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Abstract

Diacritics (short vowels) are typically omitted when writing Arabic text, and readers have
to reintroduce them to correctly pronounce words. There are two types of Arabic diacritics:
the first are core-word diacritics (CW), which specify the lexical selection, and the second
are case endings (CE), which typically appear at the end of the word stem and generally
specify their syntactic roles. Recovering CEs is relatively harder than recovering core-word
diacritics due to inter-word dependencies, which are often distant. In this paper, we use a
feature-rich recurrent neural network model that uses a variety of linguistic and surface-
level features to recover both core word diacritics and case endings. Our model surpasses
all previous state-of-the-art systems with a CW error rate (CWER) of 2.86% and a CE
error rate (CEER) of 3.7% for Modern Standard Arabic (MSA) and CWER of 2.2% and
CEER of 2.5% for Classical Arabic (CA). When combining diacritized word cores with
case endings, the resultant word error rate is 6.0% and 4.3% for MSA and CA respectively.
This highlights the effectiveness of feature engineering for such deep neural models.

1 Introduction

Modern Standard Arabic (MSA) and Classical Arabic (CA) have two types of

vowels, namely long vowels, which are explicitly written, and short vowels, aka di-

acritics, which are typically omitted in writing but are reintroduced by readers to

properly pronounce words. Since diacritics disambiguate the sense of the words in

context and their syntactic roles in sentences, automatic diacritic recovery is es-

sential for applications such as text-to-speech and educational tools for language

learners, who may not know how to properly verbalize words. Diacritics have two

types, namely: core-word (CW) diacritics, which are internal to words and specify

lexical selection; and case-endings (CE), which appear on the last letter of word

stems, typically specifying their syntactic role. For example, the word “ktb”1 (I.
�
J»)

can have multiple diacritized forms such as “katab” (I.

��
J
�
» – meaning “he wrote”)

“kutub” (I.

��
J
�
» – “books”). While “katab” can only assume one CE, namely “fatHa”

(“a”), “kutub” can accept the CEs: “damma” (“u”) (nominal – ex. subject), “a”

1 Buckwalter encoding is used in this paper Buckwalter (2002)
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(accusative – ex. object), “kasra” (“i”) (genitive – ex. PP predicate), or their nuna-

tions. There are 14 diacritic combinations. When used as CEs, they typically convey

specific syntactic information, namely: fatHa “a” for accusative nouns, past verbs

and subjunctive present verbs; kasra “i” for genitive nouns; damma “u” for nomi-

native nouns and indicative present verbs; sukun “o” for jussive present verbs and

imperative verbs. FatHa, kasra and damma can be preceded by shadda “∼” for

gemination (consonant doubling) and/or converted to nunation forms following

some grammar rules. In addition, according to Arabic orthography and phonology,

some words take a virtual (null) “#” marker when they end with certain charac-

ters (ex: long vowels). This applies also to all non-Arabic words (ex: punctuation,

digits, Latin words, etc.). Generally, function words, adverbs and foreign named

entities (NEs) have set CEs (sukun, fatHa or virtual).

Similar to other Semitic languages, Arabic allows flexible Verb-Subject-Object

as well as Verb-Object-Subject constructs (Attia 2008). Such flexibility creates in-

herent ambiguity, which is resolved by diacritics as in “r>Y Emr Ely” (ú


Î« QÔ« ø



@P

Omar saw Ali/Ali saw Omar). In the absence of diacritics it is not clear who saw

whom. Similarly, in the sub-sentence “kAn Alm&tmr AltAsE” (©�A
�
JË @ QÖ

�
ß



ñÖÏ @

	
àA¿), if

the last word, is a predicate of the verb “kAn”, then the sentence would mean “this

conference was the ninth” and would receive a fatHa (a) as a case ending. Con-

versely, if it was an adjective to the “conference”, then the sentence would mean

“the ninth conference was ...” and would receive a damma (u) as a case ending.

Thus, a consideration of context is required for proper disambiguation. Due to the

inter-word dependence of CEs, they are typically harder to predict compared to

core-word diacritics (Habash and Rambow 2007, Roth et al. 2008, Harrat et al.

2013, Ameur et al. 2015), with CEER of state-of-the-art systems being in double

digits compared to nearly 3% for word-cores. Since recovering CEs is akin to shallow

parsing (Marton et al. 2010) and requires morphological and syntactic processing,

it is a difficult problem in Arabic NLP. In this paper, we focus on recovering both

CW diacritics and CEs. We employ two separate Deep Neural Network (DNN) ar-

chitectures for recovering both kinds of diacritic types. We use character-level and

word-level bidirectional Long-Short Term Memory (biLSTM) based recurrent neu-

ral models for CW diacritic and CE recovery respectively. We train models for both

Modern Standard Arabic (MSA) and Classical Arabic (CA). For CW diacritics, the

model is informed using word segmentation information and a unigram language

model. We also employ a unigram language model to perform post correction on

the model output. We achieve word error rates for CW diacritics of 2.9% and 2.2%

for MSA and CA. The MSA word error rate is 6% lower than the best results in the

literature (the RDI diacritizer (Rashwan et al. 2015)). The CE model is trained with

a rich set of surface, morphological, and syntactic features. The proposed features

would aid the biLSTM model in capturing syntactic dependencies indicated by

Part-Of-Speech (POS) tags, gender and number features, morphological patterns,

and affixes. We show that our model achieves a case ending error rate (CEER) of

3.7% for MSA and 2.5% for CA. For MSA, this CEER is more than 60% lower than

other state-of-the-art systems such as Farasa and the RDI diacritizer, which are
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trained on the same dataset and achieve CEERs of 10.7% and 14.4% respectively.

