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Towards automatic construction of multi-network
models for heterogeneous multi-task learning

Unai Garciarena, Alexander Mendiburu, and Roberto Santana

Abstract—Multi-task learning, as it is understood nowadays,
consists of using one single model to carry out several similar
tasks. From classifying hand-written characters of different
alphabets to figuring out how to play several Atari games using
reinforcement learning, multi-task models have been able to
widen their performance range across different tasks, although
these tasks are usually of a similar nature. In this work, we
attempt to widen this range even further, by including heteroge-
neous tasks in a single learning procedure. To do so, we firstly
formally define a multi-network model, identifying the necessary
components and characteristics to allow different adaptations
of said model depending on the tasks it is required to fulfill.
Secondly, employing the formal definition as a starting point,
we develop an illustrative model example consisting of three
different tasks (classification, regression and data sampling). The
performance of this illustrative model is then analyzed, showing
its capabilities. Motivated by the results of the analysis, we
enumerate a set of open challenges and future research lines
over which the full potential of the proposed model definition
can be exploited.

Index Terms—Multi-task learning, generative modeling, deep
learning, multi-networks

I. INTRODUCTION

ARTIFICIAL neural network (ANN) models have seen
their popularity rise and fall since they were proposed in

the mid-20th century [31]. These oscillations can be paralleled
with the proposals of new and effective structures and training
algorithms, and the results these propositions provided being
surpassed by other models and methodologies. Now at its
peak, their popularity has experienced its most recent increase
thanks to the conception of deep neural networks (DNN), an
ANN structure composed of several layers of neurons that
interact with each other, and can have different structures and
purposes inside the same model. These black-box models are
theorized to perform deep learning (learning high-abstraction
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features of the data) that eventually produces high quality
results in several domains.

Due to their high modeling power, the form of DNN that we
know today has broken through the barriers of the tasks they
were designed for in the last millennium [24]; classification
and regression of generic data structures with little or no ex-
ploitation of prior knowledge about said structures. Recently,
DNN architectures were developed to manage different tasks
with specific types of data, for example image classification
using convolutional operations [23] or dealing with temporal
data using recurrent connections [14].

Despite the high modeling capacity of the DNNs, high-
complexity tasks sometimes require more sophisticated model
layouts. Because of this, multi-network models that can cope
with these complex jobs were designed. One such paradigm is
generative modeling, which consists of generating data similar
but not equal to that known [12], [13], [19]. Even though
single DNN models have been proposed for this type of task,
the two most popular DNN-based generative models are two-
network models; generative adversarial networks (GAN) [12]
and variational autoencoders (VAE) [19]. These two models
share similarities in terms of structural composition, as they
both are composed of two individual - albeit connected -
DNNs. The structural design of these two models was hand-
made according to a predefined goal: the encoder-decoder
structure in the VAE, and the generator-discriminator routine
in the GAN. Even though extensions of these models have
already been carried out [1], [9], these approaches were de-
veloped in restrictive frameworks that only permitted relatively
small, structure-wise modifications. These extensions consist
of enhancing the model structure using additional networks
that can serve different purposes to those already existing in
the model.

In addition to multi-model proposals designed for high
complexity tasks, other approaches attempt to comprise more
than one functionality to a single network. This problem is
known as multi-task learning (MTL) [3], and consists of using
one single model to learn several tasks of similar domains
[26], [27], these domains usually consisting of classification,
regression or reinforcement learning. The usage of DNNs
to manage this kind of problems has produced interesting
approaches in a very wide range of domains, e.g., using a
single model to automatically play different Atari games with
reinforcement learning [6] using supernetworks or classifying
characters from different alphabets [26] using combinations of
convolutional cells.

