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ABSTRACT
Robots can use information from people to improve learning speed
or quality. However, people can have short attention spans and mis-
understand tasks. Our work addresses these issues with algorithms
for learning from inattentive teachers that take advantage of feed-
back when people are present, and an algorithm for learning from
inaccurate teachers that estimates which state-action pairs receive
incorrect feedback. These advances will enhance robots’ ability to
take advantage of imperfect feedback from human teachers.

CCS CONCEPTS
• Human-centered computing → HCI theory, concepts and
models; •Computingmethodologies→Reinforcement learn-
ing; Learning from critiques.
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1 INTRODUCTION
Enabling people to teach robots in the wild will allowmore robots to
be deployed without expert supervision, potentially learning from
inattentive or inaccurate human teachers. Interactive Reinforcement
Learning (Interactive RL) has the ability to give robots two sources
of information: an environmental reward function and feedback
from human teachers. Robots can use both of these sources, bal-
ancing how much they learn from each one. Common methods in
interactive RL have effectively incorporated feedback into an RL
framework, but often assume that teachers are constantly available,
give correct feedback, or randomly give bad feedback in any state
[17]. However, people often need breaks [23, 25], and can have
inaccurate task models leading to structured errors [19], both of
which can lead to decreased performance if the robot expects full
attention or correct feedback (Figure 1).
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Figure 1: The approach for this research.

First, for inattentive teachers, we developed two algorithms,
Attention-Modified Policy Shaping (AMPS) [9] and Active AMPS
[11]. AMPS and Active AMPS capitalize on human attention by
increasing exploration when the teacher is available and decreasing
exploration otherwise, allowing the robot to learn quickly with less
time from teachers. Second, our work on learning from inaccurate
teachers enables robots to decide what teacher-provided informa-
tion to trust, using additional sources of information such as the
environmental reward function in interactive RL. We developed an
algorithm, Revision Estimation from Partially Incorrect Resources
(REPaIR), that translates incorrect feedback to usable feedback for
the robot [8]. REPaIR takes advantage of feedback patterns, assum-
ing that people will give incorrect feedback when confused about
correct actions in specific areas of the state space. For these algo-
rithms, we ran simulation experiments and human studies with a
robot, using pushing, sorting, and picking tasks.

2 RELATEDWORK
Interactive RL allows a Markov Decision Process (MDP) to take
input from a human teacher [17]. This input can take many forms,
such as binary or scalar values [10, 13, 24, 26], advice on future
actions [14, 15, 18, 21], or action intervention [20]. Human feedback
can also replace the environmental reward function [12]. Interactive
RL algorithms often assume that the teacher is continuously paying
attention, or giving consistently correct or incorrect feedback.

There has been prior research in active RL without present teach-
ers [7]. However, this work is not based on feedback, but rather
a potentially incomplete specification of an MDP by a researcher.
There has also been prior work in active RL that uses human feed-
back, but does not enable teachers to take breaks [1, 2, 4–6].

Incorrect feedback has been addressed in interactive RL [10, 16,
22]. Some works assume feedback is randomly incorrect, with a
static probability of incorrect feedback over the state space [10], or
slowly decreased reliance on feedback over time [13]. Instead, our
work assumes that there are patterns of incorrectness that appear
given misunderstandings of tasks or robot capabilities, which gives
the robot the ability to learn to predict when teachers are more
likely to be incorrect. This enables a robot to take more advan-
tage of correct feedback when such a pattern occurs, instead of
distrusting all feedback equally. Other works assume that there are
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multiple teachers [16]. Sridharan stores multiple policies from the
environmental reward function and one policy from feedback [22],
using comparisons to weight human feedback. Lin et al. moderate
trust by keeping track of the current trust metric in a deep RL net-
work, comparing teacher advice and learned Q-values [18]. These
methods may discount good feedback at the beginning of learning,
when the Q-values and initial policies are likely incorrect.

3 COMPLETEDWORK
We developed two algorithms, Attention-Modified Policy Shaping
(AMPS) [9] and Active Attention-Modified Policy Shaping (Active
AMPS) [11] as new Interactive RL methods for learning from inat-
tentive teachers, both built off of Policy Shaping (PS) [3, 10], an
interactive RL algorithm that integrates binary positive and nega-
tive feedback from a teacher. AMPS changes exploration methods
based on a teacher’s presence. The detection of attention is not our
focus, so the robot is told when attention is present. When a teacher
is watching, the agent explores more to gather feedback on a wide
variety of states, choosing between previously unseen state-action
pairs and previously teacher-approved state-action pairs with equal
probability (these probabilities could be experimented with in fu-
ture work). When no teacher is watching, the agent explores less
to increase the predictability of its actions, choosing previously
approved state-action pairs when possible. We ran studies to com-
pare AMPS and PS. The robot’s task is pushing a cup through a
grid to reach a goal location. In a simulated study with simulated
teachers, we found that AMPS significantly outperforms PS with
teachers available for 20 out of 100 learning episodes, achieving a
44% higher area under the learning curve. A human study with ten
participants did not achieve significant results, potentially due to
limited experiment length, but continued learning in simulation
post-study showed that AMPS performed significantly better.

