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ABSTRACT
We present our design and implementation of a runtime for the
Space Consistency model. The Space Consistency model is a gen-
eralized form of the full-empty bit synchronization for distributed
memory programming, where a memory region is associated with
a counter that determines its consistency and readiness for con-
sumption. The model allows for efficient implementation of point-
to-point data transfers and collective communication primitives as
well. We present the interface design, implementation details, and
performance results on Cray XC systems. Our runtime adopts a re-
duced API design to provide low-overhead initiation and processing
of communication primitives, enable threaded execution of run-
time functions, and provide efficient pipelining, thus improving the
computation-communication overlap. We show the performance
benefits of using this runtime both at the microbenchmark level
and in application settings.

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages; •Theory of computation→Parallel computingmod-
els.
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1 INTRODUCTION
Efficient communication in HPC platforms is instrumental for per-
formance and scalability. Achieving efficiency requires not only
improvements in interconnect designs but also improvement in
runtime designs. The multicore architectures were introduced a
couple of decades ago as the most viable architecture to tackle
the demise of Dennard’s scaling. Single-core performance has not
improved significantly since then, while the number of cores per
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chip has increased from few cores to tens of cores. In most archi-
tectures, the single-core performance is traded for increased core
parallelism. The degree of leveraging such architectural shift has
a striking contrast between the application layer and communica-
tion runtime layer. Application developers could easily leverage
multi/many-core architectures using either data sharing parallelism
models, such as OpenMP, or could use virtual splitting of compu-
tational resources using the process abstraction. At the runtime
level, there were fewer attempts to leverage multicore architec-
tures to improve communication libraries. A notable effort is the
MT-MPI [31] work, which leverages OpenMP threads for internal
MPI processing. The majority of MPI-related efforts are mainly
focusing on techniques [4, 16] to reduce the overhead supporting
concurrent thread access to the runtime layer. Except for progress
threads, none of the efforts to leverage multicore architectures for
accelerating internal MPI processing are part of production-quality
implementations.

Languages and libraries supporting one-sided communication,
such as UPC [9] and MPI RMA [15], provides the opportunity for
decoupling synchronization from data transfer mechanisms. While
they may provide low-overhead support for threaded access [22],
they typically lack efficient support for collectives communication
primitives, especially over large vectors of elements. Additionally,
they do not leverage multicore architectures for internal processing.

Our work attempts to leverage multicore computational power
for various runtime operations, especially collectives over a vector
of elements. Heterogenous systems of many-core accelerated by
GPUs, e.g. OLCF Summit, are becoming more prevalent in HPC
designs. Having accelerators dedicated for computation could al-
low more cores to do complex runtime activities such as resource
scheduling and communication activities. Ideally, we tap into these
compute resources while preserving other performance techniques
such as the ability to overlap computation with communication,
pipeline activities, etc.

To achieve these goals, we find it necessary to revisit the interface
between the application and the runtime. We adopt a reduced API
design principle for constructing the CSPACER runtime1, where
we decompose complex runtime operations into simpler ones, in-
cluding creation, planning, and initiation of a transfer. This study
shows how such decomposition allows efficient processing and
pipelining of transfer and introduces sparsified traffic patterns to
the interconnect. We leverage the Space Consistency abstraction,
a mechanism for performing producer-consumer relations in a
distributed environment using one-sided semantic [20, 21]. We in-
troduce an implementation of the Consistency Space model through

1We draw the analogy of the CSPACER runtime design principle with the reduced
instruction set in ISA designs for microprocessors to improve the execution efficiency.
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a low-overhead runtime, called CSPACER2. The abstraction allows
reasoning about the readiness of a memory region for consump-
tion as a single unit, releasing the runtime from requiring to track
individual transfers. Its relaxed semantics enables a wide range
of runtime optimizations, including threaded-execution of com-
munication primitives and lock-free concurrent injections from
threaded regions, among others. CSPACER provides a mechanism
to leverage lightweight many-core architectures and extend the use
of one-sided semantic to collective operations. We provide com-
mon complex runtime operations as communication patterns that
could easily be integrated into applications compute kernels to
accelerate critical data movement routines. These skeletons include
data reduction, irregular all-to-all exchange, one-sided broadcast,
irregular allgather, etc. We support these patterns over teams, a
subset of communicating ranks. We evaluate the model on Cray
XC40 systems both at the microbenchmark level and in application
settings.

The CSPACER runtime deliver up to 3.8× for broadcast com-
pared with MPI, and up to 3.9× for allreduce. We show the per-
formance advantage of using this runtime for matrix multiplication
libraries and Lattice QCD simulations. The introduced runtime also
interoperates efficiently with the MPI runtime, such that the major-
ity of MPI code would require no change. Only hotspots within an
application code will be the likely candidate to migrate to our pro-
posed runtime. Therefore, CSPACER could be thought as a runtime
accelerator to MPI-based applications. The CSPACER runtime and
communication patterns are publicly available [32].

The rest of this paper is organized as follows. Section 2 intro-
duces the space consistency abstraction for distributed memory
programming. We introduce the proposed API in Section 3. Then
we present the evaluation method in section 4. We present the
performance evaluation in Section 5. We then present related work
in Section 6 before presenting our conclusion in Section 7.

2 THE SPACE CONSISTENCY
PROGRAMMING ABSTRACTION

For the runtime developed in this study, the target programming
abstraction is the space consistency model [20, 21]. The abstraction
defines consistency guarantees at the granularity of memory spaces.
These memory spaces are symmetric objects allocated across a
team of ranks, where each object has an associated counter that
records the volume of received data. The counter gets incremented
atomically with the amount of data received due to a transfer or a
collective operation.

A space becomes consistent, i.e., ready for consumption, when
the counter reaches a specific value, called a consistency tag. In a
sense, this mechanism provides a generalized form of the full/empty
synchronization mechanism, supported by some architecture such
as MIT Alewife [1]. The model provides consumers with the ability
to check for the consistency of space, while no mechanism is pro-
vided for tracking individual transfer completions for the producers
(the transfer initiators). The consistency tag is either calculated in-
dependently or communicated in another communication step in
case of irregular patterns. For irregular communication, one needs
to size the space carefully to meet the worst-case data volume.