The contributions of this paper are as follows:

• We employ a character-level RNN model that is informed using word mor-

phological information and a word unigram language model to recover CW

diacritics. Our model beats the best state-of-the-art system by 6% for MSA.

• We introduce a new feature rich RNN-based CE recovery model that achieves

errors rates that are 60% lower than the current state-of-the-art for MSA.

• We explore the effect of different features, which may potentially be exploited

for Arabic parsing.

• We show the effectiveness of our approach for both MSA and CA.

2 Background

Automatic diacritics restoration has been investigated for many different language

such as European languages (e.g. Romanian (Mihalcea 2002, Tufiş and Ceauşu

2008), French (Zweigenbaum and Grabar 2002), and Croatian (Šantić et al. 2009)),

African languages (e.g. Yorba (Orife 2018)), Southeast Asian languages (e.g. Viet-

namese (Luu and Yamamoto 2012)), Semitic language (e.g. Arabic and Hebrew (Gal

2002)), and many others (De Pauw et al. 2007). For many languages, diacritic (or

accent restoration) is limited to a handful of letters. However, for Semitic languages,

diacritic recovery extends to most letters. Many general approaches have been ex-

plored for this problem including linguistically motivated rule-based approaches,

machine learning approaches, such as Hidden Markov Models (HMM) (Gal 2002)

and Conditional Random Fields (CRF) (Darwish et al. 2018), and lately deep learn-

ing approaches such as Arabic (Abandah et al. 2015, Hifny 2018, Mubarak et al.

2019), Slovak (Hucko and Lacko 2018), and Yorba (Orife 2018).

Aside from rule-based approaches (El-Sadany and Hashish 1989), different meth-

ods were used to recover diacritics in Arabic text. Using a hidden Markov model

(HMM) (Gal 2002, Elshafei et al. 2006) with an input character sequence, the model

attempts to find the best state sequence given previous observations. Gal (2002)

reported a 14% word error rate (WER) while Elshafei et al. (2006) achieved a 4.1%

diacritic error rate (DER) on the Quran (CA). Vergyri and Kirchhoff (2004) com-

bined both morphological, acoustic, and contextual features to build a diacritizer

trained on FBIS and LDC CallHome ECA collections. They reported a 9% (DER)

without CE, and 28% DER with CE. Nelken and Shieber (2005) employed a cascade

of a finite state transducers. The cascade stacked a word language model (LM), a

charachter LM, and a morphological model. The model achieved an accuracy of

7.33% WER without CE and and 23.61% WER with CE. Zitouni et al. (2006)

employed a maximum entropy model for sequence classification. The system was

trained on the LDCs Arabic Treebank (ATB) and evaluated on a 600 articles from

An-Nahar Newspaper (340K words) and achieved 5.5% DER and 18% WER on

words without CE.

Bebah et al. (2014) used a hybrid approach that utilizes the output of Alkhalil

morphological Analyzer (Mohamed Ould Abdallahi Ould et al. 2011) to generate
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all possible out of context diacritizations of a word. Then, an HMM guesses the

correct diacritized form. Similarly, Microsoft Arabic Toolkit Services (ATKS) dia-

critizer (Said et al. 2013) uses a rule-based morphological analyzer that produces

possible analyses and an HMM in conjunction with rules to guess the most likely

analysis. They report WER of 11.4% and 4.4% with and without CE. MADAMIRA

(Pasha et al. 2014) uses a combinations of morpho-syntactic features to rank a list

of potential analyses provided by the Buckwalter Arabic Morphological Analyzer

(BAMA) (Buckwalter 2004). An SVM trained on ATB selects the most probable

analysis, including the diacritized form. MADAMIRA achieves 19.0% and 6.7%

WER with and without CE respectively (Darwish et al. 2017). Farasa (Darwish

et al. 2017) uses an HMM to guess CW diacritics and an SVM-rank based model

trained on morphological and syntactic features to guess CEs. Farasa achieves WER

of 12.8% and 3.3% with and without CEs.

More recent work employed different neural architectures to model the diacriti-

zation problem. Abandah et al. (2015) used a biLSTM recurrent neural network

trained on the same dataset as (Zitouni et al. 2006). They explored one, two and

three BiLSTM layers with 250 nodes in each layers, achieving WER of 9.1% in-

cluding CE on ATB. Similar architectures were used but achieved lower results

(Rashwan et al. 2015, Belinkov and Glass 2015). Azmi and Almajed (2015) pro-

vide a comprehensive survey on Arabic diacritization. A more recent survey by

Osama Hamed (2017) concluded that reported results are often incomparable due

to the usage of different test sets. They concluded that a large unigram LM for CW

diacritic recovery is competitive with many of the systems in the literature, which

prompted us to utilize a unigram language model for post correction. As mentioned

earlier, two conclusions can be drawn, namely: restoring CEs is more challenging

than CW diacritic restoration; and combining multiple features typically improves

CE restoration.

In this paper, we expand upon the work in the literature by introducing feature-

rich DNN models for restoring both CW and CE diacritics. We compare our models

to multiple systems on the same test set. We achieve results that reduce diacritiza-

tion error rates by more than half compared to the best SOTA systems. We further

conduct an ablation study to determine the relative effect of the different features.

