
Conjugate Gradient Solvers with High Accuracy and Bit-wise
Reproducibility between CPU and GPU using Ozaki scheme

Daichi Mukunoki
daichi.mukunoki@riken.jp

RIKEN Center for Computational Science
Kobe, Hyogo

Katsuhisa Ozaki
ozaki@sic.shibaura-it.ac.jp

Shibaura Institute of Technology
Saitama, Japan

Takeshi Ogita
ogita@lab.twcu.ac.jp

Tokyo Woman’s Christian University
Tokyo, Japan

Roman Iakymchuk
roman.iakymchuk@sorbonne-universite.fr

Sorbonne University
Paris, France

Fraunhofer ITWM
Kaiserslautern, Germany

ABSTRACT
On Krylov subspace methods such as the Conjugate Gradient (CG)
method, the number of iterations until convergence may increase
due to the loss of computational accuracy caused by rounding errors
in floating-point computations. At the same time, because the order
of the computation is nondeterministic on parallel computation, the
result and the behavior of the convergence may be nonidentical in
different computational environments, even for the same input. In
this study, we present an accurate and reproducible implementation
of the unpreconditioned CG method on x86 CPUs and NVIDIA
GPUs. In our method, while all variables are stored on FP64, all
inner product operations (including matrix-vector multiplications)
are performed using the Ozaki scheme. The scheme delivers the
correctly rounded computation as well as bit-level reproducibility
among different computational environments. In this paper, we
show some examples where the standard FP64 implementation
of CG results in nonidentical results across different CPUs and
GPUs. We then demonstrate the applicability and the effectiveness
of our approach in terms of accuracy and reproducibility and their
performance on both CPUs and GPUs. Furthermore, we compare
the performance of our method against an existing accurate and
reproducible CG implementation based on the Exact Basic Linear
Algebra Subprograms (ExBLAS) on CPUs.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks → Network reliability.

KEYWORDS
Accuracy, reproducibility, Conjugate Gradient, heterogeneous com-
puting, CPU, GPU

HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8842-9/21/01.
https://doi.org/10.1145/3432261.3432270

ACM Reference Format:
Daichi Mukunoki, Katsuhisa Ozaki, Takeshi Ogita, and Roman Iakymchuk.
2021. Conjugate Gradient Solvers with High Accuracy and Bit-wise Repro-
ducibility between CPU and GPU using Ozaki scheme. In The International
Conference on High Performance Computing in Asia-Pacific Region (HPCAsia
2021), January 20–22, 2021, Virtual Event, Republic of Korea. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3432261.3432270

1 INTRODUCTION
Floating-point computations with finite precision introduce round-
ing errors with each operation; the accumulation of these errors
may result in inaccuracy of the overall computation. At the same
time, because floating-point computations are nonassociative, their
results are nondeterministic (i.e., nonreproducible) if the order of
the computation is not identical. As the scale of the computation
grows toward Exascale computing and rounding errors accumulate,
these issues may become more serious. In addition, the recent trend
of introducing low-precision hardware increases the magnitude of
rounding errors.

The reproducibility issue has until now received little focus. How-
ever, in view of the aforementioned rounding-error issues, along
with the proliferation and heterogeneous of various processors, the
importance of reproducibility has become more clear and needed.
In fact, recent high-performance computing environments contain
many factors that vary the order of computations, impacting the
reproducibility of the computational result. These factors include
parallel computation with different degrees of parallelism (various
numbers of threads, processes, etc.), atomic operation onmany-core
architectures, the use or nonuse of the fused multiply-add (FMA)
operation, and the introduction of auto-tuning and dynamic load
balancing techniques. This issue of reproducibility may impact soft-
ware debugging and cause problems for scientific activities that rely
on the reproducibility of results. In addition, when code is ported
to a new system, it can be a problem from the standpoint of relia-
bility and quality control if it is not possible to distinguish whether
differing results are being caused by a bug or just a rounding-error
issue.

This paper focuses on the reproducibility issue of the Conjugate
Gradient (CG) method, which is a Krylov subspace method and
is often used for solving iteratively large sparse linear systems.

100

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3432261.3432270
https://doi.org/10.1145/3432261.3432270
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3432261.3432270&domain=pdf&date_stamp=2021-01-20

HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea Mukunoki, et al.

The CG method is a well-known example of computations that
can be easily affected by rounding-errors; the number of iterations
until convergence may increase due to the loss of computational
accuracy, and the computation of residual is particularly sensitive.
The computation result and the convergence behavior may be non-
identical in different computational environments, even for the
same input owing to rounding errors.

In this study, we present an accurate and reproducible imple-
mentation of the unpreconditioned CG method on x86 CPUs and
NVIDIA GPUs. In our method, while all variables, including the
coefficient matrix and all vectors, are stored on FP64 (IEEE bi-
nary64, a.k.a. double-precision), all inner product operations (in-
cluding matrix-vector multiplications) are performed using the
Ozaki scheme [17]. The scheme delivers the correctly rounded
computation at each inner product operation as well as bit-level re-
producibility among different computational environments – even
between CPUs and GPUs. Here the “correctly rounded computa-
tion" means that for the inner product of two vectors stored on a
working precision, the result is computed only with one rounding
to the working precision at the end. First, we show some exam-
ples where the standard FP64 implementation of CG results in
non-identical results across different CPUs and GPUs. We then
demonstrate the applicability and the effectiveness of our imple-
mentations, in terms of accuracy and reproducibility, and their
performance on both CPUs and GPUs. Furthermore, we compare
the performance of our proposed method against an existing ac-
curate and reproducible CG implementation based on the Exact
Basic Linear Algebra Subprograms (ExBLAS)1 [9, 10], which also
performs correctly rounded operations for inner products.

The main contribution of this study is to show the adaptation
of the Ozaki scheme to the CG method and discuss the behavior
in terms of both performance and numerical results. The Ozaki
scheme has already been adopted for an accurate and reproducible
BLAS, OzBLAS2 [13]; one of the chief advantages of this scheme
is that it can be built upon standard BLAS implementations, such
as Intel Math Kernel Library (MKL)3 and NVIDIA cuBLAS4; good
performance can be expected with low development cost. In fact,
our proposed method can achieve comparable to or better perfor-
mance than the ExBLAS approach in many cases. Moreover, as
far as we know, this study is the first to develop a CG solver that
ensures reproducibility across CPUs and GPUs. We note that our
implementations are currently unpreconditioned solvers, but that
our proposed approach can be used to construct preconditioned
solvers.

