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ABSTRACT

As the size of data generated every day grows dramatically, the

computational bottleneck of computer systems has been shifted

toward the storage devices. The interface between the storage and

the computational platforms has become the main limitation as it

provides limited bandwidth which does not scale when the number

of storage devices increases. Interconnect networks do not provide

simultaneous accesses to all storage devices and thus limit the per-

formance of the system when independent operations on different

storage devices. Offloading the computations to the storage de-

vices eliminates the burden of data transfer from the interconnects.

Emerging as a nascent computing trend, near storage computing

offloads a portion of computation to the storage devices to accel-

erate the big data applications. In this paper, we propose a near

storage accelerator for database sort, NASCENT, which utilizes

Samsung SmartSSD, an NVMe flash drive with an on-board FPGA

chip that processes data in-situ. We propose, to the best of our

knowledge, the first near storage database sort based on bitonic

sort which considers the specifications of the storage devices to

increase the scalability of computer systems as the number of stor-

age devices increases. NASCENT improves both performance and

energy efficiency as the number of storage devices increases. With

12 SmartSSDs, NASCENT is 7.6× (147.2×) faster and 5.6× (131.4×)
more energy efficient than the FPGA (CPU) baseline.

CCS CONCEPTS

•Hardware→Hardware accelerators; Emerging architectures; •

Computer systems organization → Reconfigurable computing.
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1 INTRODUCTION

With the explosive growth of data, processing the massive amount

of data has become the cornerstone of many big data use-cases

such as database applications [1, 2]. As the size of the stored data

increases, the cost of loading and storing the data overweighs the

computation cost and diminishes performance. In some applications

such as database, graph processing, machine learning, and statistical

analysis since more than half of the execution time is spent on data

transfer which highlights the impact of data communication on

overall performance [3, 4]. The rapid development of Solid State

Drives (SSDs) has shifted the bottleneck of data transfer time from

the magnetic disks (i.e., seek and rotational latency) to interconnect

bandwidth and operating system overhead [5]. The PCIe provides

limited simultaneous accesses to the storage devices, which limits

the scalability of the systemwhen independent operations are called

on different storage devices in parallel. This issue along with low

performance of the interconnect bus increase the gap between the

performance capacity of storage devices and the interconnection

buses [4, 6] that obliges us to move the computations closer to

where the data is stored, which has been empowered by recent

advances in near-storage computing devices [5, 7–12].

Near-storage computing offloads a portion of computation to

the storage drive to accelerate the big data applications. Accord-

ingly, new devices have been developed to bring the computation

power into the flash storage devices, e.g., NGD Systems [9], Scale-

Flux [8], and Samsung’s SmartSSD [7]. NGD Systems developed

computational storage with a multi-core ARM processor to per-

form in-situ computations in NVMe storage devices. ScaleFlux has

developed computational storage devices with built-in GZIP com-

pression/decompression. SmartSSD is an NVMe flash drive with

an on-board FPGA chip that processes data in-situ. FPGA, as the

computation node of SmartSSD, provides a high degree of paral-

lelism with affordable power consumption and reconfigurability to

implement versatile applications. FPGAs run parallelizable appli-

cations faster with less power compared to the general processing

cores (host processor) [13–15]. Therefore, FPGAs have become

an inevitable part of data centers [16–18]. The speed-up of using

SmartSSD over the conventional storage devices is thus two-fold;

not only offloading tasks to near-storage nodes increases the over-

all performance by bridging the interconnection gap, but also the

FPGA as an accelerator further boosts the applications with low

power consumption. Since the performance of data-intensive ap-

plications such as database management is limited by the system

bandwidth, these applications can be significantly accelerated by

offloading the computations to the storage drive [4, 19, 20]. There-

fore, recent processing systems aim to offload the query processing
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to storage drive to the greatest possible extent to minimize data

transfer between the host and storage [10, 21–23]. Also, unlike

compute-intensive applications, I/O bound applications do not ben-

efit from high-performance host processors as their performance

is limited by the host-to-storage bandwidth. Therefore, offloading

I/O bound applications to computational storage devices release

the host resources to execute more compute-intensive tasks.

As the size of the real-world databases is growing, storing databases

require multiple storage devices. Database management systems

partition databases into multiple partitions and breakdown the op-

erations into multiple independent operations on the partitioned

database. Although these independent operations can be executed

in parallel, due to storage-to-host bandwidth limitation in I/O bound

applications, host processors cannot fully utilize the partitioning

opportunity. However, in computational storage devices, each stor-

age device has its own computation resource; hence, it can perform

the independent operations in-situ without occupying the storage-

to-host bandwidth. In particular, sort operation is commonly used

in database query processing as a standalone operation or as the

backbone of more complex database operations such as merge-join,

distinct, order-by, group-by, etc. [24]. When sorting a database, all

the table columns are sorted based on a single column, dubbed key

column. Due to their large number of columns, real-world databases

are complicated to sort since after sorting the key column, the rest

of the table needs to be shuffled accordingly. Most database man-

agement systems often use data encoding to compress the stored

data into the storage devices. Being vastly used in database systems,

dictionary encoding is a lossless one-to-one compression method

that replaces attributes from a large domain with small numbers

[14, 25, 26]. To sort the database, if the data is stored in the encoded

format, the table should be decoded and then sorted.

While conventional systems cannot exploit the storage-level

parallelism as they do not provide access to all the storage devices

simultaneously, Computational storage devices offer independent

operations on data stored in each storage device. In this paper,

to sort the database tables, we propose near-storage sort using

SmartSSDs that comprise FPGA-based accelerators with specific

kernels to accelerate dictionary decoding, sort, and the subsequent

shuffle operations. If the table is stored in the encoded format, the

NASCENT dictionary decoding kernel decodes the key column.

Then the sort kernel sorts the key column, and the shuffle kernel

reorders the table according to the sorted key column. NASCENT

not only inherently addresses the data transfer issue by carrying

out computations near the storage system but also embraces an

FPGA-friendly implementation of dictionary decoding, sort, and

shuffle operations. The summary of the contributions of the paper

is listed as follows.

• We present NASCENT, a near-storage accelerator to bring the

computations closer to the storage devices by leveraging SmartSSD.

• We propose a novel FPGA-friendly architecture for bitonic sort to

highly benefit from FPGA parallelism. The proposed architecture

is scalable to sort various data size, outputs the sorted indices,

and can be scaled based on the available resources of the FPGA.

