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ABSTRACT
Memory vulnerabilities are a major threat to many computing
systems. To effectively thwart spatial and temporal memory vulner-
abilities, full logical memory safety is required. However, current
mitigation techniques for memory safety are either too expensive
or trade security against efficiency. One promising attempt to detect
memory safety vulnerabilities in hardware is memory coloring, a
security policy deployed on top of tagged memory architectures.
However, due to the memory storage and bandwidth overhead of
large tags, commodity tagged memory architectures usually only
provide small tag sizes, thus limiting their use for security applica-
tions.

Irrespective of logical memory safety, physical memory safety
is a necessity in hostile environments prevalent for modern cloud
computing and IoT devices. Architectures from Intel and AMD
already implement transparent memory encryption to maintain
confidentiality and integrity of all off-chip data. Surprisingly, the
combination of both, logical and physical memory safety, has not yet
been extensively studied in previous research, and a naïve combina-
tion of both security strategies would accumulate both overheads.

In this paper, we propose CrypTag, an efficient hardware/soft-
ware co-design mitigating a large class of logical memory safety is-
sues and providing full physical memory safety. At its core, CrypTag
utilizes a transparent memory encryption engine not only for phys-
ical memory safety, but also for memory coloring at hardly any
additional costs. The design avoids any overhead for tag storage
by embedding memory colors in the upper bits of a pointer and
using these bits as an additional input for the memory encryption.
A custom compiler extension automatically leverages CrypTag to
detect logical memory safety issues for commodity programs and
is fully backward compatible.

For evaluating the design, we extended a RISC-V processor with
memory encryption with CrypTag. Furthermore, we developed a
LLVM-based toolchain automatically protecting all dynamic, local,
and global data. Our evaluation shows a hardware overhead of less
than 1 % and an average runtime overhead between 1.5 % and 6.1 %
for thwarting logical memory safety vulnerabilities on a system
already featuring memory encryption. Enhancing a system with
memory encryption typically induces a runtime overhead between
5% and 109.8 % for commercial and open-source encryption units.

KEYWORDS
memory safety; tagged memory; memory coloring; memory en-
cryption; RISC-V

1 INTRODUCTION
According to MITRE [35], three out of ten of the most common
software weaknesses in 2019 leading to security vulnerabilities are
owed to logical memory safety violations. Memory vulnerabilities,
which exploit spatial or temporal memory bugs, are the foundation
for more sophisticated attack techniques, such as return-oriented
programming (ROP) [50] or data-oriented programming (DOP) [20].
Consequently, due to the high impact of memory vulnerabilities,
defense strategies, such as code- and data-pointer integrity [24, 28]
or the protection of the control-flow [30], were introduced in the
past. However, these concepts only complicate the exploitation of a
memory vulnerability, but do not fix the root cause. To completely
thwart memory vulnerabilities, full logical memory safety for all
classes of memory allocations is necessary [53]. Unfortunately, soft-
ware solutions providing memory safety, such as SoftBound [37] or
CETS [38], typically add significant overhead and increase costs if
deployed on a larger scale. High performance penalty can be coun-
teracted with hardware assistance. A promising attempt to detect
memory safety violations with hardware support are tagged mem-
ory architectures [46]. Tagged memory assigns additional metadata
to the memory, enforcing different security policies [61, 64]. One
policy, allowing to detect memory safety vulnerabilities, is memory
coloring, which is implemented on top of tagged memory. The basic
idea of memory coloring is to lock each memory allocation through
a key. A later memory access is only permitted when using the
correct key. This lock-and-key approach is implemented in the ARM
Memory Tagging Extension (MTE) [2] and provides tagged mem-
ory in hardware. Google announced to work on deploying memory
coloring based on MTE in Android on a larger scale [48], through
the MemTagSanitizer [40] project integrated into LLVM [26]. While
this concept is a step in the right direction, the memory overhead
for storing the tags is still problematic for large-scale applications.
To reduce the memory overhead of memory coloring, ARM decided
to limit their concept to small tags. In ARMMTE, a 16 byte memory
block is tagged with a 4 bits tag, resulting in a memory overhead
of 3.125 %. While this memory overhead might be feasible for most
applications, a tag size of 4 bits only leads to 16 individual colors,
thus limiting the use of MTE as a security mechanism and making
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debugging the main application possible. Increasing the tag size
from 4 to 16 bits not only increases the available color space and,
therefore, also the security guarantees, but also raises the mem-
ory overhead to 12.5 %. In addition to logical memory violations,
systems deployed in hostile environments, such as cloud services
or IoT devices, need to consider physical attacks on the system
memory in their threat model. To maintain confidentiality and in-
tegrity of data stored in off-chip memory, memory encryption is
a widely used technique. Although deploying transparent mem-
ory encryption is costly, vendors like Intel and AMD acknowledge
the significant threat of physical attacks and offer schemes like
Software Guard Extensions technology (SGX) [32], Multi-Key Total
Memory Encryption (MKTME) [9], or Transparent Secure Mem-
ory Encryption (TSME) [22] for the consumer market. Memory
encryption is also employed on smaller devices, e.g., in the Internet-
of-Things (IoT), to protect sensitive data in memory [27, 56].

Despite the immense threat of logical and physical memory
safety violations, the efficient combination of both mitigation strate-
gies has not yet been extensively studied in past research and a
naïve combination of both security strategies would accumulate
both overheads.

Contribution
In our paper, we introduce CrypTag, a hardware/software co-design
mitigating a broad range of logical memory safety issues and pro-
viding full physical memory safety. We demonstrate that realizing
memory coloring on top of an already implemented memory en-
cryption unit hardly costs more. In exploiting properties of the
memory encryption scheme, we overcome limitations of traditional
memory coloring schemes.While previous taggedmemory architec-
tures [1, 2, 21, 51, 52, 64] store the tag in memory and trade security
against lower memory overhead, CrypTag completely avoids stor-
ing tags in memory and thus allows using larger tag sizes. CrypTag
uses the memory color as additional input for the memory en-
cryption scheme to encrypt every allocation differently. Inside the
processor, we store the color information directly in the upper bits
of the pointer, avoiding any additional storage overhead there. The
tag is propagated through the system, stored in the cache, and fi-
nally used to encrypt the data when being stored in memory. Based
on the capabilities of the underlying memory encryption engine,
we derive two security policies for CrypTag.

We further present a software concept utilizing the hardware
architecture to mitigate memory safety violations. Our approach
assigns each allocated memory object on the heap, stack, and global
data a random color. When accessing a memory object with the
wrong color, e.g., due to a spatial or temporal memory bug, the
CrypTag architecture, in its strongest security policy, identifies the
color mismatch. This strategy allows us to successfully detect most
spatial and temporal memory vulnerabilities, enhancing logical
memory safety.

To evaluate our concept, we implemented an FPGA prototype
based on the RISC-V CVA6 core. Furthermore, we extended the
LLVM compiler to automatically instrument the code and protect
all memory allocations without the need for user annotations. We
evaluate the performance of CrypTag by executing different pro-
grams, from microbenchmarks to application code on our FPGA-
based prototyping platform with Linux as host operating system.
The evaluation shows that the performance penalty introduced by

CrypTag is less than 6.1 % on a system already featuring a memory
encryption engine. Summarized, our contributions are:
MemoryColoringHardwareArchitecture: Weefficiently com-
bine memory encryption with memory coloring and show that the
overhead for storing tags in memory can be entirely eliminated.
This allows us to scale the tag size without additional memory cost.
Memory Safety Concept: We develop a hardware-assisted mem-
ory safety concept based on our memory coloring architecture.
We demonstrate that the increased tag size of CrypTag achieves
stronger security guarantees than comparable hardware-assisted
memory safety designs, such as ARM MTE.
Prototype Implementation: We extend the RISC-V CVA6 core
with a memory encryption engine and our memory coloring ap-
proach. We further provide a modified LLVM-based toolchain en-
forcing hardware-assisted memory safety by automatically instru-
menting the application code. We show that the hardware overhead,
for a system already using amemory encryption scheme, is less than
1% and the software overhead is between 1.5 % and 6.1 %. While
highly optimized commercial memory encryption systems typically
induce an overhead between 5 % and 26 % [42], our evaluation of an
open-source memory encryption unit shows a runtime overhead
between 58.9 % and 109.8 %.

