probabilistic model to the existing latent semantic indexing
of Deerwester et al. [8], and is known as pLSA or pLSI. Blei et al. [4] later introduced the
contemporary Bayesian formulation of topic modeling (i.e. LDA) by imposing conjugate
Dirichlet priors on both the topics and the document-topic weights. LDA has proven
hugely popular, and extensions include, among others, hierarchical versions using Dirichlet
processes to address an unknown number of topics [12, 30, 33], topic evolution for topics
that change over time [2, 9, 34], approaches based on correlation [3, 10], approaches based
on variational autoencoders [29], and sentiment-driven topic discovery [20].
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Conventional LDA uses a bag-of-word (BOW) model which models each unique word
independently of the others. Anecdotally, the hidden topics learned under such simple
assumptions do not correlate well with the human judgment of topic quality, especially for
low-resource collections (i.e. few or short documents) [6, 18, 23]. Adding prior knowledge
into topic models is often necessary to improve the models’ performance [7, 26]. Recent
work has also shown that interactive human feedback can improve the quality and stability
of the topics [13,37]. Additional information about the documents [25] or their words [26]
can also improve LDA’s topics.

To improve the quality of the extracted topics, in this paper we propose an algorithm
which incorporates prior knowledge on words in the form of word embeddings The algo-
rithm consists of two main steps. First, the topic-word distributions are determined using
an incremental soft-clustering algorithm over word embeddings. Word embeddings, such
as for instance Word2Vec [22], capture the correlation between words and can overcome
the typical flaws of bag-of-word models, which do not account for word co-occurence and
generate very high-dimensional and sparse representations. Second, the document-topic
distributions are computed using matrix factorization and a sampling procedure. These
two steps can be applied only once, or iteratively applied until a stability criterion for the
topic-word and document-topic distributions is met. The number of topics is also allowed
to increase during this process, depending on how well the existing topics fit the collection.
Such a two-step learning has some analogies with the Expectation-Maximization (EM) ap-
proach to topic modeling, where the computation of the topic-word matrix can be seen
as a maximization problem (i.e. an optimization of parameters), and the topic-document
assignments as an expectation (a soft data partitioning).

Throughout this paper we use the following notations and symbols. The symbols V ,
M , N and K are used to denote the vocabulary size (or the total number of unique
words in the collection, or corpus), the number of documents, the dimensionality of the
word embedding space, and the number of topics (as well as clusters) in the word-vector
space, respectively. The notations wν and yν are used for representing the ν-th word
in the vocabulary and its word vector in the word-vector space, respectively. Given the
notation for the word vectors, the word embedding matrix is denoted as Y , with Y = [yνn];
ν = 1, · · · , V and n = 1, · · · , N. The notation D is used to denote the document-word
matrix, i.e. D = [d1, · · · , dM ] ∈ RM×V where dm is the m-th document. We use Φ and
Θ for the topic-word matrix (distributions) and the document-topic matrix, respectively,
i.e. Φ = [φ1, · · · , φK ] ∈ RK×V and Θ = [θ1, · · · , θM ] ∈ RM×K , where φk and θm are,
respectively, the k-th topic and the topic distribution for the m-th document.

2 Related work and motivation

Many topic modeling approaches have been proposed in the literature to amend the recog-
nized limitations of LDA. Those most relevant to our work make use of additional, external
information to improve the quality of the extracted topics. In particular, combining word
embeddings [22, 24] with topic modeling is a promising solution that has been well stud-
ied in recent years; for this reason, we provide a brief overview of the main approaches
hereafter.

Among the early approaches, Das et al. [7] have proposed representing the words in the
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vocabulary by pre-trained word embeddings, and modelling the topics as Gaussian distri-
butions in the word embedding space rather than by the usual multinomial distributions.
Other works have proposed to jointly learn the word embeddings and the topics [27, 35]
or to embed the topics by a generative model [16]. Xun et al. [36] have proposed a uni-
fied language model based on matrix factorization that simultaneously takes into account
global and local context information, and to model the topics and the word embeddings
collaboratively. Jiang et al. [14] have integrated topic generation and embedding learning
in a unified framework, and proposed a Monte Carlo EM algorithm to estimate the param-
eters of interest. Their assumption is that the words in a document are generated by two
modalities: one based on the usual multinomial distributions, and the other based on topic
embeddings as well as word embeddings. Mekala et al. [21] have proposed a representation
called the sparse composite document vector (SCDV), where word embeddings are clus-
tered to capture the semantic contexts in which words occur. After extraction, multiple
SCDVs are chained together to form document-topic vectors that can express complex,
multi-topic documents. In turn, both Liu et al. [17] and Xue et al. [35] have mapped
word embeddings to a latent topic space that captures the multiple senses in which words
may occur (polysemy). However, whole documents are mapped in the same embedding
space as individual words, potentially reducing their expressive power. Word embeddings
have even been used as auxiliary features to improve low-resource topic modeling of short
texts [16].