In this paper, we address another, more general class of
MTL, in which the different tasks not necessarily have to
belong to the same domain (e.g., class prediction and data
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generation) and are solved at the same time. For this purpose,
we take a step forward, introducing a model that can be
composed of several interconnected DNNs of different types,
capable of handling the heterogeneity in the set of tasks
of the heterogeneous MTL (HMTL). We understand that
such complex combinations of tasks require an advancement
in the multi-network model design; a step forward in the
automated generation of this kind of models. Therefore, we
focus our efforts on providing a modeling scheme consisting
of DNN building blocks placed in an interconnected structure,
flexible and scalable, so that the model structure can easily be
optimized; the VALP.

The main contribution of this work is threefold: (i) We
provide a formal definition of the VALP as a general
neural-network-based model to deal with HMTL. This high-
abstraction definition aims at setting as few constraints as
possible in terms of structural flexibility when designing a
VALP implementation. (ii) From the abstract formalization,
we present a functional framework to illustrate the potential
of the model. It is accompanied by an example of how a
model instantiation that has to deal with three tasks of different
characteristics can be created using the VALP definition. As
it can be inferred, designing the structure of a model that
can cope with such an extensive variety of problems is not a
trivial task, and it is not examined in this work. Therefore, (iii)
we thoroughly discuss several open challenges and future
research lines.

The rest of the paper is organized as follows: We introduce
the VALP definition in Section II. We then identify a set of
components that can be included into any VALP implementa-
tion in Section III. In section IV, we provide an illustrative
example of a VALP instantiation. This is followed by the
experimentation part that shows the viability of the VALP
for the HMTL problem in Section V. Regarding these results,
we continue with a detailed future work part, in Section VI.
Finally, conclusions drawn from this experimentation part can
be found in Section VII.

II. VALP DEFINITION

Definition 1. A data unit is a pair d = (vd, td). vd =
〈v0d, v1d, ..., vkd〉 represents the data with k variables, which
share the td type.

Definition 2. A model input is a data unit ij = (vij , tij )
provided to the VALP.
I is the set of all the inputs of the model: I = {i0, i1, ...ip}.

Definition 3. A primary network nw is a DNN. It is de-
fined as a 5-tuple, nw = (inw , fw, aw, pw, onw). inw =
{i0nw , i1nw , ...ixnw} is a set containing the inputs of the network,
where each ijnw is a data unit. fw is a function representing
how all ijnw are combined to form another data unit, the
definitive input of nw (e.g., concatenation). The value of ijnw
can vary over the different phases of the model life cycle (for
example, a VAE decoder takes its input from an encoder during
the training phase, and from a N = (0, I) when sampling).
aw contains the type (e.g., Decoder) of the primary network,
and pw, its parametrization (e.g., hidden layer specification).

onw is a data unit, and represents the output of nw. It can be
also considered an intra-model output.
N = {n0, n1, ..., ny} is the set containing all the primary

networks in the model.

Definition 4. A model output is a pair oj = (ψj , foj ). ψj =
{ψ0

j , ψ
1
j , ..., ψ

d
j } is the set of data units that oj receives from

the networks in N . foj represents how all ψij are combined to
form the final j-th output of the model, a functionality similar
to fw.
O is the set of all model outputs; O = {o0, o1, ..., or}.

Definition 5. A VALP is a 4-tuple M = (V,A,L, P ).
V = I ∪ N ∪ O, represents the model components. A is
a set of connections that determine how the model compo-
nents are interconnected. L = {L0, L1, ..., Lq} is a set of
triples that defines how the model performance is assessed.
Lj = (lj , plj , gj), where lj represents a loss function, plj ∈⋃
nw∈N

{onw} ∪
⋃

0<j<|O|
{foj (ψj)} is a prediction (a data unit)

made by the model (note that it can be either an intra-model
or a model output), and gj is the ground truth that lj uses
to measure and improve the performance of the model with
respect to a particular task.
P represents the model hyperparametrization. It contains,

at least, the parameters that specify how the different Lj are
combined to form a single loss function that can be used to
optimize all the tasks of the model in a single step.