• Databasemanagement systems often encode the data using dictio-

nary encoding to compress the data. NASCENT consists of a dic-

tionary decoding kernel to decode the data at the first stage of the

database sort to provide the input to the sort kernel. NASCENT

dictionary decoding kernel fully utilizes the SSD bandwidth.

• Shuffling is the critical step of database sort and is I/O bounded.

NASCENT accomplishes table sort using the shuffle kernel which

fully utilizes the SSD bandwidth to maximize the performance

of sorting database tables. We modify the storage pattern of the

table to benefit from the regular memory patterns in both shuffle

and sort kernels.

• Our evaluations on different table sizes show NASCENT on

SmartSSD is NASCENT is 7.6× faster and 5.6× more energy

efficient than the same accelerator on conventional architectures

comprising a stand-alone FPGA and storage devices where the

FPGA is connected to the system through PCIe bus. NASCENT

also shows 147.2× speedup and 131.4× energy reduction as com-

pared to the CPU baseline.

2 RELATEDWORK

Previous studies on near-storage computing generally can be cate-

gorized as works that propose (a) novel architectures, (b) emulation

and/or analysis frameworks the investigate the performance of

near-storage systems, and (c) application-oriented case-studies that

evaluate the efficiency of select applications mapped to specific

near-storage systems.

In [6], the authors introduce INSIDER, a computational storage

platform equipped with an FPGA drive controller. INSIDER also pro-

vides software abstractions to abstract the offloaded operations with

file operations. It reduces the required modifications in applications

host code to enable offloading the operations on the computational

storage. The authors of [27] propose ExtraV, an acceleration plat-

form that consists of an FPGA-based ‘accelerator function unit’ that

is connected to the storage devices and communicates with the

processor and its main memory using a coherent interface. The

accelerator executes graph traversal functions which are central to

various graph algorithms. IBM’s Netezza is a near-storage comput-

ing architecture that utilizes FPGAs to reduce the size of the data

stream as early as possible by filtering out extraneous data while

the data streams out of the storage [22]. The platform supports four

functions on the FPGA, viz. compress, project, restrict, and visibility,

with the capability of expanding to further database operations. As

the computational storage devices are in the early stages, the work

in [4] provides an emulation platform to estimate the extent an

application can benefit by offloading operations on FPGA-enabled

computational storage devices.

From the application perspective, the work in [23] examines the

efficiency of near-storage systems by evaluating the expected per-

formance of particular database operations, namely scan, filter, and

project that are offloaded to storage devices equipped with ARM

core as the computation element. In [10], the authors explore of-

floading the list intersection database operation, which is the core of

many applications such as search engines on computational storage

devices. The work in [28] offloads regular expression (regex) search

(a searching algorithm that looks for specific patterns in unstruc-

tured data) on computational storage. The accelerator performs a

regex search while a file is being transferred to the host.

Speaking of the sort algorithm, several works have attempted to

accelerate various sort algorithms on FPGAs [29, 30]. The authors
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Figure 1: Overview of SmartSSD architecture.

of [31] propose an FPGA-based accelerator for sorting datasets

larger than the available on-chip memory of FPGAs (which makes

the sort challenging as data needs to be transferred back and forth

between the off-chip DRAM and on-chip block RAMs). It partitions

the data to smaller chunks where all the elements in the 𝑖th chunk

are smaller than or equal to the elements of the 𝑖 +1th chunk assum-

ing the dataset is being sorted in ascending order. Therefore, each

segment can be sorted independently. The work in [30] evaluates

the performance of various sorting algorithms on FPGAs, including

even-odd [32] and bitonic sorting network [33], as well as tradi-

tional bubble and insertion sorts [34]. Although bitonic sort has

a slightly higher computation complexity (O(𝑛 log2 𝑛)) compared

to common sorting algorithms (i.e., O(𝑛 log𝑛 in merge- and quick-

sort), their results show that, in practice, bitonic sort can run faster

than the common sort algorithms thanks to its high, FPGA-friendly

parallelism. Eventually, the work in [33] proposes an FPGA-based

accelerator for bitonic sort. It uses a classic Clos network which

is programmable to perform all the permutations required in the

bitonic sort algorithm.

Compared to the previous work, to the best of our knowledge,

our proposed NASCENT is the first near-storage accelerator for

database sort on SmartSSD which performs independent table sort

on multiple storage devices simultaneously. NASCENT increases

the scalability of the system in the presence of multiple storage de-

vices as compared to a system with a stand-alone FPGA. NASCENT

is calibrated to fully utilize the storage bandwidth when executing

the dictionary decoder, sort, and shuffle kernels. In contrast to the

previous FPGA-based sort accelerators that target maximizing the

performance by fully utilizing the DRAM-to-FPGA bandwidth, our

challenge is the storage bandwidth which is lower than the DRAM

bandwidth. We tackle the I/O bottleneck by prudently allocating

the FPGA resources for dictionary decoding kernel, multiple shuffle

kernels versus the sort kernel.

3 NASCENT DESIGN

Database systems are largely constrained by disk performance as

every operation on the database requires a tremendous amount of

data. A database comprises one or more tables, each with rows and

columns where each entry holds a specific attribute. Data encoding

is frequently used to compress the table stored in the storage system.

Dictionary encoding is a common encoding method widely used in

database management systems. Unlike byte-oriented compression

methods (i.e. gzip, snappy, run-length encoding) that require de-

compression as a blocking step before query execution, dictionary

SSD 1SSD 1SSD 1 SSD 2SSD 2SSD 2 SSD mSSD mSSD m

Host (CPU) Host (CPU)
SmartSSD1

FPGAFPGAGGAGGAAFPGA SmartSSD2
FPGAFPGAGGAGAAFPGA SmartSSDm

FPGAFPGAGGAGAAFPGA
FPGAFPGAAAFPGA

Bitonic Sort Kernel
Dictionary Decoder KernelShuffleKernel Shuffle KernelFPGA

AXIDRAM
SSD

Figure 2: The overall architecture of NASCENT (right) as

compared to the conventional systems equipped with an

FPGA accelerator (left).

encoding supports parallel decoding, and in-situ query process-

ing [25]. Sorting a database table based on a key column requires

the following three steps. Decompressing the key column, if it

is stored in dictionary encoded format; sorting the key column;

and reordering the rest of the table correspondingly. NASCENT

consists of three types of kernels: dictionary decoding, sort, and

shuffle to execute each step. NASCENT performs all the compu-

tations on SmartSSD to eliminate host-storage communication. In

the following subsections, we describe the NASCENT design.