Among this substantial literature, the approach we propose in this paper is most sim-
ilar to the Gaussian-LDA of Das et al. [7]. However, it uses a simpler, more efficient
clustering algorithm for estimating the topics instead of full posterior inference. In addi-
tion, rather than measuring the effectiveness of the inferred topic models by the typical
intrinsic measures, we prefer to evaluate them as features in document classification tasks.
In this way, we gain a more direct idea of their usefulness.

3 Topic-based word embedding

In this section, we briefly recapitulate the Word2Vec word embedding technique, and then
we describe a topic-based word embedding. Either embedding has its own rationale: while
Word2Vec captures local co-occurrences and semantics, topic-based embeddings can learn
global semantics from entire collections of documents [18].

A ubiquitous trend in contemporary natural language processing (NLP) is the use
of word embeddings for converting words to vectors whose relative similarities correlate
with semantic similarity. Simply put, word embeddings are a type of word representation
that allows words with similar meaning to have similar real-valued vector values in a
predefined vector space. In traditional word embeddings, each unique word is mapped to
one vector, and the vector values are learned from large, unsupervised amounts of text by
using neural networks. For this reason, word embeddings have become an integral part of
the deep learning machinery. The learned vectors have been used as features in a great
variety of applications including, among many others, information retrieval [19], document
classification [15–17], question answering [31], named entity recognition [32], and semantic
parsing [28].

Word2Vec (Mikolov et al. [22]) is a popular word embedding algorithm which learns a
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vector representation for each word using a neural network language model. In the skip-
gram variant of Word2vec, the neural network architecture uses an input, a projection,
and an output layers to predict the nearby words of any given word within a text. Each
word vector is learned by maximizing the log probability of the neighboring words across
typically large amounts of text, i.e. given a generic sequence of words w1, · · · , wT , the
objective is to maximize:

1

T

T∑
t=1

∑
j∈nb(t)

log p(wj |wt) (1)

where nb(t) is the set of the neighboring words of word wt, and p(wj |wt) is obtained as the
(hierarchical) softmax of the associated word vectors vwj and vwt . The reader can refer
to [22] for further details. Learning these word embeddings is entirely unsupervised and
can be performed over any collection of documents.

Although word embeddings and topics are two very different concepts, it is legitimate
to speculate that words with similar semantics may possibly appear within the same topics.
Based on this assumption, one could then create a word embedding by simply fitting a
topic model with a large number of topics on a collection of documents. To do so, we
could, for instance, apply LDA topic modelling to a collection of documents with topics
Φ0 = [φ0

1, · · · , φ0
K0

] ∈ RK0×V , where φ0
k = [φk1, · · · , φkV ] is the k-th topic and φkν is the

weight of the ν-th word in the k-th topic. Typically, the topics are sparse vectors, in the
sense that most of their entries are usually very close to zero. By introducing a threshold,
the topic-word matrix Φ0 can therefore be made into a formally sparse matrix. Such a
topic model can also be further modified with the use of alternative objectives.

4 The proposed method

In this section we present a novel topic learning approach that is heavily reliant on clus-
tering. Figure 1 shows a synopsis of the proposed approach which consists of the following
steps:

1. (Preprocessing) Includes removal of stop-words, very rare terms and common names.

2. (topic-word matrix) Using a sample set of n-grams from the text corpus, a word
embedding and a clustering approach, computes the topic-word matrix.

3. (Document-topic matrix) Determines the document-topic matrix by scanning the
text corpus and sampling from the topic-word matrix.
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Figure 1: Overall process of the cluster-based topic learning.

Our assumptions for the topic-word and document-topic relationships are the same
as in the LDA model, i.e. each topic is a mixture of words, and each document is a
mixture of topics. However, the topic-word distributions are not modelled as multinomial
distributions with Dirichlet priors; rather, they reflect the memberships of the words in
word embeddings clusters. More details are provided in the following subsection.