Definition 6. A model connection is defined as cj =
(icj , ocj ,ψcj ), where icj ∈

⋃
nw∈N

{onw}∪I represents the data

unit providing the information, and ocj ∈ N ∪ O represents
the model component the information is delivered to. ψcj =
〈ψ0
cj , ψ

1
cj , ..., ψ

z
cj 〉, ψbcj ∈ Z | 0 ≤ ψbcj < |vicj | represents

indices of the variables transported from the connection input
icj to the connection output ocj .

We define A = {c0, c1, ..., cz} as the set of all the connec-
tions of the model.

The V and A sets of the V ALP can be used to form a
directed graph (digraph) G = (V,A). In a digraph, the number
of arcs (connections) ending in a vertex is called the indegree
of said node, whereas the number of arcs starting in a node is
called the outdegree. Regarding these two characteristics, we
differentiate three types of nodes in this digraph: (i) source
nodes; those having an indegree value of 0, (ii) sink nodes;
those with an outdegree value of 0, and (iii) internal nodes,
which have both indegree and outdegree values strictly larger
than 0.

In the VALP, the model connections are represented with
arcs and there is a source node for each element in I , a sink
node for each element in O, and an internal node for each
element in N .

III. VALP INSTANTIATION

Once the VALP has been formally defined, we identify
a collection of elements that can be part of an instance of
a VALP model. More specifically, we enumerate some key
components indispensable for the correct operation of a VALP
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instance: data types and primary networks. We would like to
make clear that the following lists neither intend to encompass
all the items a VALP can be composed of, nor limit future
additions to the pool of VALP components. In this regard, we
expect the VALP to be able to embrace an extensive set of
data types and a variety of primary networks.

A. Data types

The data type component in the data unit defined in the
previous section presents an elegant manner to handle the
heterogeneity required to the model in terms of data outputs.
We therefore define four data types to which data units of a
VALP could adhere to:
• Discrete : This data type consists of a vector codifying

discrete values.
• Numeric : This data type consists of a vector of numeric

values.
• Samples: Similarly to Numeric, this data type consists of

a vector of numeric values.
• Features: This data type also consists of a vector of

numeric values.
Despite technically containing the same type of information,

we choose to define Numeric, Samples, and Features as
different types to improve the expresiveness of the model. For
example, at the time of setting restrictions when creating a
VALP instance (e.g., asserting that samples are provided where
samples are due, and idem for other types, such as regression
or classification), the data types will turn out useful, since, as
well as improving the understandability of the operation of the
model, they will improve the simplicity of said rules.

B. Primary networks

Once we have identified a subset of data types that can be
used within a VALP, we can similarly characterize a set of
primary DNNs that can be included in the N component of a
VALP.

Generic MLP, g: A regular MLP that maps the pro-
vided input to an output. It can take any type of data
unit as input. The data unit it produces can have different
interpretations: numeric values (in any case) or samples
(exclusively if it received samples). The activation func-
tion in the output layer is the identity function.

Discretizer, δ: Similar to a regular MLP, this network
takes data units of any type as input, and produces
data units of the Discrete values type. Its goal is to
discretize values, mainly for classification purposes. It has
a softmax activation function in the last layer.

Decoder, d: The decoder receives Numeric or Feature
data units, interprets them as means and variances of
a N (µ, I × σ), and uses samples generated from that
distribution to produce Samples data units. Its internal
structure is also an MLP.

Convolutional network, c: This primary network ex-
clusively consists of operations commonly found in Con-
volutional neural networks (CNNs): convolutional and
pooling layers. It can only take and produce data of the

type Feature. Its goal is to maximize the performance of a
VALP instance when working with certain data structures
(e.g., image or sequential data).

Transposed-convolutional decoder, t: This primary
network can be seen as a combination of c and d. It
can only be composed of transposed-convolutional oper-
ations, and it can take Features, Numeric (guaranteed), or
Discrete (optional) values. It produces Samples.