While AMPS allows teachers to take breaks, the burden is placed
on the user to decide when to pay attention. Active AMPS enables a
robot to ask for attention when it is unsure of any positive actions
to take in a state, and spaces the requests for attention by at least 𝑡
actions to allow teaching breaks. After these breaks, if the robot has
not received any positive feedback on any action from its current
state, the robot may ask for attention. This active criteria could be
modified for future work. Active AMPS uses the same exploration
criteria as AMPS during periods of attention and inattention. We
test Active AMPS against PS and AMPS, both of which receive
attention and feedback exactly every 𝑡 actions. A human study
with twelve participants did not show any significant difference
between the performance of the three algorithms, potentially due
to limited participants and experiment length, but participants
gave significantly less feedback and had significantly more free
time using Active AMPS than both AMPS and PS. In a simulated
experiment with simulated teachers, we tested performance on a
task sorting cups by color, and found that Active AMPS significantly
outperforms PS by 27.1% and the AMPS algorithm by 11.0%.

We developed the REPaIR algorithm to address learning from
inaccurate feedback [8]. This algorithm can translate incorrect in-
formation, from either human teachers or sensors, to usable in-
formation for the robot. REPaIR assumes that the robot has two
sources of feedback: 𝐹 , feedback that may be incorrect, and 𝑅, an

environmental reward function which is assumed to be correct.
REPaIR acts as a filter to Interactive RL algorithms to correct for
incorrect feedback. Cumulative rewards (𝑅𝑒 =

∑𝑛
𝑖=0 𝑟𝑖 for each re-

ward 𝑟 on action 𝑖 in episode 𝑒) collected at the end of each episode
are used as ground-truth information to update the filter. As the
agent learns, it saves the highest achieved cumulative reward by
each state-action pair (𝑠𝑖 , 𝑎𝑖 ). A trust 𝑡𝑖 is assigned in the range
[0, 1] to the feedback 𝑓𝑖 on (𝑠𝑖 , 𝑎𝑖 ). REPaIR determines whether to
invert, keep, or discard feedback as follows, where 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥

are threshold parameters. If 𝑡 (𝑠𝑖 ,𝑎𝑖 ,𝑓𝑖 ) ≥ 𝑡𝑚𝑎𝑥 , REPaIR keeps the
feedback: 𝑓𝑖 = 𝑓𝑖 . If 𝑡 (𝑠𝑖 ,𝑎𝑖 ,𝑓𝑖 ) ≤ 𝑡𝑚𝑖𝑛 , REPaIR inverts the feedback:
𝑓𝑖 = −𝑓𝑖 . Otherwise, REPaIR discards the feedback: 𝑓𝑖 = 0. In ex-
periments, we tested interactive RL algorithms [10, 13] both with
and without the REPaIR filter. A robot experiment using sensor
feedback and a gridworld cup picking task showed a slight average
performance increase using REPaIR with Policy Shaping, although
not a significant one. However, it did show that the robot was able
to learn the task using REPaIR. In simulation, the agent learned in
a grid to place a specific number of objects into two distinct bins.
These experiments show that adding the REPaIR filter to an interac-
tive RL algorithm enables expected robot performance to match or
exceed expected performance of baseline interactive RL algorithms
when robots have no prior knowledge of feedback correctness.

4 FUTUREWORK
Future work will focus on moving these algorithms, particularly
REPaIR, to larger and potentially continuous state spaces. These
algorithms have all been tested in smaller grid-world domains, and
REPaIR specifically was built for state spaces where every visited
state-action pair can easily be stored in memory with the corre-
sponding maximum cumulative reward. For REPaIR, future work
will focus on moving from recording observed performance to pre-
dicting future performance, by using machine learning algorithms
to avoid requiring each state-action-feedback tuple to be stored. We
also plan to test how much feedback these algorithms require, as
the realistic limits on feedback for human teachers may limit how
complex these tasks can be. Our Active AMPS algorithm works to
decrease the amount of feedback necessary from a teacher, using
feedback on 18.7 actions on average in simulation versus 203.1 for
PS, so it is possible that combining Active AMPS with REPaIR may
make learning from humans more feasible in a larger state space.

5 CONCLUSION
We propose that Interactive RL agents should change the way they
learn based on human attention and errors, in order to take better
advantage of human feedback. We present our completed work
towards this goal, with the AMPS, Active AMPS, and REPaIR algo-
rithms. Together, these algorithms enable a wider range of skilled
human teachers to successfully teach robots skills using Interactive
RL with less required attention.
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