2 BACKGROUND
In this section, we discuss the backgrounds of memory safety,
tagged memory, and memory encryption in general.

2.1 Memory Safety
According to Microsoft [34], 70% of all security bugs fixed in
Microsoft products are related to memory safety. Most of these
bugs are critical because they could serve as an entry point for
various other attacks. These attack techniques either tamper the
control-flow or the data-flow of a program. To limit the impact of ex-
ploitable memory safety bugs, several attack mitigations like W⊕X
or DEP are deployed in modern computer architectures. However,
these countermeasures typically only raise the bar for a successful
attack. Although simpler attacks, like the execution of attacker-
injected code, can be mitigated, more advanced techniques, such
as ROP, still can bypass these protection mechanisms [50]. Even
more sophisticated countermeasures, like ensuring the integrity of
the control-flow [30], can be defeated by techniques like DOP [20],
where an attacker can craft turing-complete exploits. To success-
fully defeat memory vulnerabilities, memory safety is required [53].
Memory safety can be achieved by preventing all spatial and tem-
poral memory vulnerabilities in the system. A spatial error is clas-
sified as dereferencing an out-of-bound pointer, such as accessing
an array beyond its bounds, e.g., on the stack. A temporal error, in
contrast, occurs when dereferencing a pointer to an already deal-
located memory object [62]. In the past, memory safety concepts
have already been presented. Watchdog [36], a hardware-based
temporal memory protection scheme, assigns metadata to each
allocated object and modifies this metadata on each memory deal-
location. In comparing this metadata with the identifier stored in
the pointer, potential temporal memory violations can be detected.
Watchdog can also be extended to find spatial memory bugs. In
addition, SoftBound [37] assures spatial memory safety by storing



char *ptr = new char[8];
ptr[2] = ....

ptr[8] = ....

Figure 1: Memory coloring enforcing spatialmemory safety.

the memory bounds of objects in a shadow memory. Because of
the expensive monitoring of the object bounds by software checks,
SoftBound adds an average runtime overhead of around 67%. By
combining SoftBound with CETS [38], temporal memory safety can
be guaranteed, leading to full memory safety. However, the large
performance overhead of 116% on average makes the deployment
hard on a larger scale.

2.2 Tagged Memory
The concept of tagged memory [8, 16, 31] is long-established and
describes the idea of associating blocks of memory with additional
metadata, i.e., tags. Particularly, 𝑇𝐺-bytes of memory are linked
with a 𝑇𝑆-bits wide tag, where 𝑇𝐺 denotes the tag granularity
and 𝑇𝑆 the tag size. In these early computer architectures, tags
were primarily used for debugging and for dynamically tracking
the numeric type of data words. However, since tag bits are only
memory, somewhat arbitrary policies can be implemented [10, 57].
Many recent designs utilize tags primarily for memory coloring, as
shown in Figure 1. In such a coloring scheme, specific tag values,
denoted as colors, are assigned to larger memory regions. When
accessing the memory, these colors are used to determine if a par-
ticular read or write operation is genuine. A mismatch between the
color of the accessed memory and the expected color results in a
memory error. Memory coloring is used, e.g., for debugging [47],
isolation [61], access control [51, 59], and for enforcing memory
safety [49]. With ARM’s new Armv8.5-A instruction set, the Mem-
ory Tagging Extension (MTE) [2] was announced, which embeds a
tagged memory architecture into consumer hardware, such as mo-
bile phones. A first attempt using the tagged memory approach on
a larger scale is already integrated into the MemTagSanitizer [40]
project of LLVM. Similar to the address sanitizer ASan [54] and the
hardware-assisted address sanitizer HWASAN [55], Google’s Mem-
TagSanitizer intends to detect several spatial and temporal memory
bugs. As the MemTagSanitizer benefits from hardware features, the
high performance overhead of comparable software-based address
sanitizer solutions is reduced to a minimum. Nevertheless, MTE
requires the architecture to store the tags in memory. To avoid large
memory overheads, MTE uses a small tag size of 4 bits, resulting
in only 16 distinct memory colors. However, the security of the
memory coloring scheme directly depends on the number of unique
colors. Since colors are assigned randomly for each memory object,
two adjacent objects can have the same color. For security critical
systems, a detection probability of only 93.7 %, when having a tag
size of 4 bits, is insufficient. Increasing the tag size from 4 to 16 bits
would already result in a detection probability of 99.998 %, but also
increases the memory overhead for tag storage from 3.125% to
12.5 %.

While the Armv8.5-A architecture with the MTE feature has
not yet been released in hardware, SPARC already implements

a hardware-based memory tagging scheme with the Application
Data Integrity (ADI) [1] feature embedded into Oracle’s SPARC M7
processor. Similar to ARM MTE, the SPARC ADI feature also only
supports a tag size of 4 bits.

2.3 Memory Encryption and Authentication
Memory safety does not protect the system from physical attacks,
such as cold-boot attacks [19] or RowHammer [23]. To counteract
these attacks, CPU vendors like Intel and AMD deployed memory
encryption into their systems. Two strategies of transparent mem-
ory encryption/authentication are already widely used. The first
and most common variant solely performs encryption to achieve
confidentiality. Examples for memory encryption schemes are In-
tel’s Total Memory Encryption (TME) [9] and AMD’s Secure Mem-
ory Encryption (SME) [22]. The advantage of these schemes is the
high performance and the lack of memory overhead. The second
variant is based on Authenticated Encryption (AE) and provides
both, confidentiality and authenticity, as does the encryption in
Intel’s Software Guard Extensions (SGX) [17]. Authenticated en-
cryption is clearly the superior approach in terms of security since
it protects against spoofing, splicing, and even enables to imple-
ment protection against replay attacks [14]. However, the increase
in security typically comes at the cost of increased latency and
memory overhead to store the integrity information.

Regarding granularity and key handling, different approaches
have been proposed so far. Initial approaches relied on a single
key for the whole encrypted memory (e.g., Intel’s TME, AMD’s
SME). More recent designs, in contrast, also grant finer control over
the used keys. AMD’s Secure Encrypted Virtualization (SEV), e.g.,
supports the use of different keys for the virtualized guest machines.
Intel’s Multi-Key TME (MKTME) even supports different keys with
page-wise granularity by embedding the key ID directly into the
physical address. Our approach is perfectly compatible with all
these design choices for key handling, but orthogonally extends
them with support for tags in the virtual address space. The actual
encryption key for each memory block is, subsequently, derived
from the page or root key and the respective tag. As demonstrated
in Section 5, even encryption with sub-cache line granularity can
be supported in this way.