3.1 SmartSSD Architecture

Figure 1 demonstrates the general architecture of SmartSSD. It

consists of the components of a general SSD, SSD controller, and

NAND array, as well as an additional FPGA accelerator, FPGA

DRAM and PCIe switch to set up the communication between the

NAND array and the FPGA. The link between the FPGA and the SSD

provides direct communication between them and the host. The

SSD used by SmartSSD is a 4TB one connected to a Xilinx KU15P

Kintex UltraScale FPGA (with 523K look-up tables and 1,045K flip-

flops) through a PCIe Gen3 x4 bus interface.

In SmartSSD, the processor is able to issue common SSD com-

mands such as SSD read/write requests to the SSD controller through

the SSD driver. Furthermore, the CPU is also able to issue FPGA

computation request and FPGA DRAM read/write requests via the

FPGA driver. In addition to host-driven commands, a SmartSSD de-

vice supports datamovement over the internal data path between its

NVMe SSD and the FPGA by using the FPGA DRAM and on-board

PCIe switch, which we term as ‘peer-to-peer (P2P) communication’.

As shown in Figure 1, FPGA DRAM is exposed to the host PCIe

address space so that NVMe commands can securely stream data

to FPGA via the P2P communication. P2P brings the computations

close to where the data is permanently residing, thereby reduc-

ing or eliminating the host-to-storage and the host-to-accelerator

PCIe traffic as well as related round-trip latencies and performance

degradations. SmartSSD provides a development environment and

run-time stack such as runtime library, API, compiler, and drivers

to implement the FPGA-based designs.

3.2 NASCENT Overall Architecture

In conventional storage systems, the host processor communicates

with the storage devices, reads the data to the memory hierarchy,

and performs computations. When an accelerator is present in the

system, either the host reads the data from the storage device and
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transfers it to the accelerator, or the accelerator may have a P2P

communication with the storage device to directly read the data

from the storage device. In the former case, the data should pass

through the host memory to reach the accelerator memory (FPGA

DRAM in this concept). Thus, the latency of transferring the data

through the host is significantly larger than when the accelerator

directly reads the data from the storage. Also, P2P communica-

tion between the accelerator and the storage devices, unlike the

former case, does not occupy the host resources for data transfer.

Current FPGAs support P2P communication with storage devices.

Nonetheless, such an architecture still suffers from performance

scalability when data is stored in multiple storage devices. Current

databases need multiple devices to store the data. These databases

are larger than what current commodity hardware platforms can

cope with. Thus, database management systems partition the data

into smaller chunks such that the computation nodes can execute

the computations on each partition in a timely-affordable manner.

Thereafter, the management systems combine the result of each

partition to generate the final result. Assuming the data is stored

in M SSDs, the tables of each SSD can be divided into a certain

number of partitions. To sort the entire database, we can sort all the

partitions of each SSD and merge them all through the merge tree.

Locally sorting each partition is independent of the other partitions;

therefore, we can locally different partitions in parallel. Our focus

is on the partition-level acceleration of sorting the data as it is the

backbone of the main computation.

In sorting a database table, NASCENT aims to fully utilize the

storage bandwidth. Therefore, parallelizing multiple partitions on a

single SSD is not beneficial as it does not increase the performance,

since in this case, the FPGA would need to frequently switch be-

tween the partitions as it cannot simultaneously access different

partitions. Thus, NASCENT parallelizes the computations in SSD-

level (shown in Figure 2), which is not possible in conventional

architecture. In conventional architecture, the FPGA is connected

to the storage devices using a PCIe bus which cannot provide simul-

taneous access to multiple SSDs. NASCENT deploys SmartSSDs,

each of which is directly connected to an FPGA. Each SmartSSD

therefore can sort an SSD-level partition independent of the others

which significantly accelerates the overall system performance as

the number of storage devices grows.

Since NASCENT comprises sort, shuffle, and dictionary decoder

kernels, it deals with a trade-off between allocating resources to

these kernels. The dictionary decoder kernel is able to saturate the

storage to FPGA bandwidth; thus, instantiating a single dictionary

decoder kernel is sufficient to deliver the maximum performance.

A single shuffle kernel cannot fully utilize the SSD-to-FPGA band-

width due to the fact that, although in NASCENT we have proposed

a new table storage format that enables reading a row in a sequen-

tial pattern, reading the next row still requires random memory

access which has a high latency. Therefore, we aim to set the total

input consumption rate for all the shuffle kernels to the maximum

provided bandwidth of the SSD-to-FPGA to fully utilize bandwidth.

Due to the fact that the shuffle operation is I/O intensive and the

size of the table is significantly larger than the size of the key col-

umn, the performance of the shuffle operation is determinative of

the overall performance. Thus, we instantiate multiple instances

of the shuffle kernel (as can be seen in Figure 2) to fully leverage

62851374

26851374

25867413

25687431

24317568

21346578

123456781st step 2nd step 3rd step
Figure 3: Example of bitonic sort algorithm steps for an ar-

ray of eight elements.

the storage-to-FPGA bandwidth and a single instance of the dic-

tionary decoder kernel and use the rest of the resources for the

sort kernel. Based on our evaluations, we found out that we can

fully utilize the storage-to-FPGA bandwidth in the shuffle and dic-

tionary decoder kernel while still having sufficient resources to

have a high-throughput sort. The sort kernel uses a great portion

of the FPGA BRAMs to store the arrays and provide the required

parallelism. Additionally, the dictionary decoder kernel requires

on-chip memory to store the dictionary table locally to provide

high throughput. Therefore, NASCENT dictionary decoder mostly

uses FPGA Ultra RAMs (URAMs) to balance the overall resource

utilization of NASCENT.

3.3 Bitonic Sort

Bitonic sort, proposed in [35], is a sorting network that can be run

in parallel. In a sorting network, the number of comparisons and

the order of comparisons are predetermined and data-independent.