The remainder of this paper is organized as follows. Section 2
introduces related work. Section 3 describes our methodology based
on the Ozaki scheme. Section 4 presents our implementations on
CPUs and GPUs. Section 5 details our numerical experiments and
their results. Section 6 contains a discussion of other methods for
ensuring reproducibility, and conclusions are drawn in Section 7.

1https://github.com/riakymch/exblas
2http://www.math.twcu.ac.jp/ogita/post-k/results.html
3https://software.intel.com/en-us/mkl
4https://developer.nvidia.com/cublas

2 RELATEDWORK
First, issues of accuracy and reproducibility have different motiva-
tions and natures. However, because both, in this case, originate
from the same cause (i.e., rounding errors), we can see solutions and
challenges common to both. We note that, while reproducibility
itself plays no part in the accuracy issue, improving accuracy may
contribute to reducing the magnitude of the reproducibility issue.
Here, we introduce several examples in BLAS and linear algebra
computations.

If only reproducibility (onworking precision operations) is needed,
a sufficient brute force approach is to fix the order of the computa-
tion. Although this approach can be costly on parallel computing,
some vendors do go this route. For instance, Intel’s Conditional Nu-
merical Reproducible mode [23] provides reproducibility on Intel
MKL. NVIDIA cuBLAS also ensure an identical result if the compu-
tation is performed on the same number of cores, except for some
routines using atomic operations; but it offers alternatives with-
out atomic. However, their reproducibility is ensured only within
each library (and under several restrictions) and thus neither are
appropriate solutions for the reproducibility between CPUs and
GPUs.

A solution that provides full reproducibility in any environ-
ment is to perform the computation with the correctly rounded
operation. This can additionally contribute to enhancing the ac-
curacy of computation. This approach has been implemented in
ExBLAS [3], RARE-BLAS [2], and OzBLAS. The OzBLAS is based
on the Ozaki scheme, which is the error-free transformation for dot
product/matrix multiplication; this study utilizes the same scheme.
The scheme enables one not only to return the correctly rounded
result, but also to adjust the accuracy with a certain granularity. Re-
producibility is ensured even at tunable accuracy. Moreover, unlike
the other approaches, it has a great advantage in that it can be built
upon standard BLAS implementations: good performance can be
expected with low development cost. ReproBLAS5 [5] delivers re-
producibility without correctly rounded operations. Their approach
– originating from the works of Rump, Ogita, and Oishi [19, 20, 22]
– cuts (rounds) some lower bits that may cause rounding errors and
computes them using multiple bins to compensate for the accuracy.

The above ExBLAS approach has been extended to CG meth-
ods [8, 9]. They implemented the CG solver with the Jacobi pre-
conditioner on distributed environments using the pure MPI as
well as MPI + OpenMP tasks. To our knowledge, this is the only
work to address the reproducibility of computed solutions of CG
methods. The other implementations do not, as of now, provide
sparse operations. Although the ExBLAS-based CG method has
not added support for GPUs yet, this study compares it with our
proposed method on CPUs.

There are many studies and software developed for improving
accuracy (not for ensuring reproducibility) of CG solvers. Although
most of these are mainly intended for improving accuracy, they can
also be used to reduce the reproducibility issue. In particular, the
aforementioned ExBLAS-based CG methods demonstrate examples
that can achieve reproducibility using only an accurate computa-
tion method (with only floating-point expansions and the FMA in-
struction). Other examples of accurate linear algebra computations

5https://bebop.cs.berkeley.edu/reproblas/

101

Conjugate Gradient Solvers with High Accuracy and Bit-wise Reproducibility between CPU and GPU using Ozaki schemeHPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea

Algorithm 1 The inner product: r = xTy (x ,y ∈ Fn) with the
Ozaki scheme.
1: function (r = Ozaki_DOT(n,x ,y))
2: xsplit[1 : sx] = Split(x ,n) // Algorithm 2
3: ysplit[1 : sy] = Split(y,n) // Algorithm 2
4: r = 0
5: for q = 1 : sy do
6: for p = 1 : sx do
7: r = r + fl((xsplit[p])

Tysplit[q]) // DOT
8: end for
9: end for
10: end function

Algorithm 2 Splitting of vector x ∈ Fn in the Ozaki scheme, where
u denotes the unit round-off of IEEE 754 (u = 2−53 for FP64). Lines
9 and 10 are computations of xi and xsplit[j]i for 1 ≤ i ≤ n.

1: function (xsplit[1 : sx] = Split(x ,n))
2: ρ = ceil((log2(u−1) + log2(n))/2)
3: µ = max1≤i≤n (|xi |)
4: j = 0
5: while µ , 0 do
6: j = j + 1
7: τ = ceil(log2(µ))

8: σ = 2(ρ+τ)
9: xsplit[j]i = fl((xi + σ) − σ)

10: xi = fl(xi − xsplit[j]i)
11: µ = max1≤i≤n (|xi |)
12: end while
13: sx = j
14: end function

include the following. MPLAPACK [16] provides high-precision
BLAS and Linear Algebra PACKage (LAPACK) routines. The high-
precision operation is performed using existing high-precision arith-
metic libraries such as the GNU Multiple Precision Floating-Point
Reliable Library (MPFR)6 [6] and QD7 [7]. XBLAS8 [12] provides
computations with two-fold precision against the data precision. In
addition, some studies have implemented CG solvers using IEEE 754
high-precision or an alternative arithmetic format – for example,
NAS Parallel Benchmark (including CG) with IEEE 754 binary128
and Posit [1], as well as quadruple-precision CG [15] on GPUs using
the double-double arithmetic.

3 METHODOLOGY
3.1 Ozaki scheme
The Ozaki scheme is the error-free transformation of dot prod-
uct/matrix multiplication. This subsection presents a brief overview
of the scheme. For further details of the Ozaki scheme, see the orig-
inal paper [17].