3 THREAT MODEL
Based on the CrypTag architecture, we propose a hardware-assisted
memory safety concept. Similar to other threat models in the con-
text of memory safety, we are considering an adversary using an
exploitable memory bug to craft a memory vulnerability. Based on
the capabilities of the underlying memory encryption engine (en-
cryption only or with authentication), our memory coloring design
CrypTag provides two different levels of security guarantees.
S1Encryption&Authentication: When detecting a spatial mem-
ory safety violation, CrypTag immediately triggers a system excep-
tion via the inbuilt authentication mechanism of the transparent
memory encryption scheme. Here, CrypTag is capable of detect-
ing out-of-bound reads or writes, i.e., a spatial memory bugs. Fur-
thermore, CrypTag also is capable of reporting the exploitation of
temporal memory bugs, e.g., use-after-free vulnerabilities.
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Figure 2: Overall CrypTag architecture. Thememory encryp-
tion unit, placed between the memory subsystem and the
memory controller, uses the color as a tweak.

S2 Encryption: Compared to S1, this security policy limits the
exploitation of spatial and temporal memory bugs. For out-of-bound
memory reads, CrypTag guarantees the confidentiality of the data
stored in the target buffer. Since the underlying memory encryption
engine does not provide data integrity, CrypTag cannot maintain
the integrity of data in the target buffer in an out-of-bound memory
write. However, CrypTag with S2 aggravates the exploitation of
temporal bugs and spatial out-of-bound writes.

4 DESIGN
In our architecture, memory is allocated in software 1 and a ded-
icated instruction assigns a random color to the memory object
and stores it in the upper bits of the pointer 2 . When writing data
to the memory, the color information is propagated through the
MMU 3 , the cache 4 , and then finally is used as a tweak in the
memory encryption unit 5 . On a memory access, the hardware
transparently performs a cryptographic check without any further
instrumentation. This hardware architecture shown in Figure 2
allows CrypTag to protect dynamic, local, and global data.

4.1 Hardware
CrypTag utilizes a built-in memory encryption unit to implement an
efficient memory coloring scheme. Initiated by a custom instruction,
a random color is assigned for each memory object, which is stored
in the upper unused bits of the pointer. When accessing the colored
memory object, it requires the correct color to be in place for the
memory request. CrypTag implements this lock-and-key approach
by using the color of the memory object as an additional input for
the transparent memory encryption scheme. Due to this strategy,
each memory object colored with a random color is encrypted
differently.

4.1.1 Memory Coloring. In CrypTag, the color of the memory ob-
ject is assigned to the pointer. Since memory allocations are a
frequent task and assigning and generating a color in software is
costly, a custom instruction using a hardware-based random num-
ber generator is used. Similar to other designs [25, 41, 45], CrypTag
uses the upper bits of the pointer to store the color information. This
approach causes zero costs in terms of storing the color information
and also minimizes any overhead to use pointers in software. Since
the address information and the corresponding color are already
stored in the same register, there is no need to extensively modify
the instruction set. However, storing the color directly inside the
pointer results in two disadvantages. First, the number of colors,
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Figure 3: Set-associative cache architecture extended to sup-
port a color for each TG-bytes. On a cache hit, the data cache
also checks the color. On a tag mismatch, the cache line is
fetched from the memory.

which influences the security of memory coloring, directly corre-
sponds to the number of free bits in the pointer. Second, using the
upper bits of the pointer reduces the virtual address space of the
system. Nevertheless, in practice, a trade-off between the available
address space and security guarantees can be found. In most 64-bit
platforms, already a reduced address space with free upper bits
is used. For example, the AArch64 Linux port [29] limits, by de-
fault, the virtual address space to 39 bits and, therefore, supports
colors up to 25 bits. While this address space might be sufficient for,
e.g., mobile devices, a 512GB address space is not acceptable for
high-performance servers. By using the larger 48 bits addressing
model, the address space can be extended to address 256TB and
supporting colors up to 16 bits. Security limitations of different
color sizes are discussed in Section 7. When using a colored pointer,
the color needs to be propagated throughout the system up to the
memory encryption. Since the MMU of the processor only consid-
ers the lower bits of a pointer to translate the virtual to the physical
address, CrypTag needs to bypass the MMU translation and directly
forwards the color information to the cache (see Figure 2).
Cache Architecture. Figure 3 shows our extension to the cache
architecture. In CrypTag, each 𝑇𝐺-bytes of memory𝑊 are tagged
with a 𝑇𝑆-bits color 𝐶 . For cache management, the color 𝐶 is also
stored in the cache for each memory object𝑊 . A cache hit is only
valid if the color stored in the cache matches the color stored in
the pointer. The design of CrypTag also supports sub-cache line tag
granularities, e.g., one color for two words, which can be config-
ured. In Section 5.1.3, we present a concrete cache implementation
supporting the proposed color management.

4.1.2 Memory Encryption. When writing to memory, the color is
used as a tweak to encrypt the data using the transparent memory
encryption unit. To decrypt this data on a memory access, the
read operation needs to have the correct color stored in the upper
bits of the pointer. Depending on whether the memory encryption
unit provides encryption and authentication or solely encryption,
CrypTag either implements detection strategy S1 or S2.
S1: Exception-based Notification. This strategy is possible for
memory encryption engines (MEE) providing encryption and au-
thentication. The exception-based notification policy immediately
triggers an exception if the system performs a wrong memory
access on a color mismatch. The encryption operation 𝐶,𝑇 =

𝐸𝑛𝑐𝐴𝐸 (𝑘, 𝑡, 𝑃) takes the encryption key 𝑘 , the color as the cipher



tweak 𝑡 , and the plaintext data 𝑃 as an input to compute the ci-
phertext 𝐶 and the authentication tag 𝑇 as the output. Both the
ciphertext and the authentication tag are stored inside the mem-
ory, while the color is not. When reading data back from memory,
the MEE verifies the integrity of the ciphertext and decrypts the
data, i.e., 𝑃 ∥ ⊥ = 𝐷𝑒𝑐𝐴𝐸 (𝑘, 𝑡,𝐶,𝑇 ). On a successful ciphertext
verification using the authentication tag, the cipher returns the
correct plaintext data 𝑃 . If the integrity verification fails, e.g., ow-
ing to a wrong color, the MEE returns an error ⊥ and the system
automatically triggers an exception indicating an invalid memory
access.
S2: Detection-based Notification. The detection-based notifi-
cation policy corrupts the data when performing a wrong mem-
ory access. Here, the architecture uses a tweakable block cipher
𝐶 = 𝐸𝑛𝑐 (𝑘, 𝑡, 𝑃) without authentication. The ciphertext 𝐶 is com-
puted using the encryption key 𝑘 , the color as the tweak 𝑡 , and
the plaintext data 𝑃 . When reading data from memory, the MEE
automatically decrypts the ciphertext under the encryption key and
the tweak given by the memory color stored in the address. On a
correct memory access, this also returns the correct plaintext data.
However, using the wrong color on a malicious memory access
decrypts the ciphertext with the wrong tweak leading to an invalid
plaintext.