Having a predefined number and order of comparisons, bitonic

sort can be efficiently parallelized on FPGAs by utilizing a fixed

network of comparators. Bitonic sort first converts an arbitrary

sequence of numbers into multiple bitonic sequences. By merging

two bitonic sequences, it creates a longer bitonic sequence and

proceeds until sorting the entire input sequence. A sequence of

length 𝑛 is a bitonic sequence if there is an 𝑖 (1 ≤ 𝑖 ≤ 𝑛) such
that all the elements before the 𝑖th are sorted ascending and all the

elements after that are sorted descending, i.e.,

𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑖 ≥ 𝑥𝑖+1 ≥ · · · ≥ 𝑥𝑛 (1)

Figure 3 shows the steps to sort an example input sequence of

length 𝑛 = 8 which consists of 𝑛
2 bitonic sequences of length 2.

The initial unsorted sequence passes through a series of compara-

tors that swap two elements to be in either increasing (red/filled

circles) or decreasing (blue/unfilled circles) order. The output of

the first step is 𝑛
4 bitonic sequences each of length 4. Applying a

bitonic merge on these 𝑛
4 sequences creates 𝑛

2 bitonic sequences.

The output sequence after applying log2 𝑛 bitonic merge produces

the sorted sequence.

Generally, in the bitonic merge at 𝑖th step (starting from 𝑖 = 1),
𝑛
2𝑖

bitonic sequences of length 2𝑖 are merged to create 𝑛
2𝑖+1

bitonic

sequences of length 2𝑖+1. The 𝑖th bitonic merge step itself consists

of 𝑖 sequential sub-steps of element-wise comparison (e.g., in Figure

3 the last/third rectangle is the step three and has three sequences

of comparisons). In the first sub-step of the 𝑖th step, element 𝑘 is
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(1, 5) → PCS(2, 6) → PCS(3, 7) → PCS(4, 8) → PCS
(1, 2) → 2P-merge(3, 4) → 2P-merge(5, 6) → 2P-merge(7, 8) → 2P-merge

(1, 3) → PCS(2, 4) → PCS(5, 7) → PCS(6, 8) → PCS

(1, 2) → 2P-merge(3, 4) → 2P-merge(5, 6) → 2P-merge(7, 8) → 2P-merge
(1, 3) → PCS(2, 4) → PCS(5, 7) → PCS(6, 8) → PCS

(1, 2) → 2P-merge(3, 4) → 2P-merge(5, 6) → 2P-merge(7, 8) → 2P-merge
Step 2

Step 3

Step 1 Step 2 Step 3 Step 4(b)(a)

Sequence memory

M1 M2
Figure 4: (a) NASCENT scheduling to sort the sequence memory, and (b) the content of the memory at each step.

compared with the element 𝑘 + 2𝑖−1, while the first 2𝑖 elements

are sorted in ascending order and the next 2𝑖 elements are sorted

in descending order (the sorting direction changes after every 2𝑖

element). In the aforementioned example, in the first sub-step of

the the last/third step, the 1st element (has a value of 2) is compared

with the 1 + 23−1 = 5th element (with a value of 7). Generally, in

the 𝑗 th sub-step (1 ≤ 𝑗 ≤ 𝑖) of the 𝑖th main step, element 𝑘 is

compared with the element 𝑘 + 2𝑖−𝑗 . Thus, in the second sub-step

of the third step, the first element (with a value of 2) is compared

to 1 + 23−2 = 3rd element (which has an value of 3 that is updated

in the first sub-step).

3.4 NASCENT Sort Kernel

To sort a database table, NASCENT begins with sorting the key

column. As mentioned earlier, the sequence of operations in bitonic

sort are predefined, data-independent and parallelizable. Therefore,

NASCENT takes advantage of FPGA characteristics to accelerate

the bitonic sort. The input sequence is stored in the FPGA DRAM,

also referred as ‘off-chip memory’. Then NASCENT streams the

input sequence into the FPGA through the AXI ports which has

an interface data width of 512 bits (16 32-bit integers). The AXI

port writes the data to the input buffer which has a capacity of

P = 2𝑚 integer numbers. To have a regular sort network, without

lack of generality P, the size of bitonic sort kernel, is a power-of-

two number (we can use padding if the total data elements is not a

multiple of P). P is greater than 16, it takes multiple cycles to fill

the input buffer. Whenever the input buffer fills up, it passes the

buffered inputs to the P-sorter module.

P-sorter is implemented in parallel and consists of log2 P steps.

The module is highly pipelined to meet the timing requirement

of FPGA and being able to provide a throughput of one sorted

sequence (of size P) per cycle. As explained in Section 3.3, the first

step in the P-sorter compares elements of even indices (2𝑘-indexed
elements) with their successor element. Thus the first step requires
P
2 Compare-and-Swap (CS) modules. During the second step, it first

compares and swaps the elements with indices 4𝑘 with 4𝑘 + 2, and

4𝑘 + 1 with 4𝑘 + 3. Afterwards, it compares and swaps 2𝑘 elements

with 2𝑘 + 1 elements of the updated array (see Figure 3). Therefore,

the second step in the P-sorter requires P
2 + P

2 = P instances of

the CS module. Analogously, the 𝑖th step in the P-sorter where

1 ≤ 𝑖 ≤ log2 P needs 𝑖 × P
2 CS modules. Total number of required

CS modules for the P-sorter can be estimated as follows:

𝑛𝐶𝑆 =
P

2
+ (2 ×

P

2
) + · · · + (logP ×

P

2
) �

P

4
log2 P (2)

NASCENT orchestrates the sort operation on the entire data by

leveraging the P-sorter modules and FPGA’s fast on-chip memory,

called block RAMs (BRAMs). First, when sorting every P elements,

P-sorter toggles between ascending and descending orders. The

sorted output of P-sorter modules are written into the sequence

memory, which consists of two sub-memory blocks, say 𝑀1 and

𝑀2, that are made up of FPGA BRAMs. Initially the ascending and

descending sorts are respectively written in𝑀1 and𝑀2 (see step 1

in Figure 4(b)). Each row of𝑀1 and𝑀2 contains P elements which

together form a bitonic row (as the first half is ascending and the

second half is descending) in the sequence memory with a length

of 2P. Note that, by row, we mean adjacent placements of items in

a sequence, not necessarily a physical row of a block RAM which

can just fit one or two integers. Since the 2P sequence is just a

single bitonic array, using a merging procedure similar to the last

(3rd) step of Figure 3, the 2P bitonic array can be sorted using

𝑃 × log(2P) compare-and-swap (CS) units.