Here, we explain the case of a dot product, but this scheme can
be naturally extended to any dot product-based operations such
6https://www.mpfr.org
7https://www.davidhbailey.com/dhbsoftware/
8https://www.netlib.org/xblas/

as matrix-vector multiplication and matrix-matrix multiplication.
Algorithm 1 shows the entire procedure of the Ozaki scheme for the
dot product of two vectors x ∈ Fn and y ∈ Fn , where F is the set
of floating-point numbers (in this study, FP64). Briefly, this method
consists of the following three steps:
(1) Element-wise splitting of the input vectors into several split

vectors
(2) Computation of the all-to-all products of those split vectors
(3) Element-wise summation (reduction) of the above all-to-all-

product results
This method can be understood as an extension of high-precision
arithmetic with multiple components (e.g., double-double arith-
metic [7]) into the vector level. Specifically, first, the input vectors
are split element-wise into the summation of several vectors using
Algorithm 2 as

x =
sx∑
p=1

xsplit
(p), xsplit

(p) ∈ Fn (1)

y =

sy∑
q=1

ysplit
(q), ysplit

(q) ∈ Fn (2)

We note that the number of split vectors (sx and sy) to achieve the
correctly rounded result depends on the length of the input vectors
and the range of the absolute values in the input vectors. Then, it
computes the summation of the all-to-all inner products of the split
vectors as

xTy =
sx∑
p=1

sy∑
q=1

(
xsplit

(p)
)T

ysplit
(q) (3)

Let fl(·) denote a computation performed with floating-point arith-
metic. Algorithm 2 performs the splitting to meet the following
two properties for two vectors:
(1) If xsplit(p)i and ysplit

(q)
j are non-zero elements,���xsplit(p)i ��� ≥ ���xsplit(p+1)i ��� and ���ysplit(q) j ��� ≥ ���ysplit(q+1) j ���.

(2)
(
xsplit

(p)
)T

ysplit
(q) = fl

((
xsplit

(p)
)T

ysplit
(q)

)
,

1 ≤ p ≤ sx , 1 ≤ q ≤ sy .
The former implies that the accuracy of the final result can be
controlled by omitting some lower split vectors. The key point
of the latter is that the inner products of the split vectors can be
computed with the standard floating-point arithmetic: for FP64 data,
the DDOT routine provided in BLAS such as MKL and cuBLAS can

be used9. Since fl
((
xsplit

(p)
)T

ysplit
(q)

)
has no round-off error,

that is, it is error-free and reproducible, even if it is computed with
a non-reproducible operation.

Subsequently, the accurate and reproducible result is obtained by
the summation of the all-to-all inner products of the split vectors.
In this study, we compute the summation by a correctly rounded
method, NearSum [21], to observe the result obtained by completely

9The computation can be performed using a densematrix-multiplication as wemention
later in Section 4. However, it must be implemented on the basis of the standard floating-
point inner product. The use of the divide-and-conquer approach, such as Strassen’s
algorithm is not suitable.

102

HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea Mukunoki, et al.

Algorithm 3 CG method solving Ax = b (Note: here, subscript ‘i’
means the number of iterations, unlike in Algorithm 2).

1: p0 = r0 = b −Ax0 // SpMV
2: ρ0 = r0T r0 // DOT
3: i = 0
4: while 1 do
5: qi = Api // SpMV
6: αi = ρi/piTqi // DOT
7: xi+1 = xi + αipi // AXPY
8: ri+1 = ri − αiqi // AXPY
9: if | |ri+1 | |/| |b | | < ϵ then // NRM2
10: break
11: end if
12: ρi+1 = ri+1T ri+1 // DOT
13: βi = ρi+1/ρi
14: ρi = ρi+1
15: pi+1 = ri+1 + βipi // SCAL & AXPY
16: i = i + 1
17: end while

Step 1: Splitting

Step 2: Multiplication (GEMM)

Step 3: Reductionx
xsplit

(1)
xsplit

(2)
xsplit

(3)
xsplit

(4)

y
ysplit

(1)
ysplit

(2)
ysplit

(3)
ysplit

(4)

Figure 1: dot product with Ozaki scheme (when the number
of split vectors is 4).

eliminating the rounding-error introduced in inner products. Al-
though the summation can also be computed using working preci-
sion floating-point operations, the following points must care:

• The summationmust be computed using a reproducible method.
Since the summation is performed element-wise, fixing the
computational order is neither difficult nor costly.

• log2 in Algorithm 2 must be computed by a reproducible
method on different platforms, because the accuracy is not
standardized in IEEE and may differ on different platforms
(e.g., the accuracy is different between x86 and NVIDIA GPUs).
However, this is not a concern when using a correctly rounded
summation.

3.2 Installation of reproducibility to the CG
method

The CG method solves Ax = b where A is a symmetric positive
definite matrix. Algorithm 3 shows the typical algorithm and cor-
responding BLAS routines for each linear algebra computation.

Among them, the factor that may disturb the reproducibility of com-
puted solutions on many core processors is the operations that con-
sist of the inner product operations, namely sparse matrix-vector
multiplication (SpMV), dot product (DOT), and 2-norm (NRM2). In
this study, these operations are computed using the Ozaki scheme.
SpMV and DOT achieve the correctly rounded results. The NRM2
is implemented using DOT as r =

√
DOT(x ,x), and the square root

is performed on the standard FP64 operation.
In AXPY, we need to ensure consistency in whether or not the

FMA operation is used. In this study, we use the AXPY implemen-
tation that uses the FMA operation. In addition, to prevent fast
and less accurate computations for mathematical functions (e.g.,
-fp-model fast on ICC), we disable any less accurate options.

4 IMPLEMENTATION
We implement the following two versions for both CPUs and GPUs:

• FP64: the standard implementation on FP64
• FP64Oz-CR: the accurate and reproducible FP64 implementa-
tion using the Ozaki scheme

Below describes the details of the implementations.

4.1 FP64
All computations are implemented using the standard FP64 arith-
metic and the standard FP64 BLAS routines. Each linear algebra
operation is performed through the corresponding BLAS routine
shown in Algorithm 3 by using Intel MKL on CPUs and NVIDIA
cuSparse (for SpMV) and cuBLAS (for the others) on GPUs. On
the SpMV routines, the symmetrical structure of matrices is not
considered (i.e., symmetric matrices are given to the computation
after being expanded into general matrices). The coefficient sparse
matrix is stored using the common Compressed Sparse Row (CSR)
format. We note here that the choice of format does not affect
the performance discussion in this study, as this study aims to
examine the relative difference. In the GPU implementations, the
BLAS routines are performed on GPUs, whereas the scalar value
computations are performed on CPUs.

4.2 FP64Oz-CR
The Ozaki scheme is installed into DOT, NRM2, and CSRMV in the
aforementioned FP64 implementation. In the Ozaki scheme, the
internal computations are performed using MKL on CPUs and cuS-
parse and cuBLAS on GPUs. The splitting and summation portions
are parallelized using OpenMP on CPUs and CUDA on GPUs. In
Algorithm 2, to perform lines 9 and 10 correctly, the order of ex-
pression evaluation must be honored by using the compiler option
“-fprotect-parens" on CPUs and the intrinsic for arithmetic on
GPUs. 2τ in lines 7 and 8 is computed using NextPowTwo [18].
AXPY is implemented using FMA.