As for Arabic, it is a Semitic language with derivational morphology. Arabic

nouns, adjectives, adverbs, and verbs are typically derived from a closed set of

10,000 roots of length 3, 4, or rarely 5. Arabic nouns and verbs are derived from

roots by applying templates to the roots to generate stems. Such templates may

carry information that indicate morphological features of words such POS tag,

gender, and number. For example, given a 3-letter root with 3 consonants CCC, a

valid template may be CwACC , where the infix “wA” ( @ð) is inserted, this template

typically indicates an Arabic broken, or irregular, plural template for a noun of

template CACC or CACCp if masculine or feminine respectively. Further, stems

may accept prefixes and/or suffixes to form words. Prefixes include coordinating

conjunctions, determiner, and prepositions, and suffixes include attached pronouns

and gender and number markers.



Arabic Diacritic Recovery Using a Feature-Rich biLSTM Model 5

3 Our Diacritizer

3.1 Training and Test Corpora

For MSA, we acquired the diacritized corpus that was used to train the RDI (Rash-

wan et al. 2015) diacritizer and the Farasa diacritizer (Darwish et al. 2017). The

corpus contains 9.7M tokens with approximately 194K unique surface forms (ex-

cluding numbers and punctuation marks). The corpus covers multiple genres such

as politics and sports and is a mix of MSA and CA. This corpus is considerably

larger than the Arabic Treebank (Maamouri et al. 2004) and is more consistent in

its diacritization. For testing, we used the freely available WikiNews test set (Dar-

wish et al. 2017), which is composed of 70 MSA WikiNews articles (18,300 tokens)

and evenly covers a variety of genres including politics, economics, health, science

and technology, sports, arts and culture.

For CA, we obtained a large collection of fully diacritized classical texts (2.7M

tokens) from a book publisher, and we held-out a small subset of 5,000 sentences

(approximately 400k words) for testing. Then, we used the remaining sentences to

train the CA models.

3.2 Core Word Diacritization

Features.

Arabic words are typically derived from a limited set of roots by fitting them into

so-called stem-templates (producing stems) and may accept a variety of prefixes and

suffixes such as prepositions, determiners, and pronouns (producing words). Word

stems specify the lexical selection and are typically unaffected by the attached

affixes. We used 4 feature types, namely:

• CHAR: the characters.

• SEG: the position of the character in a word segment. For example, given

the word “wAlktAb” (H. A
�
JºË@ð and the book/writers), which is composed of

3 segments “w+Al+ktAb” (H. A
�
Jº+Ë@+ð). Letters were marked as “B” if they

begin a segment, “M” if they are in the middle of a segment, “E” if they end

a segment, and “S” if they are single letter segments. So for “w+Al+ktAb”,

the corresponding character positions are “S+BE+BMME”. We used Farasa

to perform segmentation, which has a reported segmentation accuracy of 99%

on the WikiNews dataset (Darwish and Mubarak 2016).

• PRIOR: diacritics seen in the training set per segment. Since we used a char-

acter level model, this feature informed the model with word level information.

For example, the word “ktAb” (H. A
�
J») was observed to have two diacritized

forms in the training set, namely “kitaAb” (H. A
��
J»� – book) and “kut∼aAb”

(H. A

���
J
�
» – writers). The first letter in the word (“k”) accepted the diacritics

“i” and “u”. Thus given a binary vector representing whether a character is

allowed to assume any of the eight primitive Arabic diacritic marks (a, i, u, o,

K, N, F, and ∼ in order), the first letter would be given the following vector
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“01100000”. If a word segment was never observed during training, the vector

for all letters therein would be set to 11111111. This feature borrows infor-

mation from HMM models, which have been fairly successful in diacritizing

word cores.

• CASE: whether the letter expects a core word diacritic or a case ending.

Case endings are placed on only one letter in a word, which may or may not

be the last letter in the word. This is a binary feature.

DNN Model.

Using a DNN model, particularly with a biLSTM (Schuster and Paliwal 1997), is

advantageous because the model automatically explores the space of feature com-

binations and is able to capture distant dependencies. A number of studies have

explored various biLSTM architectures (Abandah et al. 2015, Rashwan et al. 2015,

Belinkov and Glass 2015) including stacked biLSTMs confirming their effectiveness.

As shown in Figure 1, we employed a character-based biLSTM model with associ-

ated features for each character. Every input character had an associated list of m

features, and we trained randomly initialized embeddings of size 50 for each feature.

Then, we concatenated the feature embeddings vectors creating an m × 50 vector

for each character, which was fed into the biLSTM layer of length 100. The output

of the biLSTM layer was fed directly into a dense layer of size 100. We used early

stopping with patience of 5 epochs, a learning rate of 0.001, a batch size of 256, and

an Adamax optimizer. The input was the character sequence in a sentence with

words being separated by word boundary markers (WB), and we set the maximum

sentence length to 1,250 characters.

3.3 Case Ending Diacritization

Features.

Table 1 lists the features that we used for CE recovery. We used Farasa to perform

segmentation and POS tagging and to determine stem-templates (Darwish et al.