2CSPACER stands for Consistent SPACE Runtime.
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Figure 1: The CSPACER software layers for accelerating MPI appli-
cations. Three primitives are provided as core APIs: put, broadcast,
and reductions. Other functionalities are provided as patterns that
could be integrated into compute phases within the application for
performance critical regions.

This abstraction’s main strength is harnessing the one-sided
semantics to have low-overhead data transfers while providing
the ability to reason about producer-consumer relations similar
to two-sided transfers. For optimal performance, the abstraction
would require an interconnect with RDMA support and NIC with
atomic increment capability that is ideally coherent with respect
to the CPU. Prior work leverages hardware support in the under-
lying interconnect architectures. This work fully implements the
abstraction using software mechanisms, relying on non-coherent
NIC atomics.

3 THE CONSISTENCY SPACE APPLICATION
INTERFACE

Figure 1 depicts our MPI-interoperable software stack. One main
core functionality is dependent on the system, which is the chained
one-sided put operation. A put operation involves an update to
the consistency counter associated with a memory space. We pro-
vide two additional core functionalities, reduction and broadcast.
The rest of the communication primitives are provided as patterns
that should preferably be integrated with the application’s com-
putational kernels. This integration of the pattern layer with the
application facilitates pipelining and overlap of computation with
communication.

3.1 Application Interaction with Runtime and
API Design

In this section, we revisit the interface between an application with
a runtime during execution. The key question is how to design an
interface that improves the effectiveness of supporting pipelining,
asynchronous progress, leveraging multicore architectures, etc.

The contrast between reduced API runtimes with complex API
runtime designs manifests in the way applications interact with
runtime systems. For instance, in MPI, an application would con-
struct a complex operation, such as MPI allreduce over a vector of
variables using a single call. This reduction would require multiple
stages of processing within the MPI software stack depending on
the algorithm, which is influenced by the vector length and the
rank count. Generally, the runtime provides an interface for pro-
viding the data, description of the operation, and the meta-data
about the operation, such as types and vector length, using a single
API. The runtime also provides an API to check or wait for the
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Figure 2: Contrasting complex API with reduced API set runtime in
implementing communication primitives. A reduced API set run-
time would require creating multiple operations to accomplish a
single complex functionality, would decouple transfer meta-data
from data availability, and would support efficient pipelining of
transfer operations.

completion of the operation, if the application chooses the non-
blocking interface. Given that many activities could be involved in
performing the request, depending on the algorithm used by the
runtime, the application needs to progress the runtime to complete
the request. This progress could either be done asynchronously,
using a progress thread or at the time the application request or
check for completion.

By a reduced API design, shown in Figure 2, we mean decompos-
ing the complex operation into multiple simple operations to enable
efficient execution of the communication primitive. First, the ap-
plication is required to declare the intent of memory region usage,
e.g. for reduction, during the communication buffer allocation. This
gives the runtime a chance to allocate all scratchmemory needed for
internal processing to optimize the performance. The application
then creates one or multiple operations to perform a transfer opera-
tion, for instance, to allow parallel injection by independent threads
or to concurrently deposit data to the runtime for processing. Af-
terward, the runtime requires identifying the meta-data about the
operation before the data is readily available for communication.
The runtime could decide what algorithm to best serve the applica-
tion request and how internal runtime tasks are split between ranks
before the data is readily available. Finally, the data is deposited
to the runtime in a pipelined fashion as they get produced. This
way, the interaction between the runtime and the application be-
comes more frequent, allowing for better progress of the operation,
improving the tolerance to imbalanced arrival to collectives, and
reducing the burstiness of injecting traffic to the interconnect. The
presented approach does not entail implementing the collective
algorithm at the application layer. For instance for reduction, the
runtime fully implements the algorithm, including the distribution
and the execution of the work, and how to schedule communica-
tions. Similarly for broadcast, our runtime uses a topology-aware
tree transparently. This reduced API approach merely creates the
interface for a pipelined and threaded interaction of the application
computation with the runtime upon the readiness of a data unit for
processing by the collective algorithm.

Reduced API design requires a low-overhead, in the range of
100s of ns, implementation of the runtime. Otherwise, the potential

advantages of the mechanisms described above could be overtaken
by runtime overheads. More importantly, the programming abstrac-
tion should support relaxed consistency semantics that tolerate
out-of-order processing of transfers and tolerate relaxed consis-
tency guarantees rather than associating consistency with individ-
ual transfer requests. This relaxed semantic enables a wide set of
runtime optimizations, discussed in the following sections.

3.2 CSPACER Threaded Support
In the multicore era, there are multiple ways an application could
leverage a library supporting a threaded implementation. As shown
in Figure 3, the interaction between the application level thread-
ing and an external library threading could happen in multiple
ways. Libraries, such as MAGMA [18], adopt a single interface for
non-threaded and threaded implementations, relying on special
initialization and/or linking with a specialized library to control the
threading support within the library. Such a unified interface sim-
plifies the application development cycle but forces the application
and the library to use independent fork-join models. For communi-
cation runtime, we may have limited interconnect resources that do
not match the number of threads supported at the application level.
As such, protecting shared resources within the runtime through
locking or lock-free data structure, required for correctness, could
severely impact performance.

CSPACER supports two main threading models. The first is in-
tended to support concurrent access with no runtime serialization
due to lock or atomic primitives, Figure 3.a. The second is coopera-
tive models, Figure 3.d, where the application-level threads simul-
taneously call the runtime to accomplish a single communication
operation, whether this involves computation such as reduction
operations or data movement involving copying of data across
ranks within a node. The first model requires designing the appli-
cation such that it adapts to the concurrency level supported by
the runtime. We provide the supported concurrency level as queri-
able resources that should be explicitly used in creating a transfer
operation. For the second model, Figure 3.d, our design relies on
leveraging application-level threading by the runtime for internal
processing, which alleviates the need to handle multiple threading
models across layers of the software stack. This mode requires a
set of threads within the application to call the same APIs with
their unique id. Valid ids depend on the number of thread count
registered with the runtime. To enable such support, we provide
special API variant for each supported primitive. CSPACER runtime
is oblivious to the threading library used by the application and
could interact with any application threading model. This interac-
tion model is uncommon in providing threading support for both
the application layer and external libraries to the best of our knowl-
edge. The primary motivations for having this model are avoiding
the complexity associated with a) coordinating communication
and threading runtimes in case of leveraging a common threading
runtime for application computation and runtime communication
tasks; b) handling thread-binding on HPC platforms in case of using
different threading runtimes at both layers.