In addition, we employ several techniques for speedup.

(1) For SpMV, as the coefficient matrix is not changed during the
iterations, the splitting of the matrix is needed only once before
the iteration starts. This contributes to a nontrivial performance
increase, because matrix splitting becomes the major cost in
the Ozaki scheme on memory-bound operations.

103

Conjugate Gradient Solvers with High Accuracy and Bit-wise Reproducibility between CPU and GPU using Ozaki schemeHPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea

Table 1: Test matrices (the size is n × n with nnz non-zero elements, sorted in ascending order by nnz/n).

Matrix n nnz nnz/n kind
1 tmt_sym 726,713 5,080,961 7.0 electromagnetics problem
2 gridgena 48,962 512,084 10.5 optimization problem
3 cfd1 70,656 1,825,580 25.8 computational fluid dynamics problem
4 cbuckle 13,681 676,515 49.4 structural problem
5 BenElechi1 245,874 13,150,496 53.5 2D/3D problem
6 gyro_k 17,361 1,021,159 58.8 duplicate model reduction problem
7 pdb1HYS 36,417 4,344,765 119.3 weighted undirected graph
8 nd24k 72,000 28,715,634 398.8 2D/3D problem

(2) The inner products of the split vectors can be performed using
a dense matrix multiplication (GEMM) by combining multiple
split vectors into a single matrix, as shown in Figure 1. This
strategy contributes to the speedup of memory-bound oper-
ations in the Ozaki scheme by reducing memory access. The
same concept can be applied to SpMV: the computation can be
performed using a sparse matrix - dense matrix multiplication
routine (SpMM), which is available on MKL as mkl_dcsrmm
and on cuSparse as cusparseDcsrmm. On CPUs, however, we do
not use this technique because performance is degraded with
mkl_dcsrmm10.

(3) In SpMV, we use asymmetric splitting [18]. σ at line 8 in Algo-
rithm 2 determines how many bits are stored in each element
of the split matrices/vectors; smaller σ increases the number of
bits that can be held. σ is determined not to cause an overflow
in the computation of the product of the split matrices and
vectors but is chosen to be as small as possible in the powers of
2. We can bias the ρ at line 2 to reduce the number of split data
on either the matrix or vector by increasing ρ on one side and
decreasing ρ on another side by the same amount. If SpMM is
used in the computation, the reduction of the number of split
matrices increases the chance of a speedup in general. Our GPU
implementation decreases the ρ on the matrix side by the mini-
mum amount that decreases the number of split matrices. On
the other hand, the CPU implementation, which does not use
SpMM in its computation, increases the ρ on the matrix side
by the maximum amount that does not change the number of
split matrices. This strategy increases the chance of reduction
in the number of split vectors. The optimal ρ is determined by
trial and error by performing the matrix splitting with the ρ
reduced step by step. As this determination is performed only
once before starting the iterations of the CG method, the cost
is not high.

5 EVALUATION
We conducted evaluations using the following platforms:

• CPU1: Intel Xeon Gold 6126 (Skylake, 2.60–3.70 GHz, 12 cores)
× 2 sockets, DDR4-2666 192 GB (255.9 GB/s), MKL 19.0.5, ICC
19.0.5.281, 1 thread/core was assigned, “numactl --localalloc"

10This routine has already been deprecated in the latest MKL, and the use of Inspector-
executor Sparse BLAS interface is recommended instead. However, our implementation
does not support it yet.

was used for the execution, on the Cygnus supercomputer in
University of Tsukuba.

• CPU2: Intel Xeon Phi 7250 (Knights Landing, 1.40–1.60 GHz,
68 cores), MCDRAM 16GB (490 GB/s) + DDR4-2400 115.2 GB/s,
MKL 19.0.5, ICC 19.0.5.281, 1 thread/core was assigned (64 cores
were used for the computation11), memory-mode: flat, clustering-
mode: quadrant, KMP_AFFINITY=scatter, “numactl --preferred
1" was used for the execution (MCDRAM preferred), on the
Oakforest-PACS system operated by Joint Center for Advanced
High Performance Computing (JCAHPC).

• GPU1: NVIDIA Tesla V100-PCIE-32GB (Volta, 1.370 GHz, 80
SMs, 2560 FP64 cores), HBM2 32GB 898.0 GB/s, CUDA 10.2, nvcc
V10.2.89, on the Cygnus supercomputer in University of Tsukuba.

• GPU2: NVIDIA Tesla P100-PCIE-16GB (Pascal, 1.189–1.328 GHz,
56 SMs, 1792 FP64 cores), HBM2 16GB 720 GB/s, CUDA 10.2,
nvcc V10.2.89.

The programs were compiled using the following options: for
CPUs, “-O3 -fma -fp-model source -fprotect-parens -qopenmp"
with “-xCORE-AVX2 -mtune=skylake-avx512" on CPU1 and “-xMIC-
AVX512" on CPU2; for GPUs, “-O3 -gencode arch=compute_60,
code=sm_XX" (XX=70 for Tesla V100 and XX=60 for Tesla P100).
Any fast and less accurate computation options were disabled.

We collected eight symmetric positive definite matrices from
the SuiteSparse Matrix Collection [4], as shown in Table 1. These
matrices were chosen to be large enough to be computed on GPUs
and used in different applications. The right-hand side vector b
and the initial solution x0 were set as b = x0 = (1, 1, ..., 1)T . The
iteration was terminated when | |ri | |/| |b | | ≤ 10−16. Hereafter, the
residual plots showed | |ri | |/| |b | |.

5.1 Reproducibility, convergence, and accuracy
Table 2 shows both the relative true residual (| |b − Axi | |/| |b | |)
when | |ri | |/| |b | | ≤ 10−16 and the number of iterations across four
platforms. In most cases, the results (both the solution and the
number of iterations) of FP64 are non-identical among different
platforms. However, the results of FP64Oz-CR across the four plat-
forms were identical; that is, reproducibility was ensured by the
Ozaki scheme. In addition, some cases converged with fewer itera-
tions by FP64Oz-CR with accurate computation when compared
with FP64 implementations.

11The CPU has 68 cores but only 64 cores from the core number 2 were used to avoid
OS jitter.

104

HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea Mukunoki, et al.

Table 2: (a) Relative true residual and (b) number of iterations on different platforms. Note: in all cases, true residual was
computed on the correctly rounded operations using the Ozaki scheme. FP64Oz-CR got identical result on all platforms.