Figure 4(a) lists the steps of merging the results of P-sorters and

Figure 4(b) illustrates the results after each step. Indeed, merging

the results of P-sorters is itself a bitonic-like procedure but on

sorted arrays rather than scalar elements. That is, similar to the step

1 in bitonic sort, the step 1 in Figure 4(a), (b) merges the adjacent

arrays. Step 2 of Figure 4 also is similar to the second step of the

simple bitonic sort that compares and swaps every item 𝑖 with
item 𝑖 + 2 using Parallel Compare-and-Swap (PCS) units, followed

by comparing item 𝑖 with item 𝑖 + 1 in the modified array. Thus,

we can consider the entire sort as intra-array followed by inter-

array bitonic sort. When NASCENT accomplishes sorting the entire

sequence memory, it writes it back into the off-chip DRAM and

uses the same flow to fetch and sort another chunk of the input

sequence repetitively and then merges them to build larger sorted

chunks.

To provide the required bandwidth for the parallelization, each of

𝑀1 and𝑀2 memory blocks use P column of BRAMs in parallel, so

P integers can be fetched at once (the data width of FPGA BRAMs

is 32 bit or one integer). Also, in each memory block, L rows of

BRAMs are placed vertically (e.g., in Figure 4(b) L = 8) so the

results of L sorters can be compared simultaneously. The number

of BRAMs and their capacity in terms of 32-bit integers number
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Figure 5: Architecture of the NASCENT bitonic sort kernel.

can be formulated as follow.

𝑛BRAM = 2 × P × L

𝐶BRAMs = 1024 × 2 × P × L
(3)

Note that BRAMs have a 1024 (depth) × 32 bit (width) configura-

tion. At each iteration, 𝐶BRAMs = 2048PL integers are sorted and

written back to the off-chip DRAM.

To sort a database table, the rest of the table rows have to be

reordered based on the sorted key column’s indices, called sorted

indices. Thus, we also need to generate the sorted indices that

will later be used by the shuffle kernel to sort the entire table. To

this end, when reading the input sequence from the DRAM, we

assign an index to each element and store the indices in an index

memory that has the same capacity as the sequence memory. When

reading from the sequence memory and feeding inputs to the P-

sorter, NASCENT reads the corresponding index and concatenates

to the value. The compare-and-swap units of P-sorters perform

the comparison merely based on the value part of the concatenated

elements, but the entire concatenated element, if required, will be

swapped. NASCENT therefore, stores the sorted indices in the

DRAM, as well.

Figure 5 demonstrates a tangible implementation of the discussed

steps of the bitonic sort kernel. The P-sorter module sorts chunks

of P elements and stores in the following sequence memory. The

𝑀1 memory group stores the ascending sorts while𝑀2 stores the

descending sorted elements. There are P BRAMs at every row of

the𝑀1 (and𝑀2) memory, so the sorted P elements are partitioned

element-wise for subsequent parallel operations. In the PCS sub-

steps two P-element arrays from the same memory (either𝑀1 or

𝑀2, e.g., arrays 1 and 3 from𝑀1, or 2 or 4 from𝑀2 shown in Figure

4(a)) are fetched while in the last sub-step (i.e., merge), a P-element

array from𝑀1 and another from𝑀2 are fetched and sorted/merged.

In our architecture, this is enabled using L-to-1 multiplexers that

are connected to all L BRAM groups and select up to two arrays

from each𝑀1 and𝑀2. As shown in the architecture, the PCS and

merge modules’ outputs are written back in the sequence memory

to accomplish the next steps.

3.5 NASCENT shuffle Kernel

After sorting the key column, NASCENT uses shuffle kernel to

reorder the table rows. It reads the value of the first element of the

sorted key column as well as its index in the original table (which is

concatenated to the value of elements). Then it reads all the entries

R1 Rn

C1 Ck CmR1
Rp

e1,1 e1,k e1,me2,1 e2,k e2,m
ep,1 ep,k ep,m
en,1 en,k en,mRn

e1,1 e2,1 en,1 Ck Cm
e1,1 e1,2 e1,m Rp Rn
e1,k e2,k en,k

C1
R1
Ck

(a) Column-wise arrangement of table

(b) Row-wise arrangement of table

(c) NASCENT arrangement of table
Logical arrangement of table

Figure 6: Storing the table in (a) column-wise, (b) row-wise,

and (c) our proposed format.

of the original row that the index points to and writes it as the first

row of the new sorted table. Analogously, to generate the 𝑖th row

of the sorted table, NASCENT reads the 𝑖th element of the sorted

indices sequence. The index represents the index of the row in the

original table. Thus, we can formulate the mapping between the

original table and the sorted one as follows.

SortedTable[i] = OriginalTable(SortedIndices[i]) (4)

Evidently, the shuffle kernel does not perform any computation;

hence, the kernel’s performance is bounded by the memory access

time. Storing the tables in the storage, therefore, directly affects

the performance of the kernel. Typically, tables are stored in either

column-wise or row-wise format. In the column-wise format, ele-

ments of every column are stored in consecutive memory elements,

which is shown in Figure 6(a). In the row-wise format, all the el-

ements of a row are placed in successive memory elements (see

Figure 6(b)). Consecutive memory elements can be transferred to

the FPGA from its DRAM in the burst mode, significantly faster

than scattered (random) accesses.

Storing the table in column-wise format results in sequential/burst

memory access pattern in the sort kernel (since it needs access to

the consecutive elements of the key column, denoted by 𝐶𝑘 in

Figure 6). However, the shuffle kernel will have random access pat-

terns (as the shuffle kernel needs access to the consecutive elements

of the same row, which are placed distantly in the column-wise

arrangement). Analogously, storing the table in row-wise format

enables sequential access patterns to read a single row (suitable for

the shuffle kernel) but reading the next row (required in sort kernel)

issues random memory access. To optimize the access patterns of

both kernels, NASCENT uses a hybrid technique for storing the ta-

ble in the storage. As shown in Figure 6(c), we store the key column
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Figure 7: (a)Architecture of the NASCENT dictionary decoder, (b) the generic Byte-addressable dictionary table.

(𝐶𝑘 ) column-wise while the rest of the table is stored in row-based

format. Therefore, both kernels can benefit from sequential memory

accesses.