A special case of Figure 3.c is the sharing of threads between
two layers of runtimes, e.g.MT-MPI [31] thread sharing between
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Figure 3: The interaction between the application layer and an-
other library could be done through multiple mechanisms. Typi-
cally, applications use an independent threading model from the
runtime. Our communication runtime supports independent injec-
tion of transfer (mode (a)) or coordinated runtime call (mode (d))
where application-level threads progress the runtime complex com-
putational tasks.

OpenMP and MPI. MT-MPI requires modifying the OpenMP run-
time to enable querying and using idle threads by the MPI runtime.
As such, the MPI and threading runtimes need to coordinate their
work, which ideally require a standardized interaction mechanism.
On the other hand, MT-MPI preserves the application/MPI interface
as a single thread need to call the MPI runtime.

The Space Consistency abstraction guarantees lock-free, and
atomic-free, support for the concurrency level reported by the run-
time query. For concurrent access, Figure 3.a, the application needs
to control the level of concurrent access to the runtime, making
at most one thread access per lane3. Consequently, two levels of
concurrency need to be managed by the application one for compu-
tation and another one for communication. Fortunately, OpenMP
standards support controlling the level of concurrency for each
parallel region independently, in addition to supporting nested
parallelism with control of the concurrency degree at each level.
The main advantage of this mechanism to the application layer is
improving performance predictability. Earlier proposal such as MPI
endpoint provides such thread support for an arbitrary level of ap-
plication concurrency. Therefore, correct execution would require
lock to guard access to shared data structures, which involves added
overhead and serialization in accessing the interconnect resources.
The problem is typically more challenging with MPI two-sided
semantics because of the tag matching complexity [19].

3.2.1 CSPACER Data Copying Avoidance. Multicore architectures
made multithreading and shared memory programming very preva-
lent in HPC. Communication runtime often needs to do copying
or sharing of data, especially while implementing collective primi-
tives. If multiple ranks within a team, or communicator, reside in
the same node, the runtime would need to do intra-node broadcast
(through copying) following the internode broadcast. Requiring
such intra node broadcast may not be needed if all the ranks are
doing read-only access to the broadcasted data, and the runtime
would provide a mechanism for sharing the node leader memory
with other members of a team within a node. Typically, we could
achieve this using a shared memory segment that is mapped to
all the ranks within the node. Avoiding such copying overhead
could provide a noticeable performance advantage, especially for
light-weight core design such as Intel KNL, where more than half
the operation time could be spent for local data copying.

3A lane [20] is lock-free runtime resources for accessing the interconnect.

10 c s r _ g e t _ ch anne l _ c oun t (& channe l_coun t ) ;
. . .

12 c s r _ge t _ t e am_hand l e ( CSR_SELF_TEAM,& h_ s e l f _ t e am ) ;
c s r _ge t _ t e am_hand l e (CSR_COLUMN_TEAM,& h_co l_ team ) ;

14
cs r_sym_a l loca te_memory ( h_col_team , s p a c e _ s i z e ,

16 CSR_REDUCTION64_SPACE ,& rmt_c space_hnd l ) ;
c s r_sym_a l loca te_memory ( h_se l f _ t eam , s p a c e _ s i z e ,

18 CSR_DEFAULT_SPACE ,& s r c _ c s p a c e _hnd l ) ;
c s r _ g e t _ s p a c e _ p t r ( rmt_cspace_hnd l , ( vo id ∗ ∗ ) &rmt_ spa c e_p t r ) ;

20 c s r _ g e t _ s p a c e _ p t r ( s r c _ c spa c e_hnd l , ( vo id ∗ ∗ ) &s r c _ s p a c e _ p t r ) ;

22 c s r _ o p e r a t i o n _ t op = CSR_ADD_FP64 ;
c s r _ c o n s t r u c t _ r e d u c t i o n ( rmt_cspace_hnd l , op , channe l s [ 0 ] ,

24 t x _hand l e s +0 ) ;

26 c s r _ p l a n _ r e d u c t i o n ( e lement_count , CSR_DEFAULT_REDUCTION_CHUNK ,
pa t t e rn , INPLACE_REDUCTION , t x _hand l e s [ 0 ] ) ;

28 c s r _ s e t _ t e am_h e l p e r _ t h r d ( h_col_team , f i r s t _ l e v e l _ omp _ t h r e a d s ) ;

30 / ∗ Ac t i v e P roduce r s ∗ /
# pragma omp p a r a l l e l

32 {
f o r ( t = 0 ; t <chunk_count ; t ++) {

34 / ∗ Produce chunk o f da t a ∗ /
# pragma omp f o r nowai t

36 f o r ( i = s t a r t ; i <end ; i ++)
s r c _ s p a c e _ p t r [ i ] = f ( i ) ;

38 / ∗ S t a r t the r e du c t i o n o f the produced chunk ∗ /
c s r _ d e p o s i t _ r e d u c t i o n _ t h r d ( rmt_cspace_hnd l , s r c _ c spa c e_hnd l ,

40 s t a r t , chunk_s i ze , t i d , n threads , sync_mode ) ;
}

42 }
/ ∗ Consumers , wa i t f o r the c o n s i s t e n c y r e s u l t i n g from a l l

d e p o s i t s . ∗ /
44 #pragma omp p a r a l l e l

{
46 c s r _w a i t _ c o n s i s t e n t _ t h r d ( rmt_cspace_hnd l , tag , t i d , n t h r e ad s )

;
}

48 / ∗ Now, consumers cou ld a c c e s s the da t a . ∗ /
f o r ( i = 0 ; i < s i z e ; i ++)

50 l o c a l [ i ]= g ( rm t_ spa c e_p t r [ i ] ) ;

Figure 4: The computation-communication pattern for an
allreduce operation. The pattern involves creating operations,
planning through providing type, size, and algorithm, and finally
issuing the transfer requests while doing computation within a
threaded region. The consistency is checked at the end by the
consumers.

CSPACER provides applications the choice to access leader data
pointer while waiting for a space to be consistent. Unfortunately, we
do not have an efficientmechanism for enforcing read-only access to
the data. As such, it is the responsibility of the application to ensure
that the leader shared copy is not overwritten. Multiple numerical
algebra algorithms would benefit from avoiding copying, including
distributed matrix-matrix multiplication, and LU factorization. In
both cases, blocks of data are broadcasted across a team of ranks
and are read-only accessed.