(a) Relative true residual (| |b −Axi | |/| |b | |)
Matrix FP64 FP64Oz

CPU1 CPU2 GPU1 GPU2 -CR
1 tmt_sym 3.30E-07 3.29E-07 3.29E-07 3.30E-07 3.29E-07
2 gridgena 1.11E-10 1.10E-10 1.09E-10 1.09E-10 1.08E-10
3 cfd1 1.48E-10 1.48E-10 1.50E-10 1.50E-10 1.48E-10
4 cbuckle 8.97E-12 9.01E-12 8.85E-12 8.85E-12 9.08E-12
5 BenElechi1 7.66E-07 8.37E-07 8.50E-07 1.04E-06 6.68E-07
6 gyro_k 4.00E-07 3.77E-07 4.70E-07 4.70E-07 4.30E-07
7 pdb1HYS 4.27E-04 4.35E-04 4.36E-04 4.36E-04 3.82E-04
8 nd24k 2.09E-08 2.10E-08 2.09E-08 2.09E-08 2.10E-08

(b) Number of iterations to | |ri | |/| |b | | ≤ 10−16
FP64 FP64Oz

CPU1 CPU2 GPU1 GPU2 -CR
1 7859 7831 7828 7825 7793
2 2400 2413 2368 2368 2393
3 3279 3277 3278 3278 3279
4 23834 23856 23515 23515 23724
5 73327 72701 73515 71302 65161
6 60387 60247 59341 59341 46641
7 11378 11788 11775 11775 8214
8 15461 15445 15438 15438 12837

Table 3: Number of split matrices required to achieve correct-rounding, total execution time until convergence, and execution
time overhead (FP64Oz-CR/FP64) on CPUs.

Matrix # of CPU1 CPU2
split FP64 FP64Oz-CR Overhead FP64 FP64Oz-CR Overhead
mats (secs) (secs) (times) (secs) (secs) (times)

1 tmt_sym 4 6.14E+00 1.73E+02 28.2 6.12E+00 2.24E+02 36.6
2 gridgena 3 4.72E-01 5.48E+00 11.6 9.98E-01 1.08E+01 10.8
3 cfd1 4 7.14E-01 1.08E+01 15.1 1.65E+00 1.93E+01 11.7
4 cbuckle 7 2.92E+00 4.68E+01 16.0 9.24E+00 1.06E+02 11.5
5 BenElechi1 4 8.12E+01 1.36E+03 16.7 6.05E+01 1.11E+03 18.3
6 gyro_k 7 1.02E+01 1.30E+02 12.7 2.44E+01 2.46E+02 10.1
7 pdb1HYS 4 4.04E+00 5.28E+01 13.1 7.63E+00 6.18E+01 8.1
8 nd24k 4 3.30E+01 4.54E+02 13.8 2.49E+01 3.02E+02 12.1

Table 4: Number of split matrices required to achieve correct-rounding, total execution time until convergence, and execution
time overhead (FP64Oz-CR/FP64) on GPUs.

Matrix # of GPU1 GPU2
split FP64 FP64Oz-CR Overhead FP64 FP64Oz-CR Overhead
mats (secs) (secs) (times) (secs) (secs) (times)

1 tmt_sym 3 2.49E+00 4.26E+01 17.1 3.26E+00 7.09E+01 21.7
2 gridgena 2 2.42E-01 3.05E+00 12.6 2.67E-01 3.28E+00 12.3
3 cfd1 3 4.52E-01 5.58E+00 12.3 4.89E-01 7.28E+00 14.9
4 cbuckle 6 3.05E+00 2.96E+01 9.7 3.62E+00 3.73E+01 10.3
5 BenElechi1 3 2.71E+01 3.47E+02 12.8 3.53E+01 5.96E+02 16.9
6 gyro_k 6 7.36E+00 5.61E+01 7.6 8.35E+00 7.12E+01 8.5
7 pdb1HYS 3 2.00E+00 1.20E+01 6.0 2.26E+00 1.57E+01 6.9
8 nd24k 3 8.71E+00 4.81E+01 5.5 1.12E+01 7.12E+01 6.4

Figure 2 shows the residual plots for every 10 iterations on four
platforms. Solid lines show the relative residual | |ri | |/| |b | | and dot-
ted lines show the relative true residual | |b −Axi | |/| |b | |12. Signifi-
cant differences can be observed in the convergence plots among
the five cases, but in all cases, the solution converges to a similar
value on the same order (however, most of them are non-identical,
as shown in Table 2). In terms of the residual ri , FP64Oz-CR often

12Here, unlike Table 2, the true residual was computed using the standard FP64 opera-
tion, but it does not cause visible difference in the plot.

converged with fewer iterations than FP64, but in those cases, the
stopping criterion of 10−16 was too small.

5.2 Performance (overhead)
Before presenting the experimental results, we discuss the expected
performance. When SpMV with the Ozaki scheme is computed
using SpMM (i.e., our GPU implementation), the execution time
overhead of FP64Oz-CR against FP64 per iteration can be roughly
estimated. Ideally, if the matrix is sufficiently dense, the overhead
becomes close to d times, where d is the number of split matrices,

105

Conjugate Gradient Solvers with High Accuracy and Bit-wise Reproducibility between CPU and GPU using Ozaki schemeHPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 0 1000 2000 3000 4000 5000 6000 7000 8000

re
s
id

u
a

l

iter

(1) tmt_sym

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz-CR

10
-17

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

 0 500 1000 1500 2000 2500

re
s
id

u
a

l

iter

(2) gridgena

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz-CR

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

 0 500 1000 1500 2000 2500 3000 3500

re
s
id

u
a

l

iter

(3) cfd1

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz-CR

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

 0 5000 10000 15000 20000 25000

re
s
id

u
a

l
iter

(4) cbuckle

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz-CR

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

 0 10000 20000 30000 40000 50000 60000 70000 80000

re
s
id

u
a

l

iter

(5) BenElechi1

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz-CR

10
-15

10
-10

10
-5

10
0

10
5

 0 10000 20000 30000 40000 50000 60000 70000

re
s
id

u
a

l

iter

(6) gyro_k

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz-CR

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

 0 2000 4000 6000 8000 10000 12000

re
s
id

u
a

l

iter

(7) pdb1HYS

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz-CR

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

 0 2000 4000 6000 8000 10000 12000 14000 16000

re
s
id

u
a

l

iter

(8) nd24k

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz-CR

Figure 2: Convergence plots (at every 10 iterations). Results of FP64Oz-CR on four platforms are shown with one line as they
are identical. Solid lines show relative residual | |ri | |/| |b | | and dotted lines show relative true residual | |b −Axi | |/| |b | |.