C. Model loss function

A straightforward approach for training the model is to
use the regular backpropagation algorithm combined with a
variant of the stochastic gradient descent (SGD) algorithm.
These techniques optimize a loss function defined on the
parameters of a model so that the performance of the model
can be as close to perfection as possible. The VALP performs
many approximations at a time, which means that various loss
functions (with respect to both the model outputs and intra-
model) need to be optimized in parallel. For a model that needs
to optimize three different tasks (regression, classification, and
data sampling), the following four kinds of loss functions have
been identified as necessary.
• Regarding the sample-generation outputs of a model

(tod0 =Samples), we need a loss function l0 that can
measure the likelihood of the model generating data that
follows the distribution we are interested in.

• Related to the regression output of the model
(tod1 =Numeric), we need a metric l1 that can compute
the difference between two vectors of numeric values.

• For the classification outputs of a model (tod2 =Discrete),
we need a loss function l2 that can compare discrete
outputs with predictions of the same type.

• Regarding the output of the primary networks whose
outputs are used in a t or d, we need a metric l3 that
forces that output to approximate a distribution that we
can reproduce.

It is important to note that some of these loss functions
could have larger magnitudes than others, thus hoarding the
effectiveness of the SGD algorithm. This could lead to some
loss functions being ignored by the algorithm, producing
a defective model. To address this issue, the VALP model
includes one hyperparameter β, which scales the different sub-
loss functions. This approach is inspired by the β-VAE [2].
It contemplates a β parameter that scales the two sub-loss
functions present in a common VAE.

1) Data unit combination: We also define example func-
tions that can be used for the fn and foi presented in the
VALP networks and outputs, respectively:

Example 1. Being, for example, di = {di0, di1} a set of data
units, we define the concatenation function as a function that
receives a set of data units, and produces another one:
ζ(di, dj) = (〈v0di , v1di , ..., vndi , v0dj , v1dj , ..., vmdj 〉, tdi,j )
And, similarly, the addition function:
Λ(di, dj) = (〈v0di + v0dj , v

1
di + v1dj , ..., v

n
di + vndj 〉, tdi,j ), n =

min(|vdi |, |vdj |).
In both cases, (tdi,j = Samples) ↔ ((tdj = Samples) ∨

(tdi = Samples)),
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Fig. 1. Primary networks and their functionality inside VALP. “Numeric” and
“Discrete” refer to numeric and discrete values. The decoder must take (at
least) numeric values when training. When running the model, these values are
replaced with samples from a N (0, I) distribution to ensure that the Decoder
can create new data.

(tdi,j = Numeric) ↔ ((tdj = Numeric ∨ tdi = Numeric) ∧
(tdj 6= Samples ∧ tdi 6= Samples)),

(tdi,j = Discrete)↔ (tdj = Discrete ∧ tdi = discrete).
(tdi,j = Features)↔ (tdj = Features ∧ tdi = Features).
When di = {di0} consists of a single element, f(di) =

di0,∀f .

IV. VALP INSTANTIATION

The study performed in this work over the considers an
implementation1 that consists of a reduced version of the
general VALP defined in Section II. It does not cover all its
possibilities, but rather is an initial exploration with the aim
of displaying its potential, and has therefore many extension
possibilities. The reduced VALP version considered in this
work contemplates only three of the data types introduced in
the preceding section. We restrict all data types td of all the
data units in a VALP to the following values td ∈ {Numeric,
Discrete, Samples}, ∀d ∈ I ∪ ⋃

oj∈O
{odj}∪

⋃
nw∈N

(inw ∪{onw}).

Accordingly, only a subset of networks can be part of the
VALP model definition of this work: aw ∈ {g, d, δ},∀w ∈
Z, 0 ≤ w ≤ |N |.

The Generic MLP essentially transforms information into a
different encoding, therefore, it can serve as an encoder that
complements a Decoder. To avoid defining a primary network
with the sole functionality of encoding data, we allow the
interpretation of the output of any Generic MLP (a vector of
numeric values) as the µ and σ parameters a decoder needs.