2017). Farasa has a reported POS accuracy of 96% on the WikiNews dataset Dar-

wish et al. (2017). Though the Farasa diacritizer utilizes a combination of some the

features presented herein, namely segmentation, POS tagging, and stem templates,

Farasa’s SVM-ranking approach requires explicit specification of feature combina-

tions (ex. Prob(CE‖current word, prev word, prev CE)). Manual exploration of

the feature space is undesirable, and ideally we would want our learning algorithm

to do so automatically. The flexibility of the DNN model allowed us to include many

more surface level features such as affixes, leading and trailing characters in words

and stems, and the presence of words in large gazetteers of named entities. As we

show later, these additional features significantly lowered CEER.
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Fig. 1. DNN model for core word diacritics

DNN Model

Figure 2 shows the architecture of our DNN algorithm. Every input word had an

associated list of n features, and we trained randomly initialized embeddings of

size 100 for each feature. Then, we concatenated the feature embeddings vectors

creating an n×100 vector for each word. We fed these vectors into a biLSTM layer

of 100 dimensions after applying a dropout of 75%, where dropout behaves like a

regularlizer to avoid overfitting (Hinton et al. 2012). We conducted side experiments

with lower dropout rates, but the higher dropout rate worked best. The output of

the biLSTM layer was fed into a 100 dimensional dense layer with 15% dropout

and softmax activation. We conducted side experiments where we added additional

biLSTM layers and replaced softmax with a conditional random field layer, but

we did not observe improvements. Thus, we opted for a simpler model. We used

a validation set to determine optimal parameters such as dropout rate. Again, we

used the “Adamax” optimizer with categorical cross entropy loss and a learning

rate of 0.001. We also applied early stopping with patience of up to 5 consecutive

epochs without improvement.

4 Experiments and Results

4.1 Core Word

Experimental Setup

For all the experiments conducted herein, we used the Keras toolkit (Chollet et al.

2015) with a TensorFlow backend (Abadi et al. 2015). We used the entirety of the
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Feature Example Explanation and Motivation

word w+b+mktb+t+nA
( A

	
J+

�
J+�.

�
JºÒ+K.+ ð – and in

our library)

Some words have a fixed set of observed CEs

word POS CONJ+PREP+NOUN
+NSUFF+PRON

Some POS combinations allow a closed set of CEs

gender/number feminine/singular Gender/number agreement (dis)allow certain attach-
ments and may allow/exclude certain CEs

stem mktb+p (
�
é+J.

�
JºÓ – li-

brary)

We attach gender and number noun suffixes such the
singular feminine marker “p” (

�
é�) because CEs appear

on them.

stem POS NOUN+NSUFF Same rationale as word POS

prefix(es) & POS w+b+ (+ H. + ð) &

CONJ+PREP

Certain prefixes affect CE directly. For example, the
PREP “b+” (+ H. ) is a preposition causing their noun

predicates to assume the genitive case

suffix(es) & POS “+nA” ( A
	
K+) & PRON Certain suffixes affect CE directly

stem template mfEl+p (
�
é+Êª

	
®Ó – de-

rived from the root
“ktb” I.

�
J»)

Some stem templates allow certain CEs and exclude

others. Ex. the stem template “>fEl” (Éª
	
¯


@) disallows

tanween (“N”, “K”, “F”)

word/stem
head/tail char
uni/bi-grams

word: w (ð), wb (H. ð);

stem: A ( @), nA ( A
	
K)

Such characters can capture some morphological and
syntactic information. Ex. verbs in present tense typ-

ically start with “> (


@), n ( 	

à), y (ø


), or t ( �

H)”.

sukun word foreign NEs: ex. jwn
( 	

àñk. – John)
CE of certain words is strictly sukun. We built a list
from training set.

named entities NEs Named entities are more likely to have sukun as CE.
We extracted the named entity list from the Farasa
named entity recognizer (Darwish 2013, Darwish and
Gao 2014).

Table 1. Features with examples and motivation.

training set as input, and we instructed Keras to use 5% of the data for tuning

(validation). We included the CASE feature, which specifies whether the letter

accepts a normal diacritic or case ending, in all our setups. We conducted multiple

experiment using different features, namely:

• CHAR: This is our baseline setup where we only used the characters as

features.

• CHAR+SEG: This takes the characters and their segmentation information

as features.

• CHAR+PRIOR: This takes the characters and their the observed dia-

critized forms in the training set.

• All: This setup includes all the features.
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Fig. 2. DNN case ending model architecture

We also optionally employed post correction. For words that were seen in training,

if the model produced a diacritized form that was not seen in the training data,

we assumed it was an error and replaced it with the most frequently observed

diacritized form (using a unigram language model). We report two error rates,

namely WER (at word level) and DER (at character level). We used relaxed scoring

where we assumed an empty case to be equivalent to sukun, and we removed default

diacritics – fatHa followed by alef, kasra followed by ya, and damma followed by

wa. Using such scoring would allow to compare to other systems in the literature

that may use different diacritization conventions.

Results and Error analysis

For testing, we used the aforementioned WikiNews dataset to test the MSA dia-

critizer and the held-out 5,000 sentences for CA. Table 2 shows WER and DER

results using different features with and without post correction.