which can be obtained by performing the splitting of the coefficient
matrix once. When SpMV is computed using SpMM, it requires 4d
times execution time overhead against the standard floating-point
operation in terms of memory access to the matrix (we assume that
the cost to the vector can be ignored as it is small enough when
compared with the matrix). The 3/4 of the 4d times overhead arises
in the splitting process (the accesses to vector x at lines 9 and 10 in
Algorithm 3); however, it is eliminated on CG methods since the
splitting is performed only once before iteration. In CGmethods, the

SpMV cost is usually dominant, as matrix-vector multiplication is
an O(n2) operation, whereas the others are O(n). Therefore, only the
d times overhead appears. However, if the matrix is highly sparse,
and the execution efficiency becomes low owing to the frequent
random memory access, the cost of other operations than SpMV
becomes nonnegligible, and the overhead becomes unpredictable.
As DOT requires 4d times overhead (assuming cache hits all split
vectors), the cost of DOT (andNRM2)may become dominant instead
of SpMV. Moreover, the value of d is unpredictable in CG methods

106

HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea Mukunoki, et al.

(a) “tmt_sym" (nnz/n = 7.0)

 0

 0.5

 1

 1.5

 2

 2.5

F
P

6
4

F
P

6
4
O

z-d
2

F
P

6
4
O

z-d
3

F
P

6
4
O

z-C
R

s
e
c

"tmt_sym" on Xeon Gold 6126 x2
Exec. time (100 iter.)

Other
SplitMat
SplitVec

NearSum
AXPY/SCAL
DOT/NRM2

SpMV/SpMM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

F
P

6
4

F
P

6
4
O

z-d
2

F
P

6
4
O

z-d
3

F
P

6
4
O

z-C
R

s
e
c

"tmt_sym" on Tesla V100
Exec. time (100 iter.)

Other
SplitMat
SplitVec

NearSum
AXPY/SCAL
DOT/NRM2

SpMV/SpMM

(b) “nd24k" (nnz/n = 398.8)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

F
P

6
4

F
P

6
4
O

z-d
2

F
P

6
4
O

z-d
3

F
P

6
4
O

z-C
R

s
e
c

"nd24k" on Xeon Gold 6126 x2
Exec. time (100 iter.)

Other
SplitMat
SplitVec

NearSum
AXPY/SCAL
DOT/NRM2

SpMV/SpMM

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

F
P

6
4

F
P

6
4
O

z-d
2

F
P

6
4
O

z-d
3

F
P

6
4
O

z-C
R

s
e
c

"nd24k" on Tesla V100
Exec. time (100 iter.)

Other
SplitMat
SplitVec

NearSum
AXPY/SCAL
DOT/NRM2

SpMV/SpMM

Figure 3: Execution time breakdown of FP64, FP64Oz-dn and FP64Oz-CR for 100 iterations on CPU1 and GPU1. FP64Oz-dn
shows result of FP64Oz-CR executed with specified d (the number of split matrices/vectors).

because the vectors are updated during iteration. In addition, as d
increases, the chance of cache-missing increases.

Tables 3 and 4 show the number of split matrices required to
achieve correct-rounding (d), the execution time until convergence,
and the execution time overhead (times) of FP64Oz-CR against
FP64 on CPUs and GPUs, respectively. Note that the required num-
ber of splits becomes minus-one on GPUs when compared with
that on CPUs as we use the asymmetric-splitting technique de-
scribed in Section 4. The FP64 implementations, which are the
baselines for the comparison, can be seen as the ideal performance
as they are constructed on vendor-implemented routines. As the
CPU implementation does not use SpMM, we consider that the GPU
implementation shows more desirable results. The number of split
matrices corresponds to the expected minimum overhead, as ex-
plained before. When compared with the number of split matrices,
approximately 1.3 – 7.2 times additional overhead was observed on
GPUs, and we can see that the smaller nnz/n it has, the greater the
overhead tends to take, following the previous discussion.

Figure 3 shows the breakdown of the execution time of 100 it-
erations on the tmt_sym and nd24k matrices on CPU1 and GPU1.
Both matrices have the smallest and biggest sparsities, respectively.
tmt_sym shows a high cost for level-1 BLAS operations, while nd24k
shows a high cost for SpMV (SpMM). FP64Oz-dn shows the result
executed with a specified d (the number of split matrices/vectors).
When d is specified, the asymmetric-splitting technique is not used;
only with FP64Oz-CR does the matrix splitting cost (SplitMat) in-
clude the tuning cost for the asymmetric splitting. However, it is
not so large within 100 iterations.

5.3 Comparison with ExBLAS-based CG
Iakymchuk et al. have already proposed accurate and reproducible
CG solvers [8, 9] based on the ExBLAS approach [10]. These CG

solvers are parallelized with the flatMPI as well asMPI and OpenMP
tasks but support only CPUs. We evaluate their performance and
compare it against that of the proposed method. As with the pro-
posed method, the ExBLAS-based implementation ensures correct
rounding in all dot product operations in CG. The ExBLAS approach
efficiently combines the Kulisch long accumulator [11] and floating-
point expansions (FPEs). While the long accumulator is robust and
designed for severe (ill-conditioned) cases, keeping every bit of
information until the final rounding, FPEs are unevaluated sums
(arrays of FP64) to target a limited range of numbers (e.g., nonse-
vere dynamic ranges and/or condition numbers). Hence, ExBLAS
aims to use FPEs as much as possible owing to their speed and only
occasionally long accumulators (e.g., when the accuracy of FPEs
is insufficient, or at the final rounding to FP64). One clear advan-
tage of the ExBLAS-based implementation against our proposed
approach is its low memory consumption: it uses only 2097 bits for
a long accumulator and 192-512 bits for an FPE per MPI process,
while the proposed method consumes a large amount of memory
for storing split matrices (i.e., in proportion to the number of split
data d).

The ExBLAS-based implementations have two versions: the MPI-
OpenMP hybrid parallel [8] and the flat MPI version [9]. How-
ever, the flat MPI version was faster than the hybrid version on
both CPU1 and CPU2. Therefore, the following evaluation was
conducted using only the flat MPI version. We conducted these ex-
periments with the same conditions as the other evaluations except
for the following points: The code13 was compiled using GCC 8.3.1
on CPU1 and GCC 7.5.0 on CPU2 with -mavx -fabi-version=0
-fopenmp. On both CPUs, we executed the code by mapping one
MPI process per core. The ExBLAS-based implementation supports
preconditioning, but it was disabled in this evaluation.