3.3 Construction of Communication Pattern
Amajor objective of most of the design choices of the CSPACER run-
time is to enable computation and communication overlap while
leveraging multicore architectures, efficiently. Some of the complex
operations, such as allreduce, allgather, etc, are decomposed
into multiple application/runtime phases rather than having a sin-
gle phase of interaction. We will demonstrate a couple of simple
examples to clarify the steps of creating these patterns.

The allreduce example, shown in Figure 4, illustrates the phases
of constructing the operation over a symmetric space. It starts
with the allocation of special space for processing a reduction,
line : 15 − 18. Then, the application creates an operation for re-
duction, line : 23, and provides information about the intended
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10 c s r _ i n i t _ r u n t im e ( argc , argv , c o n f i g _ f i l e _ n ame ) ;
c s r _ g e t _ l a n e _ c oun t (& l ane_coun t ) ;

12
/ ∗ Only the r oo t i n j e c t da t a ∗ /

14 i f ( r o o t ) {
/ ∗ Crea t e mu l t i p l e t r a n s f e r s , one per t h r e ad . ∗ /

16 f o r ( i = 0 ; i < l ane_coun t ; i ++) {
c s r _ g e t _ l a n e _h and l e ( i , l a n e s + i ) ;

18 c s r _ c o n s t r u c t _ b r o a d c a s t ( rmt_cspace_hnd l , 0 ,
s r c _ c spa c e_hnd l , 0 , chunk ,

20 l a n e s [ i ] , t x _h and l e s + i ) ;
}

22 #pragma omp p a r a l l e l num_threads ( l ane_ coun t )
{

24 c s r _ b r o a d c a s t _ h a n d l e _ t t x_hnd l = t x _hand l e s [ t i d ] ;
c s r _ l a n e _ h a n d l e _ t mylane = l a n e s [ t i d ] ;

26
f o r ( t = 0 ; t < t x_coun t ; t ++) {

28 / ∗
#pragma omp f o r num_threads ( s e cond_ l eve l _omp_ th r e ad s )

30 {
Threaded compress ion o f b r o ad c a s t e d da t a .

32 }
∗ /

34 c s r _ upd a t e _ b r o a d c a s t ( t h r _ s t a r t , chunk_s i ze , t x_hnd l ) ;
wh i l e ( c s r _ i n i t i a t e _ b r o a d c a s t ( t x_hnd l ) != CSR_SUCCESS )

36 / ∗ r e t r y ∗ / ;
}

38 / ∗ Without hardware suppor t , we need t h i s l an e f l u s h . ∗ /
c s r _ f l u s h _ l a n e ( mylane ) ;

40 }
}

42
/ ∗ Consumers , r a t h e r than copying , cou ld read the node l e a d e r ' s

da t a ∗ /
44 / ∗ Tag may r e q u i r e ano the r b roadca s t , i f the da t a s i z e i s not

known to consumers a p r i o r i . ∗ /
c s r _w a i t _ l e a d e r _ c o n s i s t e n t ( rmt_cspace_hnd l , t ag ) ;

46 c s r _ g e t _ n o d e _ l e a d e r _ s p a c e _ p t r ( rmt_cspace_hnd l , d e s t _ s p a c e _ p t r ) ;

Figure 5: Concurrent Computation-communication pattern for one-
sided broadcast. Root could do threaded injections of different
chunks of data in out-of-order fashion.

operation, transfer size, etc, line : 26. The application alternates
between compute, line : 36, and data deposition to the runtime,
line : 39, within an OpenMP parallel region. These frequent inter-
actions between the application and the runtime provide a better
opportunity for progressing the runtime and better tolerance for
imbalanced arrival to the collective. Threading provides more com-
pute power to finish the reduction task. Finally, the data consumer
wait for the space to become consistent, line : 46, before accessing
the data.

Figure 5 shows how to perform a one-sided broadcast operation,
where only the root knows the amount of broadcasted data while
other team members only know the worst case volume of broadcast.
We create a transfer operation for each thread, line : 18, such that
each thread could progress independently, allowing concurrent in-
jection of data, line : 34 − 36. Unlike the first example, each thread
independently chooses the transfer size and offsets at the source
and the destination. If the broadcasted data are read-only, then the
consistency is checked for the team’s node leader, line : 46. Once
consistent, the leader copy of the data is used by all ranks within
the team, rather than creating private copies. If the broadcast oper-
ation involves some compression, then the metadata would require
another broadcast operation, which is issued after the compression
but need to be completed first. The metadata broadcast enables
establishing the consistency tag of the irregular broadcast.

Our implementation [32] include other patterns, such as alltoall
or allgather, based on the use of put or broadcast operation, re-
spectively. For the irregular variant of these operations, we use an
additional communication phase for establishing the consistency

tag following the main data communication phase. An application
developer could integrate these skeletons into their code, specifi-
cally for communication-bound hotspots.

Due to the lack of hardware support for collectives over a vector
of elements in the Cray Aries interconnect, we introduce a variant
of the broadcast operation that would require the involvement of all
ranks within a team, and we call this variant a coordinated broad-
cast. This primitive allows concurrent forwarding of the broadcast
data by the whole team to improve the efficiency of the operation
while still adopting the one-sided broadcast semantics where only
the root injects data and decides the amount of data to broadcast.
The consumers could progress the operation by checking the con-
sistency of the broadcast space against the worst-case broadcast
volume. We also built a coordinated allgather on top of the coor-
dinated broadcast primitives. Both regular and irregular broadcast
use the same API, similarly for allgather. The consistency mech-
anism is slightly more involving in the irregular case and would
typically require an additional communication step of the metadata.

Internally, CSPACER uses a simple algorithm for reduction, where
it assigns the nodes participating in the reduction chunks of the data
in a round-robin fashion. The reduction mechanics is decided based
on the information provided in the reduction plan call. Moreover,
ranks within a node transparently split the work of making the re-
duction. As chunks get deposited to the runtime, the CSPACER run-
time performs local reduction before the inter-node one. Only node
leaders participate in the second phase of reduction, and they broad-
cast the results back to all node leaders. Non-leader ranks finally
copy the results if needed. The CSPACER implementation of the
coordinated broadcast uses a simple cut-through forwarding using
put operation on a topology-aware binary tree of ranks within
the team. This cut-through forwarding could easily be offloaded
to a hardware-accelerated engine. CSPACER also leverages shared
memory bypassing using xpmem [3].