3.6 NASCENT Dictionary Decoding Kernel

Dictionary encoding is used as a stand-alone compression technique

[25] or as a step combined with other compression techniques such

as in Parquet [14]. Dictionary encoding is a lossless compression

technique that maps each “value” to a “key”. Using dictionary en-

coding is beneficial when the range of the numbers is significantly

higher than the number of unique values (𝑈 ). Each unique 𝑛-bit
value is represented by a 𝑘-bit key where 𝑘 = 𝑙𝑜𝑔2 (𝑈 ). Dictionary

encoding is beneficial when 𝑘 is considerably smaller than 𝑛. There-
fore, database management systems decide whether a table using

dictionary encoding is favorable or simply storing and processing

the plain data.

If the data is stored in the storage devices in the encoded format,

to perform sort operation on the table, the data has to be decoded

first. Figure 7 shows the proposed NASCENT dictionary decoder

architecture. NASCENT dictionary decoder first reads the “dictio-

nary page”, which is stored along with the encoded data, from the

storage device. Then it streams in the “data page”, decodes it, and

writes the decoded data to the FPGA DRAM. As the decoded data

will be used in the sort kernel, NASCENT keeps the decoded data

into the FPGA DRAM to avoid unnecessary storage accesses. The

width of the input elements (𝑘) depends on the number of unique

elements in the dictionary (𝑈 ), and the width of the decoded ele-

ments (𝑛) is the same as the original data. NASCENT provides a

generic dictionary decoder that supports various input and output

bit widths that can be configured during the runtime.

NASCENT dictionary decoder, after loading the dictionary, streams

in the data page using the AXI interface. For the sake of design sim-

plicity and AXI compatibility, NASCENT dictionary decoder limits

the input and output bit widths (𝑛 and 𝑘 respectively) to power-of-

two numbers greater than 8. The AXI interface reads the encoded

data page elements and stores them in the “input buffer”. To sup-

port different output bit widths, the dictionary table has to support

the reading and writing element with different bit widths. Since

there are multiple accesses to the dictionary table in each clock

cycle, NASCENT uses on-chip memory to store the dictionary table.

Figure 7(b) shows the dictionary table configuration stored in the

FPGA on-chip memory. The Dictionary table is a Byte-addressable

memory to support reading and writing elements with different

bit widths. Although the proposed architecture for the dictionary

decoder is able to support any fixed size of output bit width, in our

application, we set the maximum output bit width to 64, i.e., each

row of the dictionary table consists of 8 Bytes. In Figure 7(b), the ad-

dress of each Byte is illustrated (black indices). However, when the

application decodes 𝑘-bit inputs to 𝑛-bit outputs, the input element

should be interpreted as the index of the table when storing 𝑛-bit
elements. For instance, red indices show the table indexing when

the dictionary’s outputs are 4-Byte elements, and blue index shows

the 8-Byte table indexing. Each encoded element in the data page

is the index to the dictionary; however, since the NASCENT dictio-

nary table is Byte addressable, NASCENT translates each input to

the dictionary table address in the “address generator” module.

The address generator module maps the input element to an

address to the dictionary table. For each input, it generates Byte

addresses to all the elements in the row that includes the value

corresponding to the input key. Therefore, for each input element,

NASCENT reads an entire row of the dictionary table. To map the

inputs to the Byte addresses, the address generator module shifts

the input element to the left for 𝑙𝑜𝑔2 (
𝑛
8 ) bits. Since in NASCENTwe

set the maximum output bit width to 64 bits (8 Bytes), after shifting

the input element, the first three bits of the shifted element are set

to zero to indicate the address of the first element of the row that

contains the value corresponding to the input key. To read an entire

row, NASCENT generates addresses to all the 8 elements in the

row. NASCENT dictionary decoder writes the entire row into the

“output filtering”module where it masks the row using the input key

to get the corresponding value. For instance, when the dictionary

decoder outputs are 32-bit numbers (4 Bytes) and the input is an

8-bit key equal to 3, the address generator shifts the input to the left

for 𝑙𝑜𝑔2 (
32
8 ) = 2 bits, the shifted element which is the address to the

first Byte of the original value is 3 × 22 = 12. Setting the first three

bits of the Byte address to zero generates the address of the first

Byte of the row (8). The address generator outputs addresses from

{8, 9, . . . , 15} that includes Bytes {12, 13, 14, 15} representing the
decoded value. NASCENT dictionary decoder reads the entire Bytes,

and then the output filtering module masks elements with addresses

{12, 13, 14, 15}, representing the decoded element correspond to

key=3. Then the output filtering selects the Bytes {12, 13, 14, 15}
and writes these 4 Bytes into the output buffer, which will be then

transferred to the off-chip DRAM.
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Table 1: Characteristics of SmartSSD resources.
Storage LUT BRAM DSP DRAM D2FPGA BW S2FPGA BW

SmartSSD 4 TB 391 K 503 1959 4 GB 19 GB/s 3 GB/s

4 EXPERIMENTAL RESULTS

4.1 General Setup

To evaluate the efficiency of NASCENT, we implemented the dic-

tionary decoder, sort, and shuffle kernels on the FPGA available on

SmartSSD. Each SmartSSD consists of a 4TB SSD directly connected

to a Kintex UltraScale+ FPGA, XCKU15P, through a PCIe Gen3 x4

bus. Table 1 summarizes the available resources of SmartSSD. In

this table, D2FPGA BW stands for DRAM-to-FPGA bandwidth, and

S2FPGA BW indicates the SSD-to-FPGA bandwidth. NASCENT

kernels are written in C++ and optimized to deliver high perfor-

mance. The kernels are synthesized using the Vivado High-Level

Synthesis tool (HLS) and integrated with the host code using Xilinx

Vitis Accel 2019.2. The host code is written in OpenCL, which is re-

sponsible for initiating the kernels and passing the tables’ location

in the storage. The SmartSSD FPGA has a P2P communication with

the SSD, and all the communications between the storage and the

FPGA will happen internally without involving the host. To mea-

sure the performance of the entire database sort and also individual

kernels, we used OpenCL event profiling. We report end-to-end

execution times, including the P2P communication between the

FPGA and the SSD in the SmartSSD to transfer the data, and the

computation time, unless otherwise stated. To evaluate the energy

efficiency of NASCENT, we measure the power consumption of the

FPGA (including its off-chip DRAM) without including the power

of SSD since we use the same SSD for all the deployments.