MSA Results: For MSA, though the CHAR+PRIOR feature led to worse re-

sults than using CHAR alone, the results show that combining all the features

achieved the best results. Moreover, post correction improved results overall. We

compare our results to five other systems, namely Farasa (Darwish et al. 2017),

MADAMIRA (Pasha et al. 2014), RDI (Rashwan et al., 2015), MIT (Belinkow and

Glass, 2015), and Microsoft ATKS (Said et al. 2013). Table 7 compares our system

with others in the aforementioned systems. As the results show, our results beat

the current state-of-the-art.
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MSA CA

DNN DNN+Post DNN DNN+Post

Model WER DER WER DER WER DER WER DER

CHAR 3.5 1.1 3.3 1.0 5.1 2.1 2.7 1.0

CHAR+SEG 3.3 1.1 3.2 1.0 4.7 1.9 2.6 1.0

CHAR+PRIOR 3.8 1.2 3.7 1.1 3.8 1.6 2.3 0.9

ALL 3.0 1.0 2.9 0.9 3.6 1.5 2.2 0.9

Table 2. Core word diacritization results

For error analysis, we analyzed all the errors (527 errors). The errors types along

with examples of each are shown in Table 3. The most prominent error type arises

from the selection of a valid diacritized form that does not match the context

(40.8%). Perhaps, including POS tags as a feature or augmenting the PRIOR fea-

ture with POS tag information and a bigram language model may reduce the error

rate further. The second most common error is due to transliterated foreign words

including foreign named entities (23.5%). Such words were not observed during

training. Further, Arabic Named entities account for 10.6% of the errors, where

they were either not seen in training or they share identical non-diacritized forms

with other words. Perhaps, building larger gazetteers of diacritized named entities

may resolve NE related errors. In 10.8% of the cases, the diacritizer produced in

completely incorrect diacritized forms. In some the cases (9.1%), though the dia-

critizer produced a form that is different from the reference, both forms were in fact

correct. Most of these cases were due to variations in diacritization conventions (ex.

“bare alef” (A) at start of a word receiving a diacritic or not). Other cases include

foreign words and some words where both diacritized forms are equally valid.

CA Results: For CA results, the CHAR+SEG and CHAR+PRIOR performed

better than using characters alone with CHAR+PRIOR performing better than

CHAR+SEG. As in the case with MSA, combining all the features led to the

best results. Post correction had a significantly larger positive impact on results

compared to what we observed for MSA. This may indicate that we need a larger

training set. The best WER that we achieved for CW diacritics with post corrections

is 2.2%. Since we did not have access to any publicly available system that is tuned

for CA, we compared our best system to using our best MSA system to diacritize

the CA test set, and the MSA diacritizer produced significantly lower results with

a WER of 8.5% (see Table 7). This highlights the large difference between MSA

and CA and the need for systems that are specifically tuned for both.

We randomly selected and analyzed 500 errors (5.2% of the errors). The errors

types along with examples of each are shown in Table 6. The two most common

errors involve the system producing completely correct diacritized forms (38.8%)
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Error Freq. % Explanation Examples

Wrong selec-

tion

215 40.8 Homographs with differ-

ent diacritized forms

“qaSor” (Qå
�
�

��
¯ – palace)

vs. “qaSar” (Qå
�
�

��
¯ – he

limited)

Foreign word 124 23.5 transliterated words in-

cluding 96 foreign named

entities

wiykiymaAnoyaA

( A
�
J


�	
K A

�
ÒJ
º� K
ð

�
– Wikima-

nia)

Invalid dia-

critized form

57 10.8 invalid form ya*okur (Q
�
»

�	
Y

�
K
 – he men-

tions) vs. ya*okar (Q
�
»

�	
Y

�
K
)

Named entity 56 10.6 Arabic named entities “EabÃdiy” (ø



X� A
��
J.
�
« –

name) vs. “EibAdiy”

(ø



X� A
�
J.«� – my servants)

both correct 48 9.1 Some words have mul-

tiple valid diacritized

forms

“wikAlap” (
�
é
�
Ë A
�
¿ð
�
) and

“wakAlap” (
�
é
�
Ë A
�
¿
�
ð –

agency)

Affix diacriti-

zation error

16 3.0 Some sufixes are erro-

neously diacritized

baAkt$Afihim

(Ñê
�

	
�̄ A

�
�

�
�» A

�
K. – with their

discovery)

Reference is

wrong

10 1.9 the truth diacritics were

incorrect

AlofiyfaA ( A
�	
®J


	
®�

�
Ë @ – FIFA)

vs. AlofayofaA ( A
�	
®

�
J


�	
®
�
Ë @)

dialectal word 1 0.2 dialectal word mawaAyiliy (ú


Î
�
K
�
@
�

ñ
�
Ó – my

chant)

Table 3. Error analysis: Core word error types for MSA

or correct forms that don’t match the context (31.4%). The relatively higher per-

centage of completely incorrect guesses, compared to MSA, may point to the higher

lexical diversity of classical Arabic. As for MSA, we suspect that adding additional

POS information and employing a word bigram to constrain the PRIOR feature

may help reduce selection errors. Another prominent error is related to the diacrit-

ics that appear on attached suffixes, particularly pronouns, which depend on the

choice of case ending (13.2%). Errors due to named entities are slightly fewer than
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those seen for MSA (8.8%). A noticeable number of mismatches between the guess

and the reference are due to partial diacritization of the reference (4.4%). We plan

to conduct an extra round of checks on the test set.

4.2 Case Ending

Experimental Setup

We conducted multiple experiments to determine the relative effect of the different

features as follows:

• word: This is our baseline setup, which uses word surface forms only.

• word-surface: This setup uses the word surface forms, stems, prefixes, and

suffixes (including noun suffixes). This simulates the case when no POS tag-

ging information is available.

• word-POS: This includes the word surface form and POS information, in-

cluding gender and number of stems, prefixes, and suffixes.

• word-morph: This includes words and their stem templates to capture mor-

phological patterns.

• word-surface-POS-morph: This setup uses all the features (surface, POS,

and morphological).