3.4 Runtime Management of Interconnect
Resources

Frequently, the runtime provides communication resources, such as
communicators, to the application layers as allocate-able resources.
It may also try to support concurrent access to an arbitrary number
of threads at the application level. At the interconnect level, these
resources could be limited and frequently shared by all ranks using
the same network interface, in case of concurrent access, or the
network switch, in case of supporting hardware collectives. As
such, the communication runtime could face a challenge mapping
software resources onto the limited hardware resources. Moreover,
the application may encounter an accelerated runtime path if cer-
tain conditions are satisfied, making performance predictability
a challenge. On the other hand, developing applications against
virtual interconnect resource abstraction provides development
productivity and portability across systems.

In designing our runtime, we rely on presenting performance-
critical resources as being query-able, rather than allocate-able.
For instance, the number of injection lanes that are supported by the
runtime depends on the underlying architecture and the number of
ranks sharing the node. As such, the application needs to query such
critical resource and structure the code dealing with the possibility
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of having variable lane count. Similarly, for hardware-accelerated
collectives, the application should not assume a particular avail-
ability of these resources, similar to software allocated resources.
Often, if the resources are limited, the application needs to choose
which communication pattern is critical to its performance and
uses scarce resources for critical communication patterns.

The presented approach makes it a necessity to interoperate with
a general-purpose programming model, such as MPI. This helps in
identifying whether communication bottlenecks exist within the
code. Porting communication hotspot into the CSPACER runtime
is done guided by an application profiling phase. In general, judg-
ing where communication resources should be used is essential
to reaching optimal performance. Typically, the amount of code
that needs rewriting using this approach is expected to be a small
percentage of the MPI-based application code.

4 EVALUATION METHODOLOGY
4.1 Platform
We conducted our experiment on the Cray Cori (XC40) system at
NERSC. The system has a Cray Aries interconnect with Dragonfly
topology. Two kinds of compute nodes are connected to the inter-
connects. The system has two types of compute nodes: 9,688 Intel
Knights Landing compute nodes and 2,388 Intel Xeon Haswell. The
KNL nodes operate at 1.4 GHz and have 68 cores per node, 4 hard-
ware threads per core, 1.4 GHz, 512-bit vector units, 96 GB DRAM,
and 16 GB on-package MCDRAM. The Haswell compute nodes op-
erate at 2.3 GHz, and have 32 cores/node and 128GB of DDR4 mem-
ory. The experiment conducted in this study used the following list
of programming environment: intel/19.0.3.199, PrgEnv-intel/6.0.5,
cray-mpich/7.7.10, craype-mic-knl, craype-hugepages2M, dmapp/7.1.1,
xpmem/2.2.20, ugni/6.0.14.0, and SHMEMX/9.0.0.

4.2 Microbenchmarks
The OSU benchmarks [27] provides a comprehensive set of bench-
marks for testing various functionalities for the MPI programming
model, along with other programming models. We used OSU bench-
marks, v. 5.6.2, to assess point-to-point, one-sided, and collective
performance. We used Cray SHMEMX, for evaluating the Shmem
performance on Cray systems. For SHMEM benchmarking, we
used a slightly modified version of SHMEM-MT [37], where thread
synchronization during injection is removed because it adds unnec-
essary overhead given the Cray thread-hot support.

Although the benchmarks assess the performance for various
transfer sizes, we focused solely on performing communication
on large data sets, where the data transfer is usually bandwidth
limited. On the Cray systems, communication primitives become
bandwidth-limited at roughly 4-32KB. On Haswell-based nodes, the
bandwidth-limited transfers are smaller than the KNL nodes, which
require larger transfers to reach the same efficiency of utilizing the
interconnect. Unless stated otherwise, we measured the latency to
communicate or to reduce 64 MB of data.

4.3 CSPACER Use in Math Libraries
We evaluated the effectiveness of the presented runtime on dis-
tributedmatrixmultiplication. Althoughmatrixmultiplication should
be asymptotically compute-bound, the change of machine balance

across supercomputer generations [24] makes matrix multiplication
communication-bound for matrix sizes of interest. For distributed
matrix multiplication, typically implemented using ScaLAPACK, we
used two popular algorithms, the Cannon [23], and the SUMMA [36]
algorithms. We used the 2.5 D decomposition [33], proposed by
Solomonik for being communication efficient. Both 2.5D Cannon
and 2.5D SUMMA rely on having replicated state of the input matri-
ces that would reduce the volume of communication. Each group of
ranks creates a 2D plane involving multiple communication phases.
The 2.5D decomposition reduces the data movement across ranks,
through replication of the input and output matrices across groups
of ranks. These groups independently calculate partial results that
are collectively reduced at the end of the computation. The com-
munication pattern within a plane depends on the algorithm. For
SUMMA, the data is broadcasted across the rows and columns from
the root owning the source data. For CANNON, the data moves
circularly across rows and columns. As such, SUMMA relies on the
performance of broadcast, while CANNON depends on the perfor-
mance of point-to-point primitives. Both rely on the reduction of
partial results. We find these algorithms to provide representative
test cases for the performance of the developed runtime because
they stress the support for point-to-point, broadcast, and reduction.

To improve the efficiency of executing these algorithms, we intro-
duced a pipelined variant of the algorithm, where while doing com-
putation on a matrix panel, another panel is being communicated.
For MPI, we used the non-blocking interface for send/receive or
broadcast for CANNON and SUMMA, respectively. This pipelined
approach stressed the effectiveness of overlapping computation
with communication. Using MPI, we need to construct commu-
nicators for all three dimensions. Two communicators are across
rows and columns, and a third across planes. The memory require-
ments increase for the case where the three dimensions are close in
size. The 2.5D allows controlling the tradeoffs between memory re-
quirement and performance, providing a rich set of configurations
compared with the 3D case [2].