13https://github.com/riakymch/ReproCG

107

Conjugate Gradient Solvers with High Accuracy and Bit-wise Reproducibility between CPU and GPU using Ozaki schemeHPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea

Table 5: The results of the ExBLAS-based implementation (FP64Ex-CR): number of iterations, execution time, and overhead
against FP64 shown in Table 3.

Matrix Num. CPU1 CPU2
Iter. Time Overhead Time Overhead

(secs) (times) (secs) (times)
1 tmt_sym 7812 3.37E+02 54.9 5.48E+02 89.5
2 gridgena 2467 7.97E+00 16.9 1.37E+01 13.8
3 cfd1 3278 1.59E+01 22.3 2.81E+01 17.0
4 cbuckle 23828 3.24E+01 11.1 5.95E+01 6.4
5 BenElechi1 73838 1.28E+03 15.8 2.49E+03 41.2
6 gyro_k 60103 9.74E+01 9.5 1.82E+02 7.5
7 pdb1HYS 11839 3.77E+01 9.3 9.61E+01 12.6
8 nd24k 15415 1.66E+02 5.0 5.49E+02 22.1

Table 5 shows the results obtained by the ExBLAS-based im-
plementation (FP64Ex-CR) on CPU1 and CPU2. We note that the
results of FP64Oz-CR and FP64Ex-CR may differ because the imple-
mentations of the CG algorithm itself are different and the strategies
for reproducibility are clearly not the same. Since FP64Oz-CR and
FP64Ex-CR adopt different strategies for accurate and reproducible
computations, their overhead compared to the baseline FP64-based
implementation depends on both the matrix at hand and the proces-
sors used. The FP64Ex-CR achieved better (lower) overhead on five
out of eight matrices on CPU1. On the other hand, the proposed
method FP64Oz-CR performs better on six out of eight matrices
on CPU2. Even though FP64Ex-CR does not support GPUs, the
best performance of FP64Oz-CR is on GPUs, where the potential of
FP64Oz-CR flourishes with the use of SpMM and the reduction of
the number of split matrices.

6 REPRODUCIBILITY WITHOUT
CORRECTLY ROUNDED OPERATIONS, AND
ACCURATE COMPUTATION FOR
REPRODUCIBILITY

In this study, we installed reproducibility via correctly rounded
operations, but the Ozaki scheme can adjust the accuracy to a
given granularity and still ensure reproducibility (as we described
in Section 3.1, the summation and log2 must care for ensuring
reproducibility). The accuracy can be adjusted by the number of
split matrices/vectors, and reducing it improves performance, as
shown in Figure 3.

Figure 4 demonstrates, as an example, the convergence of “gyro_k"
with FP64, FP64Oz-CR, and FP64Oz-d with a specified number of
split data d . This matrix requires 6 split matrices (d = 6) to achieve
the correctly rounded operation, but d = 3 is sufficient to achieve
higher accuracy than FP64. However, there is currently no light-
weight way to determine the optimal number in advance (i.e., the
number needed to achieve the FP64 equivalent accuracy at least
or to get the solution at the shortest time). There is a risk that the
iteration will be unconverged or require a lot of iterations if an
inadequate choice is made. To determine the optimal number, we
have to try it once. However, this approach can be useful at least
when the aim is to reproduce the results obtained on one system,
together with the necessary split number, on another system.

10
-15

10
-10

10
-5

10
0

10
5

 0 10000 20000 30000 40000 50000 60000 70000 80000

re
s
id

u
a
l

iter

(6) gyro_k

FP64
FP64Oz-d2
FP64Oz-d3
FP64Oz-d4
FP64Oz-d5

FP64Oz-CR

Figure 4: Convergence plot of “gyro_k" (at every 10 iter-
ations) on CPU1. Solid lines show the relative residual
| |ri | |/| |b | | and dotted lines show the relative true residual
| |b −Axi | |/| |b | |.

On the other hand, reproducibility may also be achieved sim-
ply by using accurate (not necessarily reproducible) computation
methods. Accurate computations can increase the possibility of
reproducibility (i.e., the number of bits that can be reproduced,
through reducing rounding errors). However, the level of accuracy
needed to ensure a certain level of reproducibility is problem (input)
dependent. Iakymchuk et al. [8, 9] demonstrated the achievement
of reproducibility with only an accurate computation method (only
with FPE, i.e., the ExBLAS scheme without a long accumulator) by
focusing on certain problems. It contributes more toward improving
performance than the ExBLAS approach does.

7 CONCLUSIONS
This paper presents an accurate and reproducible implementation
of the CG method on CPUs and GPUs. The accurate and repro-
ducible operations were introduced into all the inner product-based
operations in the CG method through the Ozaki scheme, which
performs the correctly rounded operation. We conducted numeri-
cal experiments on different platforms, including CPUs and GPUs.
While the standard FP64 CG implementations using existing ven-
dor libraries might return non-identical results, our implementa-
tions always returned a bit-level identical result. The cost of the
Ozaki scheme depends on the problem, but our implementations

108

HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea Mukunoki, et al.

achieve performance comparable to an existing work based on
the ExBLAS approach in many cases. The proposed approach has
an additional advantage in its low development cost, as it relies
on vendor-provided BLAS implementations. Moreover, we demon-
strated certain cases for which accurate computation through the
Ozaki scheme improved the convergence, even though it did not
contribute to reducing the total execution time. The source code of
our implementations is available together with OzBLAS14.

As future work, we can adopt the mixed-precision approach into
our proposed method. While this study used FP64 for computation,
the Ozaki scheme can also be built upon low-precision operations
such as FP32 and the mixed-precision operation of FP32 and FP16
on Tensor Cores available on NVIDIA GPUs, as we have shown in
[14]. That is, on dot product, for example, instead of using DGEMM
for the computation as we did in this study, SGEMM or Tensor Core
GEMM (gemmEx) can also be used to compute FP64 input/output.
This may contribute to improving the proposed method’s perfor-
mance on hardware with limited FP64 support.

ACKNOWLEDGMENTS
This research was partially supported by the Japan Society for the
Promotion of Science (JSPS) KAKENHI Grant #19K20286 and the EU
H2020 research, innovation program under the Marie Skłodowska-
Curie grant agreement via the Robust project No. 842528. This
research used computational resources of the Cygnus supercom-
puter provided by Multidisciplinary Cooperative Research Program
in Center for Computational Sciences, University of Tsukuba, and
the Oakforest-PACS system operated by JCAHPC.

REFERENCES
[1] S. W. D. Chien, I. B. Peng, and S. Markidis. 2019. Posit NPB: Assessing the

Precision Improvement in HPC Scientific Applications. (to appear).
[2] C. Chohra, P. Langlois, and D. Parello. 2016. Reproducible, Accurately Rounded

and Efficient BLAS. In 22nd International European Conference on Parallel and
Distributed Computing (Euro-Par 2016). 609–620.