• all-misc: This uses all features plus word and stem leading and trailing char-

acter unigrams and bigrams in addition to sukun words and named entities.

For testing MSA, we used the aforementioned WikiNews dataset. Again, we

compared our results to five other systems, namely Farasa (Darwish et al. 2017),

MADAMIRA (Pasha et al. 2014), RDI (Rashwan et al., 2015), MIT (Belinkow and

Glass, 2015), and Microsoft ATKS (Said et al. 2013). For CA testing, we used the

5,000 sentences that we set aside. Again, we compared to our best MSA system.

Results and Error Analysis

Table 8 lists the results of our setups compared to other systems.

MSA Results: As the results show, our baseline DNN system outperforms all

state-of-the-art systems. Further, adding more features yielded better results over-

all. Surface-level features resulted in the most gain, followed by POS tags, and lastly

stem templates. Further, adding head and tail characters along with a list of sukun

words and named entities led to further improvement. Our proposed feature-rich

system has a CEER that is approximately 61% lower than any of the state-of-the-art

systems.

Figure 3 shows CE distribution and prediction accuracy. For the four basic mark-

ers kasra, fatHa, damma and sukun, which appear 27%, 14%, 9% and 10% respec-

tively, the system has CEER of ∼1% for each. Detecting the virtual CE mark is a

fairly easy task. All other CE markers represent 13% with almost negligible errors.

Table 4 lists a thorough breakdown of all errors accounting for at 1% of the errors

along with the most common reasons of the errors and examples illustrating these
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reasons. For example, the most common error type involves guessing a fatHa (a)

instead of damma (u) or vice versa (19.3%). The most common reasons for this

error type, based on inspecting the errors, were due to: POS errors (ex. a word is

tagged as a verb instead of a noun); and a noun is treated as a subject instead of an

object or vice versa. The table details the rest of the error types. Overall, some of

the errors are potentially fixable using better POS tagging, improved detection of

non-Arabized foreign names, and detection of indeclinability. However, some errors

are more difficult and require greater understanding of semantics such as improper

attachment, incorrect idafa, and confusion between subject and object. Perhaps,

such semantic errors can be resolved using parsing.

CA Results: The results show that the POS tagging features led to the most

improvements followed by the surface features. Combining all features led to the

best results with WER of 2.5%. As we saw for CW diacritics, using our best MSA

system to diacritize CA led to significantly lower results with CEER of 8.9%.

Figure 4 shows CE distribution and prediction accuracy. For the four basic mark-

ers fatHa, kasra, damma and sukun, which appear 18%, 14%, 13% and 8% respec-

tively, the system has CEER ∼0.5% for each. Again, detecting the virtual CE mark

was a fairly easy task. All other CE markers representing 20% have negligible errors.

Table 5 lists all the error types, which account for at least 1% of the errors, along

with their most common causes and explanatory examples. The error types are sim-

ilar to those observed for MSA. Some errors are more syntactic and morphological

in nature and can be addressed using better POS tagging and identification of in-

declinability, particularly as they relate to named entities and nouns with feminine

markers. Other errors such as incorrect attachment, incorrect idafa, false subject,

and confusion between subject and object can perhaps benefit from the use of pars-

ing. As with the core-word errors for CA, the reference has some errors (ex. {a,i,o}
⇒ #), and extra rounds of reviews of the reference are in order.

4.3 Full Diacritization Results

Table 9 compares the full word diacritization (CW+CE) of our best setup to other

systems in the literature. As the results show for MSA, our overall diacritization

WER is 6.0% while the state of the art system has a WER of 12.2%. As for CA,

our best system produced an error rate of 4.3%, which is significantly better than

using our best MSA system to diacritize CA.

5 Conclusion and Future Work

In this paper, we presented a feature-rich DNN approach for MSA CW and CE

recovery that produces a word level error for MSA of 6.0%, which is more than

50% lower than state-of-the-art systems (6.0% compared to 12.2%) and word error

rate of 4.3% for CA. Specifically, we used biLSTM-based model with a variety of

surface, morphological, and syntactic features. Reliable NLP tools may be required

to generate some of these features, and such tools may not be readily available for
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Fig. 3. Case endings distribution and prediction accuracy for MSA

other language varieties, such as dialectal Arabic. However, we showed the efficacy

of different varieties of features, such as surface level-features, and they can help

improve diacritization individually. Further, though some errors may be overcome

using improved NLP tools (ex. better POS tagging), semantic errors, such incorrect

attchment, are more difficult to fix. Perhaps, using dependency parsing may help

overcome some semantic errors. As for feature engineering, the broad categories of

features, such as surface, syntactic, and morphological features, may likely carry-

over to other languages, language-specific feature engineering may be require to

handle the specificity of each language. Lastly, since multiple diacritization con-

ventions may exist, as in the case of Arabic, adopting one convention consistently

is important for training a good system and for properly testing it. Though we

have mostly achieved this for MSA, the CA dataset requires more checks to insure

greater consistency.

For future work, we want to explore the effectiveness of augmenting our CW

model with POS tagging information and a bigram language model. Further, we

plan to create a multi reference diacritization test set to handle words that have

multiple valid diacritized forms. For CE, we want to examine the effectiveness

of the proposed features for Arabic parsing. We plan to explore: character-level

convolutional neural networks that may capture sub-word morphological features;

pre-trained embeddings; and attention mechanisms to focus on salient features. We

also plan to explore joint modeling for both core word and case ending diacritics.
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Error Count % Most Common Causes

a ⇔ u 133 19.3 POS error : ex. “ka$afa” (
�	

­
�
�

�
�
» – he exposed) vs.