4.2 Software
The CrypTag hardware architecture alone does not thwart mem-
ory safety errors. It requires software support and protecting all
memory allocations to detect most spatial and temporal memory
vulnerabilities. The principle idea of the memory protection is that
all memory allocations are colored, meaning that every associated
pointer to a memory allocation stores a color in the upper bits of
the pointer. Only when using the pointer with the correct color, the
memory access is successful. Otherwise, depending on the detection
strategy, either an error is raised or the payload data is destroyed. In
this section, we describe how to use the hardare design in software
to thwart memory safety vulnerabilities.
Heap Data. On each dynamic memory allocation, e.g., via a call to
malloc, the returned pointer is assigned a dedicated random color.
Furthermore, the memory is properly aligned to match the tag gran-
ularity 𝑇𝐺 . As discussed previously, our design uses a dedicated
hardware instruction to perform this operation and, therefore, only
adds a small overhead to manage the colors. When accessing heap
data later on, every access encrypts or decrypts the data automati-
cally using the assigned tag information. When releasing dynamic
memory through a free operation, the color information of the
pointer is removed and the memory is released to the OS.
Local Data. Local allocations on the stack are aligned to match
the tag granularity 𝑇𝐺 . The corresponding pointer is colored using
the custom instruction. Further accesses then encrypt or decrypt
the data when accessing the memory.
Global Data. Protecting global data requires more effort. There
are two possibilities to deal with global data. First, the protection of
global data can be realized during compile time, where the compiler
assigns each global variable a dedicated color. During the compila-
tion, initialized global data is then encrypted using the pre-assigned
color so that memory accesses in the program yield the correct data.

However, this approach requires additional overhead to manage
the colored pointers in software. Furthermore, access to global data
always uses the same color for encryption, enabling e.g., replay
attacks. To avoid the problem of replay attacks and unnecessary
color management in software, we aim for a second approach. Our
design replaces all references to global variables with a new pointer.
Additionally, the compiler adds a dedicated startup hook function
for each global variable. During the startup of the program, this
hook function first colors the new pointer. Second, it reads the
unencrypted global data from the executable and then writes this
data to memory using the new colored pointer. Thereby, the global
data automatically gets encrypted using the colored pointer. This
approach allows us to use the same instruction to randomly color
the new pointer. By using a random color in the pointer, we also
mitigate replay attacks since the global data is encrypted differently
at every program start. While this approach enhances security, it
also simplifies the software support.

5 IMPLEMENTATION
In this section, we introduce the base platform where we integrate
CrypTag and show the necessary hardware extensions. We discuss
the color generation and propagation and further explain how the
memory encryption framework is used to implement the coloring
scheme. Finally, we introduce the compiler extension utilizing the
CrypTag architecture to protect data.
Base Platform. We build the prototype for CrypTag on top of the
CVA6 platform [63], a system-on-chip (SoC) using a 64-bit 6-stage
RISC-V processor supporting to run Linux when mapped to a FPGA.
The CVA6 is extended with the open-source memory encryption
scheme MEMSEC [60]. MEMSEC is placed between the data cache
and the DDR3 memory controller and automatically encrypts all
data leaving the processor. Furthermore, we adapted the data cache
and increased the cache line size from 16 to 64 byte.

5.1 Hardware Extensions
The necessary hardware extensions to implement CrypTag are
minimal and only require two adaptions. First, the system requires
a mechanism to create a color and to propagate it through the
system. Second, the memory encryption engine (MEE) needs to be
extended to handle the additional color input for the cipher.

5.1.1 Color Generation. Tagging amemory regionwith a dedicated
memory color is initiated in software. Thus, we extend the RISC-V
instruction set with a dedicated instruction to allow performing
this operation efficiently in software.
mstp rd,rs. To color a pointer, the custom instruction mstp is
added to the RISC-V instruction set. This instruction takes the value
from the source register 𝑟𝑠 (typically the pointer), colors it, and
stores the result to the destination register 𝑟𝑑 . Our architecture
uses the SV39 addressing model [58] of RISC-V, where the lower
39 bits of the virtual address space are used. The remaining upper
bits of the pointer are set to the sign bit of the pointer value (either
all-zero or all-one). The mstp instruction colors the pointer and
replaces the upper 25 bits (𝑇𝑆-bits) with a random color value. To
differentiate between a colored and a non-colored pointer, the color
bits cannot be set to all-zero or all-one. The random color value is



generated using a hardware-internal pseudo-random number gen-
erator, which is initialized during processor startup with a software
inaccessible seed value.

5.1.2 Color Propagation. After instrumenting a pointer with the
color bits, the MMU translates the virtual to a physical address.
In SV39 of RISC-V, the MMU only uses the lower 39 bits of the
address for its translation. The upper 25 bits containing the color
information bypass the MMU’s address translation. Both, the physi-
cal address and the color bits, get processed by the L1 data cache and
are then propagated to the MEE via the processor’s bus architecture.

5.1.3 Cache Design. As data in CrypTag is tagged with the color
of the corresponding pointer, the cache also needs to be aware of
these colors.
Colors. The prototype implementation of CrypTag uses a tag gran-
ularity (𝑇𝐺) of 16-bytes and a color size (𝑇𝑆) of 25 bits. As denoted
in Figure 3, each 64-byte cache line stores four 𝑇𝑆-bits colors. In-
ternally, the cache differentiates between three values for a color:
no color, valid color, and invalid color. When accessing the cache
with an address where there is no color stored inside (the upper bits
are all-zero or all-one), the cache-internal color is set to no color. A
invalid color color is stored in the cache when prefetching a cache
line with the wrong color triggers a decryption exception. When
accessing the cache with an instrumented pointer, the valid color
information is stored in the cache.
Cache Hit. A cache hit is triggered when having the correct data
and correct color in the cache. If there is a color mismatch, a cache
miss is triggered.
CacheMiss. On a cache miss, the cache architecture issues a mem-
ory read request to the main memory. Here, the colors of the cache
line are used as a cipher tweak to decrypt data from the memory.
After fetching the decrypted data from memory, the colors are
stored in the metadata structure of the cache. In detection strategy
S1, accessing the cache with a wrong color leads to a decryption
and verification error and the error is forwarded to the processor
as an exception.
Cache Prefetching. Cache prefetching is used to reduce the la-
tency for memory accesses by precautionary fetching an entire
cache line from memory. This technique speeds up memory ac-
cesses but also challenges our colored cache architecture. When
performing a cache prefetch, only the color of the first 𝑇𝐺-bytes of
the cache line is known. To decrypt the remaining cache line, the
system assumes the later colors of the cache line are the same and
uses the first color to decrypt the whole cache line. Due to the mem-
ory fragmentation, this assumption is correct with high probability
and the MEE decrypts the cache line correctly. Furthermore, the
used color is copied to all color entries of the cache line. In case of a
wrong decryption operation due to prefetching, detection strategy
S1 detects a wrong decryption and thus invalidates the color entry
in the cache but does not raise an exception.
Cache Eviction. During cache eviction, a dirty cache line is writ-
ten back to memory and is encrypted using the colors stored inside
the cache. In case of having invalid colors in the cache, i.e., due to
prefetching, the cache only issues memory updates for entries with
valid colors. Invalid cache entries are filtered and not written back
to memory.

5.1.4 Memory Encryption Engine. MEMSEC,which is directly placed
between the cache and the memory controller, transparently en-
crypts all data leaving the processor on bus level. Similar to other
MEEs, the encryption key is randomly generated during the device
startup. For the CrypTag architecture, we extended the MEE to
support the additional color input. To implement detection strategy
S1, we use the authenticated encryption cipher ASCON [11], which
provides data confidentiality and integrity. We tweak the cipher by
using the size-extended color value for the nonce input of the cipher.
To re-initialize already encrypted memory, MEMSEC also allows to
suppress authentication errors using a defined memory pattern. For
implementing strategy S2, we use the low-latency tweakable block
cipher QARMA [4], which is also used in ARM’s pointer authenti-
cation scheme [41]. Since QARMA natively supports an additional
input, we use the size-extended color value as input for the tweak.