[3] Sylvain Collange, David Defour, Stef Graillat, and Roman Iakymchuk. 2015.
Numerical Reproducibility for the Parallel Reduction on Multi- and Many-Core
Architectures. Parallel Computing 49 (2015), 83–97. https://doi.org/10.1016/j.
parco.2015.09.001

[4] T. A. Davis and Y. Hu. 2011. The University of Florida Sparse Matrix Collection.
ACM Trans. Math. Software 38, 1 (2011), 1:1–1:25.

[5] J. Demmel, P. Ahrens, and H. D. Nguyen. 2016. Efficient Reproducible Floating Point
Summation and BLAS. Technical Report UCB/EECS-2016-121. EECS Department,
University of California, Berkeley.

[6] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. 2007. MPFR: A
Multiple-precision Binary Floating-point Library with Correct Rounding. ACM
Trans. Math. Software 33, 2 (2007), 13:1–13:15.

[7] Y. Hida, X. S. Li, andD. H. Bailey. 2007. Library for Double-Double and Quad-Double
Arithmetic. Technical Report. NERSC Division, Lawrence Berkeley National
Laboratory.

[8] R. Iakymchuk, M. Barreda, S. Graillat, J. I. Aliaga, and E. S. Quintana-Ortí. 2020.
Reproducibility of Parallel Preconditioned Conjugate Gradient in Hybrid Pro-
gramming Environments. IJHPCA (2020). Available OnlineFirst 17 June 2020.
https://doi.org/10.1177/1094342020932650.

[9] R. Iakymchuk, M. Barreda, M. Wiesenberger, J. I. Aliaga, and E. S. Quintana-Ortí.
2020. Reproducibility strategies for parallel Preconditioned Conjugate Gradient. J.
Comput. Appl. Math. 371 (2020), 112697. https://doi.org/10.1016/j.cam.2019.112697

[10] R. Iakymchuk, S. Collange, D. Defour, and S. Graillat. 2015. ExBLAS: Repro-
ducible and Accurate BLAS Library. In Proc. Numerical Reproducibility at Exascale
(NRE2015) at SC’15.

[11] U. W. Kulisch. 2013. Computer arithmetic and validity (2nd ed.). de Gruyter
Studies in Mathematics, Vol. 33. Walter de Gruyter & Co., Berlin. xxii+434 pages.
Theory, implementation, and applications.

14http://www.math.twcu.ac.jp/ogita/post-k/results.html

[12] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, A.
Kapur, M. C. Martin, T. Tung, and D. J. Yoo. 2000. Design, Implementation and
Testing of Extended and Mixed Precision BLAS. ACM Trans. Math. Software 28, 2
(2000), 152–205.

[13] D. Mukunoki, T. Ogita, and K. Ozaki. 2020. Reproducible BLAS Routines with Tun-
able Accuracy Using Ozaki Scheme for Many-core Architectures. In Proc. 13th In-
ternational Conference on Parallel Processing and Applied Mathematics (PPAM2019),
Lecture Notes in Computer Science, Vol. 12043. Springer Berlin Heidelberg, 516–527.
https://doi.org/10.1007/978-3-030-43229-4_44

[14] D. Mukunoki, K. Ozaki, T. Ogita, and T. Imamura. 2020. DGEMM using Tensor
Cores, and Its Accurate and Reproducible Versions. In ISC High Performance 2020,
Lecture Notes in Computer Science, Vol. 12151. Springer International Publishing,
230–248. https://doi.org/10.1007/978-3-030-50743-5_12

[15] D. Mukunoki and D. Takahashi. 2014. Using Quadruple Precision Arithmetic to
Accelerate Krylov Subspace Methods on GPUs. In 10th International Conference
on Parallel Processing and Applied Mathematics (PPAM2013). 632–642.

[16] M. Nakata. [n.d.]. The MPACK; Multiple precision arithmetic BLAS (MBLAS)
and LAPACK (MLAPACK). http://mplapack.sourceforge.net.

[17] K. Ozaki, T. Ogita, S. Oishi, and S. M. Rump. 2012. Error-free transformations
of matrix multiplication by using fast routines of matrix multiplication and its
applications. Numer. Algorithms 59, 1 (2012), 95–118.

[18] K. Ozaki, T. Ogita, S. Oishi, and S. M. Rump. 2013. Generalization of error-free
transformation for matrix multiplication and its application. Nonlinear Theory
and Its Applications, IEICE 4 (2013), 2–11.

[19] S. M. Rump, T. Ogita, and S. Oishi. 2008. Accurate Floating-Point Summation
Part I: Faithful Rounding. SIAM J. Sci. Comput. 31, 1 (2008), 189–224. https:
//doi.org/10.1137/050645671

[20] S. M. Rump, T. Ogita, and S. Oishi. 2008. Accurate floating-point summation part
II: Sign, K-fold faithful and rounding to nearest. SIAM J. Sci. Comput. 31, 2 (2008),
1269–1302.

[21] S. M. Rump, T. Ogita, and S. Oishi. 2009. Accurate Floating-Point Summation
Part II: Sign, K-Fold Faithful and Rounding to Nearest. SIAM Journal on Scientific
Computing 31, 2 (2009), 1269–1302.

[22] S. M. Rump, T. Ogita, and S. Oishi. 2010. Fast high precision summation. Nonlinear
Theory and Its Applications, IEICE 1, 1 (2010), 2–24.

[23] R. Todd. 2012. Introduction to Conditional Numerical Reproducibility
(CNR). https://software.intel.com/en-us/articles/introduction-to-the-conditional-
numerical-reproducibility-cnr.

109

https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1177/1094342020932650
https://doi.org/10.1016/j.cam.2019.112697
https://doi.org/10.1007/978-3-030-43229-4_44
https://doi.org/10.1007/978-3-030-50743-5_12
http://mplapack.sourceforge.net
https://doi.org/10.1137/050645671
https://doi.org/10.1137/050645671

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Ozaki scheme
	3.2 Installation of reproducibility to the CG method

	4 Implementation
	4.1 FP64
	4.2 FP64Oz-CR

	5 Evaluation
	5.1 Reproducibility, convergence, and accuracy
	5.2 Performance (overhead)
	5.3 Comparison with ExBLAS-based CG

	6 Reproducibility without correctly rounded operations, and accurate computation for reproducibility
	7 Conclusions
	Acknowledgments
	References