Fig. 1 describes these primary networks and the way they
are related to the different data types.

Because we prime structural flexibility in the general VALP
(and thus, in this example), the primary networks introduced
in the previous section should be free to interact with each
other in any possible way. However, in order to maintain type
consistency (both in the output and throughout the model), a
set of rules that restrict the model structure need to be imposed.

1The code developed to perform the initial exploration in this paper can be
found in https://github.com/unaigarciarena/VALP

In this regard, we force the decoders in a VALP configuration
to have at least one Generic MLP primary network providing
input to a decoder. This requirement is introduced due to the
necessity of the decoders to have a numeric, optimizable input
that can be trained to follow a certain distribution and can later
be changed by new samples that follow said distribution.

In Fig. 2 an example of a VALP model designed for solving
three different tasks (classification, regression and sampling)
is shown. It is composed of five primary DNNs, it receives
a single input i0 (Data), and it provides three outputs, o0, o1,
and o2, where tod0 = Samples, tod1 = Numeric, and tod2 =
Discrete. In the figure, circle nodes represent source nodes,
triangular nodes represent internal nodes, and square nodes
are sink nodes.

Primary networks

i0

Data

Model
inputs

n0

n1

n3

n2

n4 o0

Samp.

o1

Reg.

o2

Class.

Model
outputs

c0

c1
c2

c3

c4 c5

c6

c7

c8

Fig. 2. Schematic representation of a VALP.

A. Formal definition of a VALP instance

In addition to the graphical illustration shown in Fig. 2, a
formal definition of the example model is presented:

We define I = {i0}. i0 = (vi0 , ti0), where vi0 are the 10
features of the database, and ti0 = “Numeric”.

We define N = {n0, n1, n2, n3, n4}.
Because all the network types aw can take are based

on MLPs, any pw is composed of three vectors: init =
〈init0, init1, ..., initl〉, which specifies the function used to
randomly initialize the primary network parameters, act =
〈act0, act1, ..., actl〉, referring to the activation functions in
each layer, and ns = 〈ns0, ns1, ..., nsl〉, the number of
neurons in each layer. l is the number of layers in the
primary network, excluding the input layer, which needs no
parametrization, and including the output layer.

We do not define every aspect of each component in
this VALP example for the sake of keeping the definition
compact. We avoid definitions of elements that are repetitive
or redundant and do not contribute to the further understanding
of the model concept. For example, we do not define pw for
each nw.
n0 = (in0

, f0, a0, p0, on0
), where a0 = Generic MLP,

in0
= {i0n0

}, vi0n0
= 〈v0i0n0

, v2i0n0

, v5i0n0

, v6i0n0

, v7i0n0

〉 (Note
the correspondence later, when defining the connections),
ti0n0

= Numeric, and f0 = ζ. on0
= (von0

, tn0
), where

von0
= 〈v0on0

, v1on0
, ..., v6on0

〉, ton0
= Numeric.

n1 = (in1
, f1, a1, p1, on1

), where a1 = Generic MLP,
in1

= {i0n1
, i1n1
}, ti0n1

= Numeric, ti1n1
= Numeric, and

f1 = ζ. on1
= (von1

, ton1
), ton1

= Numeric.

https://github.com/unaigarciarena/VALP
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n2 = (in2
, f2, a2, p2, on2

), a2 = Discretizer, ton2
=

Discrete, f2 = ∅
n3 = (in3

, f3, a3, p3, on3
), where a3 = Generic MLP, f3 =

ζ
n4 = (in4

, f4, a4, p4, on4
), where a4 = Decoder, ton4

=
Samples. Note that, when training the model, in4

= {i0n4
=

on0
}, but that changes at the time of running the model; in4

=
{i0n4

= (x ∼ N (I, 0),Numeric)}
We define O = {o0, o1, o2}.
o0 = (ψ0, fo0), where ψ0 = {ψ0