“ka$ofu” (
�	

­
�
�

�
�
» – exposure) & Subject vs. object : ex.

“tuwHy mivolu” (
�

É
�
�
JÓ� ú



k
�
ñ

��
K – such indicates) vs.

“tuwHy mivola” (
�

É
�
�
JÓ� ú



k
�
ñ

��
K – she indicates such)

i ⇔ a 130 18.9 Incorrect attachment (due to coordinating con-

junction or distant attachment): ex. “Alogaza

Alomusay˜ili lilidumuEi – wa+AlraSaSi vs.

wa+AlraSaSa (�A
�

��QË@ð ¨
�

ñ
�
Ó

�
YÊË�

�
É

��
J


�
��Ü

�
Ï @

�	PA
�	
ªË @ –

tear gas and bullets) where bullets were attached

incorrectly to tear instead of gas & indeclinability

such as foreign words and feminine names: ex.

“kaAnuwni” ( 	
à
�

ñ
�	
K A

�
¿ – Cyrillic month name) vs.

“kaAuwna” (
�	
àñ

�	
KA

�
¿)

i ⇔ u 95 13.8 POS error of previous word : ex. “tadahowuru wa-

DoEihi” ( é� ª�

�	
�

�
ð �P

�

ñ

�
ë

�
Y

��
K – deterioration of his situa-

tion – situtation is part of idafa construct) vs. “tada-

howara waDoEihu” (
�
é

�
ª

�	
�

�
ð �P

�
ñ

�
ë

�	
Y

��
K – his situation de-

teriorated – situation is subject) & Incorrect attach-

ment (due to coordinating conjunction or distant at-

tachment): (as example for i ⇔ a)

a ⇔ o 60 8.7 Foreign named entities: ex. “siyraAloyuna” (
�	
àñ

�
J


�
Ë @

�Q�
��

– Siera Leon) vs. “siyraAloyuno” (
�	
àñ

�
J


�
Ë @

�Q�
��)

i ⇔ K 27 4.0 Incorrect Idafa: “liAt˜ifaqi haaA Alo>usobuwE”

(¨ñ
�
J.

�
�

�

B@ @

�	
Y

�
ë

�
�
�
A
�	
®

�
K�B� – this week’s agree-

ment) vs. “liAt˜ifaqK haaA Alo>usobuwE”

(¨ñ
�
J.

�
�

�

B
�
@ @

�	
Y

�
ë

�
�
�
A
�	
®

���
KB� – to an agreement this week)

K ⇔ N 29 4.2 Subject vs. object (as in a⇔ u) and Incorrect attach-

ment (as in i ⇔ a)

F ⇔ N 25 3.7 Words ending with feminine marker “p” or “At”: ex.

“muHaADarap” (
�
è �Qå

�	
�A

�
m
�

× – lecture)

i ⇔ o 22 3.2 Foreign named entities (as in a ⇔ o)

F ⇔ a 16 2.3 Incorrect Idafa (as in i ⇔ K)

u ⇔ o 14 2.0 Foreign named entities (as in a ⇔ o)

F ⇔ K 9 1.3 Words ending with feminine marker (as in F ⇔ N)

K ⇔ a 8 1.2 Incorrect Idafa (as in i ⇔ K)

Table 4. MSA case errors accounting from more than 1% of errors
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Error Count % Most Common Causes

a ⇔ u 2,907 28.4 Subject vs. object : ex. “wafaqa yawoma” (
�
Ð

�
ñ

�
K


��
�

�	
¯

�
ð – he

matches the day) vs. ex. “wafaqa yawomu” (
�
Ð

�
ñ

�
K


��
�

�	
¯

�
ð

– the day matches) & False subject (object behaves

like subject in passive tense): ex. “yufar˜iqu qaDaA’a”

( �
ZA

�	
�

��
®
�
Ë @

��
�

��Q
�	
®

�
K
 – he separates the make up) vs. “yufar˜aqu

qaDaA’u” ( �
ZA

�	
�

��
®
�
Ë @

��
�

��Q
�	
®

�
K
 – the make up is separated) & In-

correct attachment (due to coordinating conjunction): ex.

“f+a>aEohadu” (
�
Y

�
ê

�
«

�

A
�	
¯ – so I entrust) vs. “f+a>aEohadu”

(
�
Yê

�

�
«

�

A
�	
¯)

i ⇔ u 1,316 12.9 Incorrect attachment (due to coordinating conjunctions or

distant attachment): (as in a ⇔ u)

i ⇔ a 1,019 10.0 Incorrect attachment (as in a ⇔ u) & Indeclinability such

as foreign words and feminine names: ex. “>ajoyaAdiyni”

( 	á
�
K
X� A

�
J


�
k.

�

@ – Ajyadeen (city name)) vs. “>ajoyaAiyna”

(
�	áK
X� A

�
J


�
k.