5.2 Software Extensions
To detect memory safety violations and to protect every memory
allocation, we need software support. We extended an LLVM-based
C compiler [26] with an LLVM IR pass and a tiny runtime support
library. The compiler needs to protect three storage classes: heap,
local, and global data.
Protection ofHeapData. Protection of heap data is accomplished
by using the GNU linker functionality to create wrappers around
heap functions such as malloc, free, and realloc. For policy S2,
the malloc wrapper aligns the size argument to 𝑇𝐺 and then calls
malloc itself. Because heap allocation for 64-bit RISC-V systems
is already 16B aligned, we only have to apply the mstp instruc-
tion on the pointer before returning to the application. Hence, the
overhead therefore is negligible. In Listing 1 we show the imple-
mentation of the wrapped malloc function for S2 of the runtime
library. When utilizing CrypTag for detection policy S1, malloc ad-
ditionally initializes the memory with its color. Since this memory
object could already be encrypted with a different color, naïvely re-
coloring would trigger an authentication error. Thus, CrypTag uses
the nullification mechanism of MEMSEC to initialize the memory.

Listing 1: S2 malloc wrapper tagging the returned pointer.

For free, the wrapper removes the color from the pointer ar-
gument and then calls the free function. This operation is done
purely in software by using two shift operations. Notice that the
heap administration data is stored in plain in between the encrypted
heap data. Writing via a heap data-pointer out of bounds into the
heap administration overwrites plain data with encrypted data mak-
ing it hard for an attacker to modify the heap administration in a
controlled way.



Protection of Local Data. Local variables on the stack are pro-
tected by scanning for AllocaInst instructions through a custom
LLVM IR compiler pass. For each AllocaInst, we align the size
argument to 𝑇𝐺 bytes, we align its address alignment to 𝑇𝐺 , and
we insert an mstp instruction between the AllocaInst instructions
and all its users. Additionally, for S1, we re-initialize the allocated
memory with the assigned color. We perform a simple analysis on
AllocaInst instructions to exclude protection of cases where incor-
rect usage will not be possible. For example, cases where the result
of AllocaInst is not used by a GetElementPtrInst instruction
with non-constant indices and the result is not stored in memory
or leaves the function as argument of a function call.
Protection ofGlobalData. For each global definition/declaration
of a variable named foo, we create a new global definition/dec-
laration of a pointer called __foo_mst that points to foo. Fur-
thermore, the LLVM IR pass replaces all references to foo with
__foo_mst to get a colored pointer to foo. The runtime support li-
brary is informed about definitions foo, the size of foo, and the new
pointer __foo_mst via a constructor function. During the startup,
the constructor function in the runtime library will insert a color
on __foo_mst by means of an mstp instruction. It will also encrypt
foo using the color that has been put on __foo_mst. This hap-
pens by simply reading the data in plain using the original all-zero
pointer and then writing it back to memory using __foo_mst. The
runtime overhead of referencing a global variable is therefore one-
load instruction. Furthermore, notice that on every execution of a
protected application, its global variables will get different colors.

As with local data, we perform an analysis to exclude protection
of (static) global data where we can prove that incorrect usage is
not possible. Protecting global variables that have initializers with
pointers to global variables complicates the protection. The runtime
support library is informed via a constructor function about the
positions of these pointers in global the initializers and patches
those pointers with the color of the global variable it is pointing to.
Backward Compatibility. Application code that is protected by
CrypTag can be combined with unprotected code. For example, the
unprotected pointer results of fopen() or mmap() can be used in
protected code without problems. Furthermore, protected pointers
of heap, local, or global data can arbitrarily be passed to unpro-
tected library functions without problems. The only compatibility
issue that we are aware of is sharing global variables between pro-
tected and unprotected code, i.e., stdout. Unprotected code will
expect it unencrypted, while protected code will expect the data
to be encrypted. Due to indirection via __foo_mst this issue will
result in linking errors rather than runtime errors. The user should
then manually place these global variables on a blacklist of global
variables that are not suitable for protection.
Pointer Arithmetic. Incrementing a pointer to reach data within
a colored object is natively supported in the CrypTag architecture
because the color information in the upper bits of the pointer is not
altered. However, subtracting or adding two pointers or performing
shifts or multiplications on such pointers can modify the color and
is therefore dangerous. To also support these operations and enable
safe arithmetic operations avoiding integer overflows on colored
pointers, dedicated instructions could be added. In the Armv8.5-
A instruction set [3] supporting MTE, dedicated add and subtract
instructions, ignoring the upper bits, are used for pointer arithmetic.

6 PERFORMANCE EVALUATION
To quantify the hardware and software overhead, we synthesize
the CrypTag architecture for a Xilinx Kintex-7 series FPGA and
run a recent Linux operating system on our platform. We report
the performance and hardware overhead introduced by CrypTag
for the 𝑇𝑆=25 and 𝑇𝐺=16 memory coloring configuration using
different applications, from microbenchmarks to application code.

6.1 Hardware Overhead
In Table 1, we show the hardware overhead for the FPGA design
in terms of lookup-tables (LUTs) and flip flops (FFs). The overhead
numbers include the changes required for the new instruction, the
color propagation, and the extended cache. Clearly, the hardware
overhead of less than 1 % is very attractive and negligible in practice.
Cache Architecture. For CrypTag, the cache architecture is ex-
tended to also store colors along with the data. Furthermore, the
decision logic to detect cache hits and misses is extended to also
consider the colors in the cache. The hardware overhead for this
comparison logic is relatively small compared to the overhead for
storing the colors. The required hardware overhead for storing the
colors in the cache is a function of the used color size 𝑇𝑆 and tag
granularity 𝑇𝐺 . Note, our design only needs to store colors in the
cache and there is no need for a separate, large cache for colors as it
is required in other architectures [21, 52] to speed up accessing tags
in memory. Thus, the design not only has less hardware overhead
but also improves the runtime latency and bandwidth, as there are
no memory accesses for colors needed. For an𝑚-way 𝑛-set asso-
ciative cache with a cache line size of 𝐶 bytes, a tag granularity of
𝑇𝐺 bytes, and a color size of 𝑇𝑆 bits, we can compute the required
number of color bits 𝑇 as defined in Equation 1.

𝑇 = nSets ·mWays ·𝑇𝑆 · 𝐶

𝑇𝐺
(1)

Our modified 16 kB data cache of the CVA6 core is organized as
a 4-way 64-set associative cache with a 64 byte cache line. For a tag
granularity of 𝑇𝐺=64 byte and a color size 𝑇𝑆=8 bits, the overhead
for storing the colors is 2.05 kbit. Although this is already fine-
grained, our design even supports sub-cache line tag granularities,
e.g.,𝑇𝐺=16B. For a configuration with𝑇𝐺=16 byte and𝑇𝑆=25 bits
the overhead for storing the colors is 25.2 kbit. Table 2 shows the
total number of color bits for different configurations including the
corresponding overhead.

For our Xilinx-based FPGA, the cache is mapped tomultiple block
RAM instances. For a small memory color configuration (course
tag granularity and small color size), the color bits even fit in the
already instantiated block RAM resources of the cache and thus

Table 1: Hardware overhead for the 𝑇𝑆=25 and 𝑇𝐺=16 mem-
ory coloring configuration.

Config.
LUTs FFs

Baseline Overhead Baseline Overhead
[LUTs] [%] [FFs] [%]

ASCON 57386 0.53 33885 0.14
QARMA 55804 0.67 32173 0.18



have no impact on the block RAM utilization. Only for the worst-
case memory color configuration (𝑇𝐺=16 byte and 𝑇𝑆=25 bits),
an additional block RAM module needs to be instantiated. For
other hardware technologies, e.g., ASIC designs, the cache overhead
directly results from the color size and tag granularity. For, e.g., a
64 byte cache line and a memory coloring configuration of 𝑇𝐺=16
byte and𝑇𝑆=25 bits, a cache line is extended by 100 bits for storing
colors, resulting in an overhead for the cache of 19.5%.