The pipelined version is the onewe extended to use the CSPACER.
Additionally, we used the threaded injection strategy of transfer and
pipelined the injection while packing the transfers. We observed
that sending data in chunks allows more time-spaced injection of
data and correlate with better performance. For CSPACER broadcast
and reduction, we use the threaded version of transfer initiation and
consistency checking. For point-to-point, we leverage concurrent
independent injection of the transfers. We did not use a similar
strategy for the MPI variant because the OSU benchmarks show a
significant performance penalty for using threaded injection. For
instance, on KNL nodes, the latency increases from 3 us to 25 us,
for 8 B messages, when we increase the number of threads from
1 thread to 4 threads. At 8 threads, the latency reaches 67 us. In
general, we observed that the latency increases super-linearly with
the number of threads, which is a behavior that affects not only
small transfers but also large transfers, as well.

4.4 Application Use of CSPACER
We study the use of CSPACER with the MIMD Lattice Compu-
tation (MILC) [7], which is one of the software packages in the
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USQCD framework [35] used to study the lattice quantum chro-
modynamics (QCD) theory. The lattice QCD theory models the
strong interactions of subatomic particles, quarks, and gluons to
form hadrons. The Lattice QCD computation involves discretized
four-dimensional SU(3) lattice gauge, three dimensions are in the
space, and the fourth is the time dimension. In distributed environ-
ment, the lattice structure is distributed by decomposing the lattice
across ranks in one or more of the lattice dimensions.

The MILC code has several specialized computational kernels. In
this work, we use the dynamical rhmc code (relational hybrid monte
carlo algorithm, or su3_rhmd_hisq), version 7.8.1, for benchmark-
ing. The MILC package has multiple specialized implementations
depending on the target platform. For Intel-based systems, it lever-
ages the Intel QPhiX library for the conjugate gradient solver, which
provides an optimized vector implementation for various Intel archi-
tectures. In a distributed computing environment, the library also
performs point-to-point halo exchange between various sites. The
communication pattern is a simple nearest neighbor pattern, where
depending on the problem decomposition, each rank communicates
with up to 8 neighbors using non-blocking primitives.

We modified the two boundary exchange logic within the pack-
age responsible for communication for the gauge force (GF) and
the Kogut-Susskind (KS) calculation. In both cases, the library pro-
vides a threaded function for packing and unpacking lattice faces
to exchange with neighbors. We also used a threaded injection for
transfer, which allows threaded copying if the neighbor resides
within the node. We also used a separate communication lane for
each communication direction to allow independent injection and
progress of these lanes.

5 PERFORMANCE EVALUATION
This presents the performance evaluation of the presented runtime
using microbenchmarks and when integrated into scalable solver
libraries or with an application.

5.1 Runtime Overheads
Very often, a newly developed runtimes report on the latency of per-
forming a data transfer operation. The CSPACER runtime does not
rely on establishing consistency at the granularity of a data transfer.
As such, it views consistency as an aggregate measure over a mem-
ory space. Therefore, to assess our runtime efficiency, we report
the latency to initiate a transfer and the latency to check whether
a transfer is not possible due to lack of resources or the NIC being
busy processing prior requests. On KNL architecture, our runtime
takes around 280 ns in the non-contended case, reaching 490 ns
in the contended case, to initiate a put transfer. On Haswell, the
latency is 32 ns and 72 ns , for the non-contended and the contended
cases, respectively. We believe that the large difference between
the two architectures is influenced by the cost of executing a mem-
ory fence to control the PCIe-based NIC and the difference in core
execution capability. A failed attempt to initiate a transfer could
take up to 50 ns on KNL and as little as 10 ns on Haswell. These
low overheads allow the application to invoke the runtime while
producing the data more frequently.
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Figure 6: The time decomposition of concurrent injection of put
transfers with different levels of process concurrency for 64MB
of data. Threading improves the performance, especially for small
chunk size, and small number of ranks sharing a node.
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Figure 7: The latency to send 64MB between two processes using
different chunk sizes at different threading levels for CSPACER and
SHMEM. CSPACER achieves mimimum latency at smaller chunk
and lower concurrency.

5.2 CSPACER Runtime Efficiency
We report on the performance improvement with concurrent in-
jection in Figure 6. We show the impact for different chunk sizes,
thread concurrency level, and rank concurrency levels per node. For
1KB chunk, the performance improvement of using four threads
compared with a single thread is as high as 50%. The performance
improvement gets smaller as we increase the chunk size because the
bandwidth to the interconnect becomes the major bottleneck. We
notice that attempts to inject transfers take the majority of time in
the experiment when the chunk size increases. In our experiment,
we use back-to-back injection, i.e., a sort of flooding pattern. In
practice, large chunks would require larger computation time, and
as such larger inter-arrival time inject traffic to the runtime.

As we start using more ranks per node, we notice that con-
current injection could be associated with a 5-10% performance
penalty with our flooding pattern. In contrast, the thread multi-
ple support on MPI results in a super-linear increase in latency as
we increase the number of threads injecting traffic. For instance,
for 1KB transfers the latency increase from 4.5 us to about 30 us
with four threads, according to the osu_latency_mt benchmark.
These experiments clearly show that concurrent injection could be
beneficial, especially in reaching bandwidth saturation of the in-
terconnect. The concurrent injection could also be beneficial when
the target rank resides within the node. In this case, the use of more
threads improves the copying efficiency of the data.

One of the most efficient programming models that efficiently
support threading on Cray systems is SHMEM, especially with

64



HPC Asia 2021, January 20–22, 2021, Virtual Event, Republic of Korea Khaled Z. Ibrahim

Cray SHMEMX hot-thread. In Figure 7, we contrast the perfor-
mance of CSPACER with Cray SHMEMX with hot-threads, which
is one of the most efficient low-overhead models on Cray systems.
CSPACER uses only BTE-based protocol for all message sizes, and
could reach the best performance with two threads only, matching
the number of BTE channels available for point-to-point communi-
cation on the Cray Aries interconnect. With concurrent injections,
4KB is enough to drive the interconnect at full speed, while a single
thread would need 128KB. Cray SHMEMX requires a chunk of at
least 32KB for threaded implementation to reach the same efficiency
because it combines the transfer creation and initiation. We also
observe the impact of switching between the FMA and the BTE pro-
tocols for SHMEM, which degrades the performance for chunk sizes
of 1 − 32KB. The CSPACER transfer for small transfer is as low as
FMA protocol due to splitting the transfer into two phases: creation
and initiation. With MPI, we noticed performance degradation with
multithreading support relative to the use of single-thread, similar
to those reported in earlier studies [19].