4.1 Topic-word learning

In LDA, the topic-word distributions follow a Dirichlet distribution, and the ensuing prob-
lem is that the word co-occurrences are not taken into account. To amend this issue, we
use n-grams and word embeddings to incorporate some form of word semantics into the
model. To do so, we first learn the word vectors from a collection of documents using
a word embedding technique. From an initial evaluation of Word2Vec and the equally
popular GloVe [24], we have decided to adopt the latter. Then, a random sample set of
n-grams form the text corpus is selected and is partitioned into K clusters using, for ex-
ample, the k-means algorithm. As each n-gram consists of a (small) set of words, it can be
represented by the average vector of the words.The inverse exponentiated Euclidean dis-
tance of the vectors to the clusters’ centers is then computed, and used as the cluster-word
(or topic-word) matrix. Therefore, each topic can be seen as a mixture of words, where
the proportions are given by the inverse exponentiated distances of the words from that
cluster/topic. The following Algorithm 1 lists the main steps for computing the topic-word
matrix:
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Algorithm 1 The topic-word matrix algorithm.

Input: External text corpus, text documents X and number of topics K.
Output: Topic-word matrix Φ.

1. Compute word vectors W by using a word embedding technique on D, a large
collection of documents.

2. For each document di in D :

2.1. Select ri random samples of n-grams from di.

2.2. Convert the n-grams to vectors by averaging the corresponding word vectors.

2.3. Add the n-gram vectors to a set of n-grams:

G = G ∪ {gi,1, · · · , gi,ri}

3. Apply a clustering algorithm, e.g. k-means, to G.
4. For the k-th topic, k = 1 : K, and word wν , ν = 1 : V :

4.1. Compute the distance of word wν to the k-th center, ck, as:

d(wν , ck) = ‖wν − ck‖,

where ‖.‖ is the Euclidean norm.

4.2. The corresponding element of topic-word matrix is:

φν,k = exp−d(wν ,ck) .

In the above algorithm, parameter ri is a random integer that is scaled proportionally
to the length of the document. In Step 4.1., the Euclidean norm is used to compute the
distance between word wν and cluster k, which is then exponentiated and inverted in Step
4.2. to represent the word’s membership to the cluster.

4.2 The document-topic matrix

To determine the document-topic matrix (or document-topic distributions), one can use
matrix factorization by considering the fact that X = ΘΦ, where X is the observed
document-term matrix, Φ is the topic-word matrix described in Section 4.1, and Θ is the
desired document-topic matrix. In a real situation, the equality condition is mitigated to
X ≈ ΘΦ and Θ is computed as follows:

min
Θ
‖X −ΘΦ‖22 s.t. Θ ≥ 0. (2)

Adding a regularizer, Eq. (2) is equivalent to minimizing the following:

f(Θ) = ‖X −ΘΦ‖22 + λ‖Θ‖22. (3)
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where λ is a scalar parameter. Although the minimization of (2) is equivalent to non-
negative matrix factorization (NMF), [1], in our approach we only solve for the document-
term matrix, Θ, for a given topic-word matrix, Φ.

The optimization problem in (3) can be solved by a standard pseudoinverse approach.
An alternative is to use a heuristic approach where sampling from the topic-word matrix
based on the observed words is used for determining the document-topic matrix. The
quality of the solution can be examined using the objective function (3), and the process
can be incrementally repeated by iteratively increasing the number of topics and calculat-
ing the document-topic matrix each time, until no progress is achieved. Using sampling
allows us to easily control the size of the sample set and the computational complexity;
however, in the future, we plan to also explore incremental optimization algorithms [5].

The heuristic approach consists of simply scanning all the documents and assigning
topics to words by sampling from the topic-word matrix conditional to the given word.
The main steps of the algorithm for determining the document-topic matrix are as follows:

Algorithm 2 Document-topic matrix.

Input: Text documents D and topic-word matrix Φ.
Output: Document-topic matrix Θ = [θi,j ], i = 1 : M, j = 1 : K.

1. For each document di in D:

1.1. Select a random number, ni ∈ [li, ui], where li and ui are lower and upper
bounds to number of samples for document di.

1.2. Sample ni words from di, by replacement.

Wi = {w ∈ di|w ∼ U[Wd]}.

1.3. For each word w in Wi:

1.3.1. Sample τ topics from Φ, with replacement.

Tτ = {t1, · · · , tτ} ∼ Φw.

1.3.2. Assign topic tj for w as:

tj = argmax
l
|Tτ |.

1.3.3. θi,j = θi,j + 1

1.4. Normalize rows of Θ to add up to one, ‖Θi‖ = 1, i = 1, · · · ,M.

In Algorithm 2, Θi corresponds to the weight vector of document di, θi,j to the weight
of topic j in document i, and Φw to the topic vector associated with word w, i.e. Φ =
[Φ1, · · · ,ΦV ]T .