4.2 Kernel Evaluation

Although a major contribution of NASCENT is carrying out the

database sort operation near the storage device with a low-power

accelerator and benefit from eliminating the data movement as well

as releasing the processor to perform other complex query opera-

tions, to solely examine the performance of NASCENT’s sort kernel

architecture, we compare it with the CPU-based sort baseline. For

the baseline CPU sort, we use a C++ implementation of quick-sort,

which is generally considered as one of the fastest sort algorithms.

The software sort runs on the Intel Core i7-8700 processor with a

clock frequency of up to 4.6 GHz.

Figure 8 compares the performance of NASCENT’s sort kernel

and quick-sort on CPU when the data is available in the DRAM

memory of both CPU and FPGA. The execution time includes read-

ing the input array from the DRAM, sorting the array, and writing

the sorted array into the platform DRAM. The input sequences

are randomly generated with the lengths of 1000 elements (1K)

to 8,000,000 elements (8M). The sort kernel of NASCENT con-

sistently delivers higher performance than the CPU implemen-

tation.NASCENT sort kernel fits up to 128K elements inside the

FPGA on-chip BRAM blocks. Therefore, input sequences smaller

than 128K elements will be sorted in a single iteration. For larger

number of inputs, NASCENT sorts the first 128K elements, writes

them back to the DRAM and fetches another 128K of data until

it (partially) sorts the entire input sequence. Eventually, the sort

kernel merges the sorted chunks stored in the DRAM. Because the

DRAM communication is slower than reading from the on-chip
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Figure 8: Execution time and relative energy efficiency of

NASCENT sort kernel compared to the CPU baseline when

the data is available in the DRAM of CPU and FPGA. The

Y-axis is in logarithmic scale.
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Figure 9: Execution time and relative energy efficiency of

NASCENT sort kernel compared to the CPU baseline when

the data is stored in the storage devices.

BRAMs, the relative performance improvement of the sort kernel

shrinks for inputs larger than 128K elements (from 7.5× in the

case of sorting 128K elements to 2.4× for sorting 256K elements).

The performance improvement hovers around ∼ 1.8× for inputs

with larger than 1M elements. SmartSSD is using a relatively small

and low-power ∼ 7.5W FPGA. Therefore, NASCENT shows 61.3×
improvement of energy consumption for sorting inputs of 1K ele-

ments. With the reduction of the speed-up in larger sequences, the

energy improvement saturates at ∼ 13.6× for inputs larger than

1M elements.

Figure 9 compares the performance of NASCENT’s sort kernel

and the CPU baseline when the data resides in SSD. When the data

was available in the DRAM, CPU could readily prefetch a major

portion of the input elements into the cache and thereby showed

better performance compared to when it reads the data from the

SSD, for which the SSD-to-DRAM latency cannot be hidden as

it is larger than the computation latency. Thus, NASCENT sort

kernel shows even better speed-up when both the platforms read

the data from storage. The sort kernel of NASCENT shows 6.6×
speed-up for a small 1K chunk of inputs, which saturates at ∼ 8.25×
when reading and sorting 8M elements. The energy consumption

(excluding the SSD energy) also similarly increases from 49.7× to

61.6×.
Figure 10 shows the performance of NASCENT dictionary de-

coder kernel as compared to multi-core execution of the dictionary

decoder on CPU for 8-bit and 16-bit data pages and outputs with

16, 32, and 64 bit widths when the data is stored in SSDs. Both

NASCENT and CPU dictionary decoder kernels are reading the

from the storage devices directly, temporarily store into the device

DRAM, decode the input, and write the decoded data into the de-

vice DRAM. Since the dictionary decoding is only beneficial when
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ing a columnwith different number of rowswhen the stored

data are 8-bit numbers and the outputs are 32-bit or 64-bit

numbers. The Y-axis is logarithmic.

the bit width of the encoded values is less than the original value,

we only consider 8-bit and 16-bit inputs. Note that if the size of

the dictionary becomes greater than 64k unique elements (16-bit

inputs), the database management system will not use dictionary

encoding and stores the plain data. As the dictionary decoding is

an I/O bounded application, we measured the performance as the

input bandwidth from the storage devices to the computing plat-

form (SmartSSD or CPU). The performance target is fully utilizing

the SSD bandwidth to the computing platform, shown by the red

dashed line in the figure. Additionally, the total bandwidth shows

the DRAM to FPGA/CPU bandwidth, including reading the data

page and writing the decoded data to the DRAM.

NASCENT dictionary decoder kernel in all the cases, except

for the 8-bit input and 64-bit output case, achieves 3 GB/sec input

bandwidth, which saturates the SSD-to-FPGA bandwidth. When

the data page is 8-bit encoded data, and the values are 64-bit data,

the output size would be 8× of the input; consequently, the total

bandwidth reaches the maximum DRAM-to-FPGA bandwidth to

write the decoded values. Therefore it cannot saturates the input

bandwidth due to the DRAM-to-FPGA bandwidth limitation. In

this case, the kernel achieves 2.3 GB/sec SSD-to-FPGA bandwidth.

The multi-core CPU implementation of the dictionary decoder is

unable to saturate the CPU-to-SSD bandwidth in most cases. The

number of dictionary decodings per second, when running on CPU,

is independent of the input bit width (8-bit and 16-bit inputs) and

consequently of the dictionary size. Therefore, the input bandwidth

for 16-bit inputs is double that for the 8-bit inputs. Nonetheless, for

smaller dictionary tables, NASCENT instantiates more copies of
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Figure 12: Execution time for sorting tables with different

number of rows and columns. The Y-axis is logarithmic.

the dictionary to parallelize the decoding further and saturating

the SSD-to-FPGA bandwidth.

Figure 11 shows the breakdown of the execution time of sorting

a column stored in the dictionary encoded format in the storage sys-

tem. The figure shows two cases when 8-bit numbers are decoded

to 32-bit and 64-bit numbers. First, NASCENT dictionary decoder

kernel decodes the data to the 32-bit and 64-bit numbers, and then

it sorts the decoded column. Note that NASCENT sort kernel can

sort 64-bit long numbers with minimal changes in the compare

and swap (CS) modules. Due to FPGA resource limitation, both

32-bit and 64-bit NASCENT sort kernels utilize the same amount

of BRAMs; therefore, 64-bit sort kernel fits up to 64k long (64-bit)

numbers in the on-chip memory, as opposed to fitting 128k 32-bit el-

ements. For larger input arrays, NASCENT sort kernel uses off-chip

DRAM to store the partially sorted arrays. For sorting input arrays

smaller than 64k elements, both 32-bit and 64-bit NASCENT sort

kernels deliver the same performance. Nevertheless, for larger input

sizes, the 64-bit NASCENT sort kernel provides slightly lower per-

formance than the 32-bit sort kernel due to higher DRAM accesses.