6.2 Runtime Overhead
To measure the software overhead of our system, we compiled dif-
ferent binaries with our custom LLVM-based toolchain protecting
all dynamic memory, all locals, and all globals. We evaluate the per-
formance overhead by running different benchmark applications in
user mode on the Linux environment running on our FPGA hard-
ware implementation. Note that the entire system, including the
Linux operating system, is executed in the encrypted memory do-
main, but only user applications are additionally instrumented and
use memory coloring. We use a set of benchmarks, including SPEC
2017 and smaller microbenchmarks, such as SciMark2 and MiBench.
CrypTag, which we envision to be an extension of systems already
featuring a memory encryption unit, adds an overhead between
1.5 % and 6.1 % on average for thwarting logical memory safety
vulnerabilities on such a system. As we do not have access to state-
of-the-art commercial memory encryption engines, which typically
yield a performance overhead between 5 % and 26 % [42], we further
evaluate the performance of the open-source MEMSEC framework.
For transparently encrypting the whole external memory, we mea-
sured a performance overhead between 58.9 % and 109.8 % for SPEC
2017. The overall combined overhead for thwarting physical and
logical memory safety vulnerabilities with CrypTag and MEMSEC
is between 62.0 % and 116.1 %.
Code Size Overhead. As we are linking the 244 bytes runtime
library while building the binary, the code size overhead to pro-
tect dynamic memory is constant and negligible compared to the
overall binary size. Furthermore, to also protect local and global
variables, mstp instructions are inserted as part of an instrumenta-
tion pass. Compiling the “SPECspeed 2017 Integer” testsuite with
our toolchain, adds an average code size overhead of 1.02 %.
Runtime Overhead of CrypTag. Instrumenting pointers with
the mstp instruction and aligning memory objects to the tag granu-
larity increases the number of instructions for executing a program.
Furthermore, prefetching data can possibly lead to invalid colors
and, thus, requires additional memory accesses slowing down the

Table 2: Number of additional cache bits and total cache
overhead for storing colors.

Cache Configuration Color bits T
[bit]

Cache Overhead
[%]

TS=8, TG=64 2048 1.56
TS=8, TG=16 8192 6.25
TS=25, TG=64 6400 4.88
TS=25, TG=16 25600 19.53
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Figure 4: Runtime overhead for SPEC CPU 2017.

execution. However, such cases only occur rarely and are not rele-
vant in practice.
SPEC CPU 2017 To quantify the performance overhead intro-
duced by our architecture, we first measured the performance over-
head introduced by the memory encryption framework. Then, we
analyzed the overhead additionally introduced by the memory col-
oring scheme. For our evaluation, we used a subset of C/C++ bench-
mark programs of the “SPECspeed 2017 Integer” and “SPECrate 2017
Floating Point” testsuites. However, due to the missing OpenMP
support for RISC-V in LLVM, programs that depend on that are
omitted. Furthermore, due to the constrained hardware resources of
the FPGA prototype, several benchmarks already failed with an out-
of-memory exception (mcf, omnetpp, x264, and lbm) and one with
a runtime exception (xalancbmk). Note, these benchmarks already
failed on the unmodified base platform with the native LLVM-
compiler. Similar to other memory safety tools [12, 54], CrypTag
also found several memory bugs in perlbench.

The performance overheads for the subset of “SPECspeed 2017 In-
teger” and “SPECrate 2017 Floating Point” benchmarks are depicted
in Figure 4. This diagram shows that the dominating performance
factor is the used memory encryption engine and not CrypTag.
The relative overhead for thwarting logical memory safety vulner-
abilities on a system already featuring memory encryption is 5.2 %
for S2 and 6.1 % for S1 on average. For the unoptimized MEMSEC
framework, we measured a performance overhead of 58.9 % for
QARMA and 109.8 % for ASCON on average compared to the base
platform. The overall performance overhead for the combined phys-
ical and logical memory safety protection averages to 62.0 % for S2
and 116.1 % for S1.
SciMark2. To evaluate realistic computing workloads, we use Sci-
Mark2 [39], a benchmark for scientific and numerical computing.
We both measure the benchmark performance using SciMark2’s
internal test score, which is shown in Figure 5, and the runtime
overhead using the hardware prototype. Again, the relative over-
head for logical memory safety protection is with 3.9 % for S2 and
4.79 % for S1 low. When comparing the CVA6 base platform to the
system featuring MEMSEC as MEE, we measured an average run-
time overhead of 55.45 % for QARMA and 69.09 % for ASCON. For
the combined protection, we determined a performance overhead
of 61.51 % for S2 and 77.19 % for S1 on average when compared to
the system without the MEE.
MiBench. MiBench [18] is a free, representative, embedded bench-
mark suite and it is used by us to evaluate the runtime overhead
of our design on application-level code. In Figure 6, we show the
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runtime overhead in terms of processor cycles relative to the base-
line without memory encryption. The evaluation was performed
using 10,000 test runs to average out scheduling effects from the
operating system. Protecting all dynamic memory, all locals, and
all globals with CrypTag introduces an average overhead of 1.5 %
for S2 and 4.9 % for S1 on the system already featuring memory en-
cryption. Our measurement shows that MEMSEC adds an average
overhead of 74.2 % for QARMA and 123.5 % for ASCON compared
to the baseline without MEE. For thwarting physical and logical
memory safety vulnerabilities, we measured a combined overhead
of 76.6 % for S2 and 129.7 % for S1 on average.

6.3 Prototype Limitations
As seen in Section 6.2, the main factor of the runtime overhead is the
MEE and not CrypTag. Hence, our performance evaluation largely is
affected by the performance of the underlying memory encryption
unit. However, MEMSEC, the only, to the best of our knowledge,
open-source MEE available, is not optimized for throughput and
latency. Figure 7 depicts the significant impact of MEMSEC with
ASCON and QARMA on the latency measured by the lat_mem_rd
64M 512 benchmark of LMBench [33]. The memory throughput,
measured with bw_mem 4M rdwr, also dropped from 52 MB/s to
14 MB/s for QARMA and 10.9 MB/s for ASCON. In comparison,
state-of-the-art encryption engines typically yield a performance
penalty between 5% and 26 %, as reported by ARM [42]. Although
optimizing MEMSEC or designing a high-speed MEE is not part of
our contribution, we point out different optimization strategies in
Section 9. Finally, we want to emphasize that we envision CrypTag
to be an extension of systems already featuring a transparent mem-
ory encryption scheme. With major vendors, such as Intel with
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Figure 7: Memory latency measured with LMBench.

SGX, TME, and MKTME [43] and AMD with SME and TSME [22],
highlighting the importance of memory encryption, we expect
an increasing number of such systems in the near future. Here,
CrypTag proposes an efficient solution to realize memory coloring
on top of such systems with performance overheads between 1.5 %
and 6.1 %.