7



5 Experiments

5.1 Data sets

The data sets used in our experiments have been obtained from an accident compensation
agency of the Victorian Government in Australia. They consist of phone calls between
clients and claim managers of the organization that address challenges and issues of the
clients. Each observation might contain several phone calls related to the same client. The
data have been annotated by experts with a class label of “yes” or “no” depending on
whether they contained a specific “challenge” or not. Where labeling was ambiguous, the
data have been left undecided. A brief description of the data sets is available in Table 1,
where M1 and M2 are the number of samples from classes “yes” or “no”, respectively, and
N is the total number of samples in the data set. To train the classifiers, we have used 10
different random and independent subsets of each data set.

Table 1: Data sets summary.

Datasets M1 M2 N

D1 4,704 3,779 11,591
D2 3,896 2,267 11,553
D3 3,186 1,058 11,220

The data have required many pre-processing steps including: transforming to lowercase
letters, removing stop words and common words, and replacing synonyms. For example,
“return to work” and “back to work” are treated as the same words and need to be
converted to a single word, say for instance “rtw”. The vocabulary (i.e. set of unique
words) of these data sets is very different from a general-purpose vocabulary as it contains
many specialized terms and acronyms. Since the size of the data sets is limited, our topic
modelling and document classification tasks can then be regarded as low-resource cases,
and expect to benefit from the proposed approach.

5.1.1 Implementation and models

For the classification task, we use the rows of our document-topic matrix, Φ, as the features
of each document. We then compare the proposed model, that we named “NgTC” from
“n-gram topic clustering”, with three baselines:

• the tf-idf features,

• the weighted averages of word vectors from Word2Vec;

• using the rows of the document-topic matrix obtained from an LDA model as fea-
tures.

To evaluate and compare the effectiveness of the proposed model, we have applied different
classifiers with the various features. The classifiers we have used are:

• Extreme Learning Machine (elm),
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• Support Vector Machines with Radial Basis Function Kernel (svm),

• Stochastic Gradient Boosting (gbm),

• Boosted C5.0 (c50),

• Random Forest (rf)

The implementation of all models and classifiers was performed in R, a popular language
and environment for data science, statistical computing and graphics (see: https://www.r-
project.org/). All experiments have been carried out on a 1.90 GHz Intel(R) Core(TM)
i7 machine with 32 GB of RAM.

5.1.2 Document classification

To evaluate the proposed model and compare it with the baselines introduced in the pre-
vious subsection, we have carried out experiments on the three data sets. As performance
measure, we report the average of the accuracies over 10 random and independent samples
from the data. In addition, we report the accuracies by class, and the highest and lowest
values on the 10 runs; see Tables 2–4.

Table 2 shows the accuracy results for data set D1 for all the models and the different
classifiers. On this data set, the proposed model has outperformed the other models with
all classifiers except for the case of “svm”, for which the results are almost the same for
all the models. The best overall accuracy (92.53%) has been obtained by “NgTC” with
“c50”, with an impressive improvement of 25.71 percentage points over the second-best
model (“dtm” with “rf”). The results for data set D2 (Table 3) are very similar to those
for D1, and “NgTC” has also proved the most accurate on data set D3 (Table 4), although
by smaller margins. In general, these results demonstrate the effectiveness of the proposed
model, “NgTC”, in classifying the text documents.

Figures 2 – 4 plot the overall accuracies for data sets D1 – D3 with the different
classifiers. These results, in combination with those in Tables 2–4, show that the proposed
model has achieved the best performance, followed by the tf-idf features (“dtm” model).
It is important to note that the number of the features in all the models has been set to
the same value (200), with the exception of the “dtm” model where the number of the
features has to reflect the size of the vocabulary, and it has therefore been set to over
11,000.

Figure 2: Accuracy (%) of models for D1 using the different classifiers.

9



Table 2: Accuracy results for D1: average of 10 independent random runs for the 4 models
with 5 classification algorithms; results include accuracies, lower and upper values for the
accuracies, and by-class accuracies

model method Accuracy AccuracyLower AccuracyUpper Pos Pred Value Neg Pred Value

elm 58.61 56.24 60.98 60.70 54.33
svm 66.78 64.46 68.99 67.84 64.64

dtm gbm 64.61 62.28 66.89 64.14 63.95
c50 63.41 61.06 65.69 61.53 64.89
rf 66.82 64.52 69.07 68.60 64.09

elm 62.24 59.88 64.55 64.14 58.91
svm 65.08 62.76 67.34 65.78 63.27

word2vec gbm 62.52 60.17 64.82 62.75 62.08
c50 58.62 56.24 60.98 58.50 57.05
rf 63.64 61.33 65.94 63.75 63.19

elm 58.27 55.87 60.62 60.50 53.74
svm 66.16 63.85 68.41 65.68 65.63

lda gbm 62.45 60.07 64.75 62.01 61.84
c50 60.48 58.10 62.80 62.20 57.53
rf 65.29 62.97 67.57 65.13 64.76

elm 63.75 61.41 66.04 65.41 60.88
svm 66.68 64.37 68.92 68.21 64.11

NgTC gbm 82.94 81.04 84.70 81.26 86.70
c50 92.53 91.17 93.75 94.10 90.67
rf 91.10 89.64 92.42 89.83 92.97