5.3 Performance of Collectives
In this section, we show the performance (latency) of performing
multiple collective operations using CSPACER and contrast that
with the performance observed using MPI and Cray SHMEMX.

5.3.1 Broadcast Performance. In Figure 8, we show the latency of
broadcasting a 64MB of data usingMPI, SHMEM, and CSPACER. For
MPI, we observe a significant increase in latency when the number
of nodes increases. Given the large transfer size, we would expect
that the latency of propagating the broadcast will be bandwidth lim-
ited. Optimized latency for the broadcast of large messages [29, 34]
should ideally be (loд2(p)+p−1)α +2 (p−1)p nβ), where p is the num-
ber of ranks, α is the startup time, β is the time per byte, and n is the
number of bytes. This time complexity [34] assumes scattering the
data across all nodes, followed by an allgather operation. In the
first part of the equation, the latency term should not significantly
dominate the latency for large transfer. Instead, we observed an in-
crease in latency proportional to the loд2(p). We explored multiple
variants, including the use of Cray DMAPP, change of collective
protocols, use of asynchronous progress threads. We observed per-
formance variation of up to 14% between these algorithmic choices.
We decide to report on the default setting of MPI because the dif-
ferences are not significant. Moreover, as we increase the number
of ranks per node, we also observed an increase in the latency for
performing the broadcast. With SHMEM, we observed similar be-
havior for broadcast. By exploring different settings for SHMEM,
we observed a slightly accelerated performance for single rank per
node, which is not shown for brevity.

The CSPACER implementation delivers a significant improve-
ment in latency and scaling. Our implementation is based on pipelined
cut-through forwarding using a binary tree organization of the
ranks within a team. Receiving nodes keep forwarding data as they
receive them. As such, the latency do not change significantly with
the number of nodes. We reduce this latency by using multiple
threads while checking for the completion of the space. Overall,
the performance advantage of CSPACER on 64 nodes is up to 3.8×
compared with MPI.
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Figure 8: The latency for broadcasting 64MB of data, for MPI,
SHMEMX, and CSPACER, respectively. CSPACER has lower latency
compared with other models and introduces lower latency increase
as we scale.

5.3.2 AllReduce Performance. We tested the performance of an
allreduce operation using MPI, SHMEM and CSPACER. While
for MPI and SHMEM, we report on the time to do the collective
operation solely, for CSPACER, we include the time to setup the
array value as it interleaves with the communication. As shown
in Figure 4 line : 39, the reduction is performed as a series of
deposit operations. One of the algorithmic choices is deciding the
chunk size for depositing reduction data. In Cray XC40 system, we
observed the best performance with 32KB chunks.

The impact of using threaded implementation is illustrated in
Figure 9, where we show the performance. Comparing with the
MPI performance, shown in Figure 9, we notice a significant per-
formance advantage to CSPACER. For instance, for 16 nodes with 4
processes per node, CSPACER delivers 3.9× latency improvement.
The performance advantage depends on the number of ranks per
nodes and the level of threading. We observe increase latency for
the MPI implementation between 16 and 64 nodes for both MPI
and CSPACER. We conjuncture that the node placement on Aries
Dragonfly network starts making the performance dependent on
traversing more global links.

Compared with SHMEM and MPI, CSPACER provides a perfor-
mance advantage only when threading is enabled. The single-thread
performance of SHMEM and MPI are higher than CSPACER, but
they do not have the option of threaded processing of the reduction
operation. CSPACER has a single algorithmic choice for reduction
and is amenable for further tuning to improve the single-thread
performance, a task we will pursue in future work.

5.4 Matrix Multiplication Performance
Most new supercomputingmachines have higher flop/byte machine
balance, making communication a growing challenge for perfor-
mance [24], even for the traditionally compute-bound problems
such as distributed matrix multiplication. We explored the perfor-
mance of two variants of matrix multiplication using CSPACER-
and MPI-based implementations.

We report on the best implementation for each programming
model. For computation, we used the same thread concurrency
for both implementations. For communication, because a threaded
implementation is advantageous for CSPACER, we adopt it. While
for MPI, we used the non-threaded communication implementation
because it delivers the best performance.
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a) MPI b) SHMEM c) CSPACER

P P N  =  1 P P N  =  4 P P N  =  80

4 0

8 0

1 2 0

1 6 0

2 0 0

2 4 0

La
ten

cy
 (m

s)

 N o d e  C o u n t
 6 4
 3 2
 1 6
 8
 4
 2

P P N  =  1 P P N  =  4 P P N  =  80

4 0

8 0

1 2 0

1 6 0

2 0 0

2 4 0

La
ten

cy
 (m

s)

 N o d e  C o u n t
 6 4
 3 2
 1 6
 8
 4
 2

1  t h r e a d
2  t h r e a d s

4  t h r e a d s
8  t h r e a d s

1  t h r e a d
2  t h r e a d s

4  t h r e a d s
8  t h r e a d s

1  t h r e a d
2  t h r e a d s

4  t h r e a d s
8  t h r e a d s

0

4 0

8 0

1 2 0

1 6 0

2 0 0

2 4 0

All
red

uc
e l

ate
nc

y (
ms

)

N o d e  C o u n t
 6 4
 3 2
 1 6
 8
 4
 2

P P N  =  1 P P N  =  4 P P N  =  8

Figure 9: The performance of the allreduce operation for MPI, SHMEM, and CSPACER, on 64MB data using various ranks per node. For
CSPACER, we vary the threads per rank. In general, CSPACER threaded version improves with the use of more threads, and is associated with
lower latency than other models.
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Figure 10: Matrix multiplication using 2.5D Summa and Cannon al-
gorithm for square matrices of size 32K 2.
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Figure 11: Strong scaling ofmatrixmultiplication using the Cannon
algorithm for square matrices of size 8K 2.

Depending on the number of nodes, we construct 3D teams. The
layout is expressed as row × col × plane × threads . For instance,
on 32 nodes, we use team layout of 8 × 8 × 2 × 32, while we used
4× 4× 2× 32 layout on 8 nodes. We have four ranks per node in all
cases, which delivers the best performance and stress both inter-
and intra- node transfer mechanisms.