7 SECURITY EVALUATION
CrypTag enhances security guarantees of applications bymitigating
the exploitation of most temporal or spatial memory bugs. Based
on the underlying MEE, i.e., encryption and authentication or en-
cryption only, CrypTag either enforces security policy S1 or S2.
Spatial Memory Safety in S1. Spatial memory bugs allow an
adversary to access data outside of the objects bound. To detect
these bugs, CrypTag utilizes the architecture to color the pointer and
to initialize the memory object with a random color on a memory
allocation. Any subsequent access to this colored object requires
that the access pointer is colored with the identical color, or an
authentication error is triggered by the MEE. Hence, out-of-bound
read or write accesses to memory objects with a wrongly colored
pointer are detected by CrypTag in S1. Similar to other tagged
memory schemes, CrypTag cannot detect intra-object overflows.
Since the vulnerable buffer, as well as the target, are stored in the
same memory object, both objects have the same color.
Spatial Memory Safety in S2. Compared to S1, this security pol-
icy limits the exploitation of spatial memory bugs. Usually, the
attacker either uses spatial memory vulnerabilities to leak sensitive
data or to modify control or non-control related data to craft ROP,
DOP, or other attacks. In out-of-bound read accesses, data encrypted
with the original color is decrypted using the wrong color of this
pointer. Hence, CrypTag with S2 maintains the confidentiality of
data in spatial out-of-bound reads and provides protection from
attacks such as Heartbleed [13]. Since the underlying MEE does not
provide data integrity, CrypTag cannot prevent an attacker from
overwriting data in a target buffer using an out-of-bound write.
However, when reading this data using the corresponding pointer,
pseudorandom values are retrieved. Using this pseudorandom value
as control-flow related data, e.g., as a return address, most likely
will cause an exception. As the attacker cannot overwrite data in
the target buffer in a controlled way, CrypTag raises the complexity
for performing data-oriented attacks, such as DOP.



Temporal Memory Safety in S1. In a temporal memory safety
violation, a memory object is accessed after it is deallocated. Tempo-
ral memory safety violations are mostly exploited by use-after-free
vulnerabilities, which CrypTag with S1 can detect. In this attack,
a memory object gets deallocated and the space, later on, is used
by a new object. The attacker then can use the dangling pointer
either to leak sensitive data or to tamper data, e.g., a vtable pointer.
A similar concept is used by a double-free attack, where the adver-
sary calls the memory deallocation functionality twice. CrypTag
with S1 mitigates such attacks by assigning a new color on each
memory allocation and initialization, reading or writing by using
the dangling pointer colored with the previous color will trigger
an exception. Since the current implementation of CrypTag does
not re-color the memory object on deallocation, a memory read or
write to this memory region using the dangling pointer cannot be
detected by CrypTag. However, as soon as a new memory object is
allocated and initialized on this region, it is tagged with a new color
and accesses using the dangling pointer can be detected. To prevent
this behavior, CrypTag could be, similar to ARM MTE, extended to
colorize memory objects with a new color on each deallocation.
Temporal Memory Safety in S2. Although CrypTag with S2
cannot detect temporal memory bugs, it prevents the adversary
from leaking data, i.e., CrypTag maintains the confidentiality of
data. When using this vulnerability to overwrite sensitive data, such
as vtable entries, the attacker cannot insert targeted data because
the wrong color of the dangling pointer for the encryption is used.
Null Pointers. Pointers created in external libraries, which are
not compiled with CrypTag, are not colored and thus have the all-
null color. Unlike CHERI [61], where only the pointer is tagged
with additional metadata and not the memory itself, CrypTag ex-
plicitly tags memory objects with its color. Hence, a read or write
vulnerability on a null-colored object only allows the attacker to
access other null-colored memory objects and not the whole mem-
ory. Colored data that is allocated by protected code can be passed
to unprotected code, e.g., external libraries, and is also protected
there.
Stack Coloring. By coloring the stack pointer with mstp on pro-
gram initialization, all objects on the stack, which are not explicitly
colored, i.e., stack spills, are assigned a random color. This strategy
allows CrypTag to separate the stack from null-colored objects, e.g.,
objects created in unprotected code.
Entropy. Similar to countermeasures like ASLR, PARTS [28], and
MTE [2], CrypTag is a probabilistic mitigation technique. A mem-
ory safety violation, such as a linear or non-linear buffer overflow,
cannot be detected in S1 by the CrypTag architecture if the color
of the target memory object matches the color of the exploited
memory object. However, since CrypTag already detects a mem-
ory safety violation at the first mismatch and the attacker cannot
influence the color assignment of a memory object, the attacker
requires a color collision at the first try. The probability of having
a color collision of two memory objects directly corresponds to
the number of used color bits. A memory safety vulnerability, such
as Heartbleed, can be detected with S1 at the first violation with
a probability of 93.7 % for a tag size of 4 bits, with a probability
of 99.998 % for a tag size of 16 bits, and for a tag size of 25 bits
even with a higher probability. Additionally, since attacks like ROP
or JOP require the adversary to build an attack chain, multiple

color collisions are required increasing the detection probability.
Although larger color sizes also increase the security guarantees,
schemes like ARMMTE do not utilize the full available space in the
free upper bits of the pointer because storing the color in memory
is required, resulting in significant memory overheads. CrypTag
prevents this security-overhead trade-off by completely avoiding
storing the color in the memory, allowing the scheme to fully utilize
the unused bits in the pointer and maximize security guarantees.
Tag Granularity. Due to its nature, memory coloring is an impre-
cise protection mechanism. For example, when allocating a 30B
memory object in CrypTag with a tag granularity of 16 byte, the
full 32 byte are colored with the same color. When accessing byte
31 using a linear buffer overflow, the memory safety violation can-
not be detected by any memory coloring scheme. However, in
practice, this issue can be circumvented by choosing an appropriate
tag granularity. On 64-bit RISC-V systems, objects on the heap are
16 byte aligned. Here, by choosing a tag granularity of also 16 byte,
the adjacent target memory object is tagged with a different color
and cannot be reached by the attacker in S1. Objects on the stack
are also aligned to 𝑇𝐺 and the size is increased to a multiple of
𝑇𝐺 . Now, the victim and target buffer, e.g., a return address, are in
different color domains allowing CrypTag in S1 to detect a memory
safety violation. When the memory object size would not have
been resized to a multiple of 𝑇𝐺 and the tag granularity would be
larger than the memory alignment, e.g., 𝑇𝐺 = 64, the same color
is assigned to two, e.g., 32B, adjacent memory objects making it
impossible to detect an overflow. Although a smaller 𝑇𝐺 allows
a more fine granular detection mechanism, it also increases the
overhead for storing the colors in the cache architecture. Similar to
other research [46], we suggest to use a tag granularity of 16 byte
on our reference platform.
Color Checking. Schemes like PARTS, which uses ARM’s pointer
authentication feature [41], or CCFI [30] use dedicated authenti-
cation instructions to verify the integrity of the pointer. Since ver-
ification and usage is, except for dedicated instructions like the
blraa instruction in ARM, not atomic, these countermeasures are
vulnerable against time-of-check to time-of-use (TOCTOU) attacks.
CrypTag in S1 circumvents this problem by enforcing a color check
automatically in hardware for each memory access.
Color Management. Coloring a memory object with a color ei-
ther can be done using a randomized or a deterministic color as-
signment strategy. When using a deterministic coloring scheme,
a color management mechanism needs to track the color assign-
ment to assure that two adjacent memory objects have a different
color. An example of a system deterministically assigning tags is
ARM’s pointer authentication scheme, which is integrated into
Apple smartphones. However, past research [5] showed that an at-
tacker can forge arbitrary signed pointers by using signing gadgets.
To prevent color management security issues and avoid additional
overhead introduced by the mechanism, CrypTag uses a random-
ized coloring approach.

8 RELATEDWORK
This section summarizes different memory vulnerability schemes
and analyzes their performance overhead and security guarantees.