�

@)

a ⇔ # 480 4.7 Problem with reference where the case for some words, par-

ticularly non-Arabic names, is not provided in the refer-

ence: ex. “<isoHaAq” (
�

�A
�
m�

�
� @

�

– Issac) vs. “<isoHaAqa”

(
��

�A
�
m�

�
� @

�
)

u ⇔ # 426 4.2 same problems as in a ⇔ #

K ⇔ i 371 3.6 Incorrect Idafa: ex. “EaTaA’i Alofaqiyh” ( éJ

�
®�

�	
®

�
Ë @ Z� A

�
¢

�
« –

the providence of the jurist) vs. “EaTaA’K Alofaqiyh”

( éJ

�
®�

�	
®
�
Ë @ Z

�
A

�
¢

�
« – Ataa the jurist)

K ⇔ a 328 3.2 words ending with feminine marker : ex. “tayomiyap”

(
�
é
�
J
Ò�

�
J


��
K –Taymiya) & Indeclinability: ex. “bi<i$obiyliy˜ap”

(
�
é
��
J
Ê�J
J.�

�
�

�A

�
K.�

�
ð – and in Lisbon)

u ⇔ o 300 2.9 confusion between past, present, and imperative moods of

verbs and preceding markers (imperative “laA” vs. nega-

tion “laA): ex. “laA tano$ariHu” (
�
hQ

�
å
�
�
�
�	
J
��
K B – does not open

up) vs. “laA tano$ariHo” (
�
hQ

�
å
�
�
�
�	
J
��
K B – do not open up)

a ⇔ o 278 2.7 confusion between past, present, and imperative moods of

verbs (as in u ⇔ o)

K ⇔ N 253 2.5 Incorrect attachment (as in i ⇒ u)

N ⇔ u 254 2.5 Incorrect Idafa (as in K ⇒ i)

F ⇔ N 235 2.3 words ending with feminine marker (as in K ⇒ a)

i ⇔ o 195 1.9 Differing conventions concerning handling two consecutive

letters with sukun: ex. “Eano Aboni” ( 	á
�

�
K. @

�	á
�
« – on the

authority of the son of) vs. “Eani Aboni” ( 	á
�

�
K. @

	á
�

�
«)

i ⇔ # 178 1.7 same errors as for a ⇒ #

o ⇔ # 143 1.4 same errors as for a ⇒ #

Table 5. CA case errors accounting from more than 1% of errors



Arabic Diacritic Recovery Using a Feature-Rich biLSTM Model 21

Error Freq. % Explanation Examples

Invalid dia-

critized form

195 38.8 invalid form “>aqosaAm” (ÐA
�

�
��
¯@

�

– portions) vs.

“>aqasaAm” (ÐA
�

�
��
¯

�

@)

Wrong selec-

tion

157 31.4 Homographs with differ-

ent diacritized forms

“raAfoE” (©
��
¯ �P – lifting)

vs. “rafaE” (©
�	
¯ �P – he

lifted)

Affix diacriti-

zation error

66 13.2 Some affixes are erro-

neously diacritized

“baladhu” (
�
èY

�
Ê
�
K. – his

country, where country is

subject of verb) vs. “bal-

adhi” ( è�Y
�
Ê
�
K. – his country,

where country is subject

or object of preposition)

Named enti-

ties

44 8.8 Named entities “Alr˜ayob” (I.
�
K


��QË @ –

Arrayb) vs. “Alr˜iyab”

(I.
�
K


��QË @))

Problems with

reference

22 4.4 Some words in the refer-

ence were partially dia-

critized

“nuEoTaY” (ù
�

¢
�
ª

�	
K – we

are given) vs. “nETY”

(ù¢ª
	
K))

Guess has no

diacritics

9 1.8 system did not produce

any diacritics

“mhnd” (Y
	
JêÓ – sword)

vs. “muhan˜ad” (Y

��	
J
�
ê
�
Ó))

Different valid

forms

7 1.4 Some words have mul-

tiple valid diacritized

forms

“maA}op” (
�
é
�

KA

�
Ó – hun-

dred) and “miA}op”

(
�
é
�

KAÓ�)

Misspelled

word

1 0.2 “lbAlmsjd” (Yj. �ÖÏAJ. Ë) vs.

“lbAlmsjd” (Yj. �ÖÏAK. – in

the mosque))

Table 6. Error analysis: Core word error types for CA
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Error Rate

System WER DER

MSA

Our system 2.9 0.9

(Rashwan et al. 2015) 3.0 1.0

Farasa 3.3 1.1

Microsoft ATKS 5.7 2.0

MADAMIRA 6.7 1.9

(Belinkov and Glass 2015) 14.9 3.9

CA

Our system 2.2 0.9

Our best MSA system on CA 8.5 3.7

Table 7. Comparing our system to state-of-the-art systems – Core word diacritics
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Setup CEER%

MSA

word (baseline) 9.1

word-surface 5.7

word-POS 7.0

word-morph 7.6

word-surface-POS-morph 5.2

all-misc 3.7

Microsoft ATKS 9.5

Farasa 10.4

RDI (Rashwan et al. 2015) 14.0

MIT (Belinkov and Glass 2015) 15.3

MADAMIRA (Pasha et al. 2014) 15.9

CA

word (baseline) 4.0

word-surface 3.3

word-POS 3.1

word-morph 3.7

word-surface-POS-morph 2.9

all-misc 2.5

Our best MSA system on CA 8.9

Table 8. MSA Results and comparison to other systems
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Setup WER%

MSA

Our System 6.0

Microsoft ATKS 12.2

Farasa 12.8

RDI (Rashwan et al. 2015) 16.0

MADAMIRA (Pasha et al. 2014) 19.0

MIT (Belinkov and Glass 2015) 30.5

CA

Our system 4.3

Our best MSA system on CA 14.7

Table 9. Comparison to other systems for full diacritization
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