As shown in Figure 10, testing the performance of multiplication
of matrices of size 32K2 on 128 nodes, the CSPACER-based imple-
mentation improves the performance over the best MPI-variant
by 1.56× and 1.34× for SUMMA and CANNON, respectively. The
CANNON algorithm delivers better performance compared with
SUMMA, but algorithmically it requires perfectly square decompo-
sition. The SUMMA algorithm does not impose such constraints.

We tested the strong scaling performance for matrix multiplica-
tion 8K2 on 8-128 nodes, using the CANNON-based implementa-
tion. As shown in Figure 11, the CSPACER-based implementation

significantly improves the performance compared with the best
MPI-variant. The speedup increases from 1.6× for 8 nodes to 1.89×
using 32 nodes. At 128 nodes, the performance improvement is
roughly 1.48×. Note that we did not fully leverage computation
communication overlap, and we merely overlapped data packing
with communication.

5.5 Lattice QCD Performance
The conjugate gradient kernel is one of the most computation-
ally demanding in Lattice QCD computations. Figure 12 shows the
performance of the CG component for a) MPI and b) CSPACER-
based variants while strong-scaling the calculation of lattice of size
643 × 64. As shown in Figure, CSPACER improves over MPI by up
to 1.58× on 16 nodes and by up to 1.41× at 128 nodes. The figure
also shows the variability in CG performance which is inversely
proportional to the quark masses being simulated. CSPACER ex-
hibits a higher variability than MPI at low node code. We found the
correlation of the CSPACER runs to be higher, i.e. more predictable
than MPI at low node count. At high node count, system variability
significantly influences the execution time making the variability
less predictable for both CSPACER and MPI.

Figure 13 shows the strong scaling behavior for the whole appli-
cation for 16-128 nodes, using four ranks per node. For both MPI-
and CSPACER-based variants, using 256 hyperthreads per node
delivers the best performance at low node count. At high node
count, 128 hyper-threads delivers the best performing configura-
tion. Comparing the best performing configuration of both MPI and
CSPACER, we measure and an end-to-end speedup of 1.19× and
1.28× at 16 and 128 nodes, respectively. In all reported experiments,
we modified a subset of the MPI call involved in the halo exchange.
The rest of the communication code still uses the MPI APIs. The
performance advantage of CSPACER is due to the efficient use of
pipelined concurrent injection of data by different threads.

6 RELATEDWORK
The Space Consistency model adopts PGAS semantic adopted by a
wide class of programming models including SHMEM [30], UPC [9,
10], UPC++ [5, 40], Global Arrays [25], Corray Fortran [26], etc.
These models relies on various libraries such as GASNet [8, 38], MPI
RMA [15], ARMCI [25]. The majority of PGAS models provide the
ability to do direct remote access for applications in distributed pro-
gramming environments. They differ in the base language, C, C++,
or Fortran, whether they require symmetric heap allocation, the syn-
chronization and consistency semantic, etc. The consistency space
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Figure 12: The throughput of the conjugate gradient of the lattice QCD calculation using MILC package on KNL architectures on a lattice of
the size 643 × 64 for a) MPI and b) CSPACER. We notice the performance improvement of using CSPACER over baseline using MPI by up to
49%.
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Figure 13: Strong scaling the lattice QCD calculation using MILC
package on KNL architectures on a lattice of the size 643 × 64.

programming abstraction leverages many of the concepts devel-
oped in other programming models, including the use of symmetric
heap on team-based rank grouping, simple producer-consumer re-
lation based on counting events to support efficient point-to-point
and collective communication.

The support for threading in MPI is a well-investigated prob-
lem [4, 12, 13, 16, 28, 39]. Most of the efforts are geared towards
reducing the overhead of processing transfers in threaded environ-
ments. The performance improvement is transparent to the user,
but is best efforts as well, and very often not-optimal [28]. The
MPI-MT runtime leverages pipelining internally for processing
large data, but it does not provide a mechanism for overlapping the
production of these data with their processing. NewMadeleine [14]
runtime allows efficient handling of many requests through decou-
pling the application requests from network activities. The runtime
uses aggregation, message splitting, and reorder to improve the
efficiency of transfers. NewMadeleine explored mainly two-sided
point-to-point APIs. Similar efforts have been explored in PGAS
language [22]. In these cases, the threading support preserves the
sequential interface.

CSPACER provides mechanisms to create application pipelining
as a part of a plan, allowing the application to deposit data as they

are produced to improve overlapping computation and communi-
cation activities. These plans enable the runtime to optimize based
on knowing the application’s overall data size involved in the op-
eration. An application-centric pipelining, through the creation of
independent operations, may not help the runtime choosing the
best collective algorithm unless the runtime is equipped with an
accurate speculation mechanism of the application intent.

The idea of using one-sided semantic in implementing producer-
consumer relation has been explored using signaling put (notifying
the receiver of the put) in Split-C programming model [11]. The
idea of counting put has also been explored for OpenSHMEM [17]
and in MPI notified access [6]. This work extends these concepts to
collectives processing using threaded implementation.

7 CONCLUSIONS
In this paper, we present the design and implementation for a run-
time that implements the Space Consistency model on Cray XC
systems. The design leverages multicore architectures to accelerate
communication for point-to-point and collective operations. The
CSPACER API design relies on decomposing complex communica-
tion primitives, such collective operations, into simpler primitives.
These primitives could then be used to construct communication
patterns to be integrated into the application computation.

We show efficient point-to-point and collective communication,
providing speedup up to 3.8× for broadcast, and up to 4× for
allreduce. We show that we could use CSPACER to improve ap-
plications relying on point-to-point communication, such as QCD,
and those relying on collective, such as communication-avoiding
matrix multiplication algorithms. The CSPACER runtime improves
the LQCD conjugate gradient computation by up to 50% and reduce
the overall execution time for 2.5D Cannon algorithm by up to 32%.

In future work, we would like to extend the support of the
CSPACER runtime to other interconnect, such as Infiniband. Au-
tomating the transformation of MPI-based codes to CSPACER is
likely to be beneficial for developers’ productivity and code mainte-
nance. Moreover, a coding tool that provides design patterns to the
developers may also facilitate the adoption of this abstraction and
reduce the entry barrier. Another likely desired feature is a mapping
of CSPACER to MPI primitives for systems where CSPACER is not
supported.
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