As illustrated in Figure 11 the execution time of the NASCENT

dictionary decoder kernel linearly increases with the size of the

input array since the dictionary decoder kernel performance is data

independent.

Figure 12 shows the breakdown of the execution time of NASCENT

when sorting database tables of various sizes when the plain data

is stored in the storage system. We generated static tables with a

different number of rows and columns from 1K to 1M. Note the

content of the columns is not limited to integer types and can be

any types of variable or strings. For tables with 100K and 1M rows,

we only considered 1K and 10K columns as otherwise, the table size

becomes larger than the typical size of the partitions. For tables

with the same number of rows, the sort kernel takes exactly the

same time since the bitonic sort execution time is data-independent.

For a given number of rows, the execution time of the shuffle ker-

nel increases with the number of columns. Due to the fact that the

overall size of the table is significantly larger than the size of the

input sequence to the sort kernel (which deals with one column, i.e.,

the key column), the execution time of the shuffle kernel dominates

the total time. The shuffle kernel fully utilizes the bandwidth of the

PCIe bus from the SSD to the FPGA to minimize the shuffling time.

Thus, the execution time of NASCENT increases almost linearly

with the size of the table.
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4.3 System Evaluation

In order to evaluate the scalability of NASCENT, in Figure 13 we

show the execution time of the CPU, typical FPGA-equipped sys-

tems (see Figure 2) and NASCENT when the number of SSD in-

stances increases from 1 to 12 (12 SSDs is the limitation incurred by

the number of slot counts of the host machine). Each SSD contains a

table with 1024 rows and an average row size of 4KB. Originally, the

key columns consist of 32-bit integer numbers, but the columns in

the storage system are stored as 16-bit dictionary encoded elements.

While in real-world applications different SSDs would sort different

sizes of tables, here we assume all the tables have the same dimen-

sions and size. As we showed in Figure 12, the execution time of

NASCENT increases linearly with the size of the table (for a specific

number of rows) since it fully utilizes the SSD-to-FPGA bandwidth.

Each SSD contains multiple tables that are going to be sorted. Note

that the bitonic sort’s performance is data-independent, and sort

operations on different SSDs are executed independently. Thus, we

can assume all the SSDs contain the same table without loss of

generality.

As Figure 13 reveals, the FPGA-equipped system baseline and

SmartSSD are both faster than the CPU baseline. The bottleneck of

all the platforms is the storage bandwidth, and the memory hierar-

chy of the processor increases the execution time. Comparing the

FPGA-equipped system with SmartSSD, when the system has only

one storage device, the stand-alone FPGA shows slightly better

performance as it is larger than the SmartSSD’s FPGA so contains

more kernels1. Nevertheless, as the number of storage devices in-

creases, the execution time of NASCENT remains the same as it

sorts the tables independently. The CPU and FPGA baselines, how-

ever, are not able to parallelize the operations on different SSDs

and consequently their runtime increases linearly with the number

of SSDs. In SmartSSD, every storage device is equipped with an

FPGA, so it consumes more power than a conventional SSD. How-

ever, the power consumption of the SSD is higher than the FPGA’s

power, which shrinks the per-device overhead of SmartSSD. In Fig-

ure 13 we also show the energy efficiency of NASCENT versus the

FPGA-equipped system (FPGA baseline). As the number of storage

devices increases, both the performance and energy efficiency of

NASCENT also improves. With 12 SmartSSDs, NASCENT is 7.6×
(147.2×) faster and 5.6× (131.4×) more energy efficient than the

FPGA (CPU) baseline.

Eventually, Figure 14 shows the speed-up and energy efficiency

of NASCENT compared to the FPGA-equipped systemwhen it sorts

a copy of the largest table (order-line) of the TPCC benchmark in

each SSD [36] (as explained earlier, the performance of sorting the

table with the same size is data-independent, so having multiple

copies of the same benchmark is analogous to having same-size

tables with different entries). We have evaluated the performance

of NASCENT when sorting the on the TPCC benchmark for five

different scale factors {1, 2, 5, 10, 20} (which scales the number of

rows). Compared to the FPGA baseline, NASCENT shows an av-

erage 9.2× speed-up and 6.8× energy reduction when using 12

SmartSSDs. NASCENT shows roughly constant improvement as

1The baseline FPGA-equipped system enjoys from the Xilinx’s Alveo U250 with 1,728K
LUTs (compared to 391K in SmartSSD’s FPGA), 64 GB DRAM, 77 GB/s DRAM-to-FPGA
bandwidth, and on-chip BRAMs of total 57MB (compared to 16MB in SmartSSD’s
FPGA).
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and FPGA baseline for sorting 1024× 1024 tables, each stored

in an SSD. The Y-axis is in logarithmic scale.
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Figure 14: Execution time of NASCENT compared to the

FPGA-equipped baseline storage when sorting multiple

copies of the largest table of TPCC benchmark on 12 storage

devices. The scale factor denotes the scaling up the number

of benchmark rows.

the table scales (the performance of sort kernel does not scale lin-

early, so the overall improvement, which is dominated by shuffling

performance, is near-constant).

5 CONCLUSION

In this paper, we present NASCENT, a near-storage accelerator for

database sort on SmartSSD based on the bitonic sort. NASCENT

tackles the data transfer limitations in current interface connections

between storage devices and computation platforms. NASCENT

comprise FPGA-based accelerators with specific kernels to acceler-

ate dictionary decoder, sort, and the subsequent shuffling operations

to sort a database table. NASCENT increases the scalability of com-

puter systems by enabling simultaneous operations on different

storage devices. With 12 SmartSSDs, NASCENT is 7.6× faster and

5.6× more energy efficient than the same accelerator on conven-

tional architectures comprising a stand-alone FPGA and storage

devices. NASCENT also shows 147.2× speedup and 131.4× energy

reduction as compared to sorting the database table on the host

CPU.
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