Figure 3: Accuracy (%) of models for D2 using the different classifiers.
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Table 3: Accuracy results for D2: average of 10 independent random runs for the 4 models
with 5 classification algorithms; results include accuracies, lower and upper values for the
accuracies, and by-class accuracies

model method Accuracy AccuracyLower AccuracyUpper Pos Pred Value Neg Pred Value

elm 63.25 60.47 65.94 51.75 65.58
svm 77.03 74.59 79.34 78.71 73.29

dtm gbm 72.84 70.26 75.31 75.40 67.08
c50 72.74 70.16 75.20 76.18 65.60
rf 78.24 75.85 80.50 78.15 78.58

elm 67.01 64.31 69.62 57.53 70.89
svm 76.02 73.52 78.39 77.65 72.18

word2vec gbm 69.22 66.55 71.79 69.41 68.51
c50 67.00 64.30 69.61 67.09 61.49
rf 72.98 70.41 75.45 72.13 76.58

elm 61.35 58.57 64.1 45.43 64.02
svm 76.81 74.36 79.13 76.38 75.43

lda gbm 69.70 67.06 72.27 69.49 71.30
c50 69.9 67.25 72.45 68.08 67.37
rf 75.10 72.58 77.48 76.82 75.39

elm 70.16 67.54 72.72 64.72 72.04
svm 76.86 74.39 79.16 78.52 73.11

NgTC gbm 84.89 82.76 86.82 82.17 92.58
c50 91.16 89.44 92.68 92.09 89.53
rf 88.69 86.79 90.42 86.26 94.62

Figure 4: Accuracy (%) of models for D3 using the different classifiers.
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Table 4: Accuracy results for D3: average of 10 independent random runs for the 4 models
with 5 classification algorithms; results include accuracies, lower and upper values for the
accuracies, and by-class accuracies

model method Accuracy AccuracyLower AccuracyUpper Pos Pred Value Neg Pred Value

elm 75.68 72.63 78.51 52.93 76.98
svm 80.52 77.70 83.15 81.02 76.24

dtm gbm 79.72 76.85 82.38 80.2 68.94
c50 78.39 75.44 81.11 79.85 62.24
rf 80.72 77.90 83.33 81.40 75.35

elm 76.35 73.34 79.18 54.37 79.10
svm 79.72 76.87 82.39 79.80 78.90

word2vec gbm 77.85 74.91 80.62 78.09 73.76
c50 73.99 70.88 76.90 75.17 50.19
rf 79.03 76.16 81.73 79.08 78.42

elm 75.88 72.89 78.75 55.83 76.91
svm 79.64 76.79 82.29 80.07 75.20

lda gbm 79.06 76.17 81.77 80.32 64.29
c50 77.84 74.90 80.60 81.82 58.31
rf 79.72 76.85 82.37 80.11 75.57

elm 78.21 75.28 80.93 64.69 79.66
svm 80.19 77.34 82.81 80.30 79.08

ngtc gbm 80.18 77.33 82.82 81.31 71.38
c50 82.79 80.07 85.27 87.48 66.56
rf 81.75 78.96 84.27 81.45 84.82

6 Conclusion

In this paper, we have proposed a novel topic model based on n-gram embeddings and a
two-stage learning approach. In the first stage, the topic-word distributions are computed
using clusters of n-gram word embeddings. In the second stage, the document-topic matrix
is computed using sampling from the topic-word conditional distributions. In a set of
experiments over textual data sets from an Australian compensation agency, we have
compared the proposed model against relevant baselines using different classifiers. The
results show that the proposed model has outperformed all the baselines on all data sets,
with improvements over the runner-up of up to 25.71 accuracy percentage points. As future
work, we note that in this paper we have only used a single iteration of the model, i.e.
the topic-word and document-topic matrix have been computed only once. However, they
could be alternatively learned to attain even more refined parameters. For the second
stage, we plan to explore incremental optimization algorithms as an alternative to the
current sampling procedure.
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