8.1 Overhead Comparison
As shown in Table 3, the performance overhead of less than 6.1 % for
CrypTag on a system already featuring a memory encryption unit is
low. These numbers show that extending a system with an already
integrated memory encryption scheme with CrypTag is reasonable,
as memory safety can be implemented relatively cheaply. We ar-
gue that with the increasing amount of systems providing memory
encryption, such as Intel SGX or AMD TSME, also the number of
platforms potentially supporting CrypTag increases. While there is
already a trend of using memory encryption in cloud computing,
the announcement of Intel [44] introducing memory encryption
for commodity processors soon highlights the importance of it for
wider deployment. Typically, highly optimized memory encryp-
tion units can be implemented with an overhead between 5% and
26% [42]. As we do not have access to these commercial MEEs
for our prototype, we used the open-source MEMSEC framework,
where we measured an average performance overhead between
58.9 % and 109.8 %. For the overall performance overhead of the com-
bined physical and logical memory safety protection, we measured
an overhead between 62.0 % and 116.1 %. These numbers show that
the dominating performance factor is MEMSEC and not CrypTag.
Furthermore, we contend that a naïve combination of logical and
physical memory safety, such as combining PARTS with memory
encryption, accumulates both overheads.

8.2 Security Comparison
In general, logical memory safety strategies can be categorized into
schemes that are limiting the attacker’s capabilities when exploiting
a memory bug (e.g., PARTS, CPI, CCFI) and those detecting the
exploitation of a memory safety bug. CrypTag with S1 uses the
latter approach to thwart logical memory safety attacks by detecting
a broad range of spatial and temporal memory bugs.
Control-flow integrity. Control-flow integrity (CFI) minimizes
the attacker’s capability when exploiting a memory bug by limit-
ing the control-flow of a program to only valid paths through the
control-flow graph (CFG) [6]. The security of CFI schemes depends
on the precision of the CFG, which is typically determined using
static analysis, and the reliability of the security enforcement. Cryp-
tographic CFI (CCFI) [30] improves the precision of commodity

Table 3: Security comparison of different memory vulnera-
bility mitigation schemes.

Scheme
Code-
Pointer
Integrity

Data-
Pointer
Integrity

Temporal
Safety

Spatial
Safety Overhead

CCFI ✔ ✖ ✖ ✖ 52 %
CPI ✔ ✔ ✖ ✖ 8.4 %
PARTS ✔ ✔ ✖ ✖ 19.5 %
SoftBound+CETS ▲ ▲ ✔ ✔ 116 %
MemTagSanitizer � � ✖ ✔ -

CrypTag ▲ ▲ � ✔
6.1 %*
109.8%†

✔ Full � Partial ▲ Indirect ✖ No Protection
* Including Memory Encryption Overhead

†Additional to the Memory Encryption Overhead

CFI schemes by dynamically performing pointer classification at
runtime. Similar to CrypTag, CCFI utilizes cryptography to enforce
runtime security. Each object that influences the control-flow of
a program is tagged with the MAC over the pointer and its dy-
namically determined class. The MAC is then checked before using
the object. Since computing and verifying a MAC is costly, CCFI
increases the overhead by 52%. Due to the nature of CFI schemes,
CCFI cannot provide spatial and temporal memory safety.
Code-pointer integrity. Similar to CFI, code-pointer integrity
(CPI) [24] claims to prevent all control-flow hijack attacks, while
simultaneously decreasing the performance overhead. CPI protects
sensitive code-pointers by storing them and metadata in a safe
region. While the overhead introduced by CPI is negligible, its
security completely relies on the isolation of this region. On systems
without segmentation protection support, like for x86-64 systems,
CPI uses information hiding to protect its safe region making it
vulnerable to attacks leaking this location [15].
Code- and data-pointer Integrity. Advanced attack scenarios,
like ROP orDOP, show that providing data- or control-flow integrity
exclusively is not sufficient. It requires a combination of defense
strategies to mitigate against a powerful attacker. One promising
attempt utilizing hardware features offered by the underlying ar-
chitecture is PARTS [28]. PARTS implements a compiler instru-
mentation, which automatically adds pointer integrity checks to
protect all code- and data-pointers. Here, dedicated pointer authen-
tication instructions are used to perform pointer signing and verifi-
cation. PARTS protects all backward-edge and forward-edge code-
pointers, as well as all data-pointers. However, the data-pointer
integrity scheme does not provide temporal or spatial memory
safety. Therefore, PARTS is vulnerable against attacks targeting the
data plane, like Heartbleed [13], or other security-critical attacks
on non-control data [7].
Memory Safety. Memory safety prevents the exploitation ofmem-
ory bugs. As such, it is considered to be a stronger concept than
mitigating the effects of an exploited memory bug [53]. However,
software-based solutions, like the combination of SoftBound and
CETS, typically yield a high performance penalty, making these
schemes unrealistic to deploy on a larger scale. To reduce the
overhead, hardware support is required. One promising hardware-
assisted attempt to detect most spatial and temporal bugs is based
on ARM’s MTE feature is Google’s MemTagSanitizer. However, at
the time of writing, MemTagSanitizer is still under development
and no performance numbers are released yet and no protection
of the heap is implemented. Although we expect that this scheme
will provide similar performance than CrypTag, MTE only provides
restricted security guarantees. MTE uses a small tag size to limit
the memory overhead introduced by storing the tags in memory.

9 CONCLUSION & FUTUREWORK
Current memory security schemes either are incomplete [28, 30],
do not provide enough security [2, 24], or add non-negligible over-
head [37, 38], especially when combined with physical memory
safety, to the system. CrypTag closes these gaps by introducing a
memory safety concept based on a hardware-assisted memory col-
oring scheme. CrypTag combines memory encryption with memory
coloring to thwart a broad range of physical and logical memory



safety vulnerabilities. By combining these two mechanisms, we
show that memory coloring almost comes for free and memory
safety vulnerabilities can efficiently be protected. The design uses
a color, stored inside the related pointer, and propagates this value
up to the data cache of the system. This color value is used to tweak
the memory encryption system, thus avoiding storing the color in
memory. Our approach shows that the performance overhead for
CrypTag is negligible and, therefore, can be used for large scale
deployment. In this paper, we provide an end-to-end solution from
the concept to the prototype implementation of our design. We
integrated CrypTag to a RISC-V based processing platform and
adapted an LLVM toolchain and developed a runtime library to
automatically instrument programs and protect all memory alloca-
tions of the application without the need for user annotations. Our
evaluation shows that the hardware overhead for these changes
is less than 1% and the software overhead compared to a system
already featuring a memory encryption unit is on average less than
6.1 %, which makes this design practical for real-life applications.
Future Work. As mentioned in Section 6.3, the performance of
CrypTag largely depends on the performance of the memory en-
cryption engine (MEE). Hence, a possible future work would be to
optimize the performance of MEMSEC. Currently, MEMSEC oper-
ates at the same clock frequency as the processor core. To increase
the memory bandwidth and further decrease the latency of memory
accesses, MEMSEC could be placed next to the memory to operate
on a much higher clock frequency. However, this requires to op-
timize the inner logic of MEMSEC to avoid any timing violations.
Currently, MEMSEC is a highly flexible framework allowing several
corner cases, such as AXI bursts and strobes. Here, one strategy to
maximize the performance of the MEE could be to adapt MEMSEC
to the target architecture and remove functionalities not supported
by this architecture. If providing physical memory safety is not
needed, a final optimization step could be to only encrypt colored
memory objects and bypass the MEE for non-colored objects.
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