0 = on4
}, and fo0 = Λ

o1 = (ψ1, fo1), where ψ1 = {ψ0
1 = on3

}, and fo1 = Λ
o2 = (ψ2, fo2), where ψ2 = {ψ0

2 = on2}, and fo2 = Λ
We define the model instance M = (V,A,L, P ) shown in

Fig. 2. This VALP example is required to produce numeric
and discrete predictions, as well as a sampling output. We
assume that we are working with a single dataset “Data”, that
is composed of 10 features, and where each example is labeled.
The vector of these labels forms C. Analogously, we have an
R vector with a numeric value associated to each entry in the
dataset. Finally, we have 5 extra features that we would like
to reproduce (generate new samples), grouped in a vector S
(one attached to each example in the Data, similarly to R and
C).
L = {L0, L1, L2, L3}, where L0 = (l0, pl0 , g0). l0 is the

log-likelihood function, g0 is the S data provided in the
beginning of the problem definition, and pl0 = ζ(ψ0) =
ψ0
0 = on4 . L1 = (l1, pl1 , g1). l1 is the mean squared error

(MSE) function, g1 is the R data provided in the beginning
of the problem definition, and pl1 = on3

. L2 = (l2, pl2 , g2).
l2 is the cross entropy function, g2 is the C data provided
in the beginning of the problem definition, and pl2 = on2

.
L3 = (l3, pl3 , g3). l3 is the Kullback-Leibler divergence (KL),
g3 ∼ N (0, I), and pl3 = on0 .

The hyperparameter of the model is a tuple of a single
element P = (β), which parametrizes L. β is a set of
tuples β = {(l3, 0.5), (l0, 0.8), (l1, 0.9), (l2, 1)}, where each
tuple contains model components and a scalar. The loss
functions defined in the model components and the scalar in
the tuples are multiplied together, and then added up to form
0.5× l3 + 0.8× l0 + 0.9× l1 + l2, the definitive loss function
used to train the model.

We define A = 〈c0, c1, ..., c8〉.
c0 = (ic0 , oc0 , sc0), where ic0 = i0, oc0 = n0, sc0 =

〈0, 2, 5, 6, 7〉 (note the correspondence between this connection
and the previously defined vi0n0

).
c1 = (ic1 , oc1 , sc1), where ic1 = i0, oc1 = n1. c2 =

(ic2 , oc2 , sc2), where ic2 = on0
, oc2 = n1. c3 = (ic3 , oc3 , sc3),

where ic3 = on0
, oc3 = n4. c4 = (ic4 , oc4 , sc4), where

ic4 = on1
, oc4 = n3. c5 = (ic5 , oc5 , sc5), where ic5 = on3

,
oc5 = n2. c6 = (ic6 , oc6 , sc6), where ic6 = on4 , oc6 = o0.
c7 = (ic7 , oc7 , sc7), where ic7 = on3 , oc7 = o1. c8 =
(ic8 , oc8 , sc8), where ic8 = on2

, oc8 = o2.
Although the introduced VALP model assumes fixed I and

O, we can think of a scenario where this is not the case. In
this regard, the VALP is not a static model structure-wise, as
I and O can be expanded once the model has been learned,
which would trigger additions in either A or N , or both. For
example, if we added a new oj to O, we could update the

Ankle Boot Pullover T-shirt

0 100 200
0

100

200

300

400

500

0 100 200 0 100 200

Fig. 3. This figure displays three gray-scale images that correspond to three
different examples in the fashion-MNIST database. Their respective titles
show what class they belong to (those used for the classification task), whereas
the bar plots show the 8-bin-histograms representing the frequency of pixel
values in the image (used for the regression task). The clothing image itself
is used for the sampling task

model by adding a new nw to N and two connections, one
from nj , j 6= w to nw and another one from nw to oj . Such a
scenario could be particularly useful for incrementally learning
VALP instances.

V. TESTING THE POTENTIAL OF A VALP

We designed an artificial problem to illustrate the potential
of the VALP. We have selected the widely known Fashion-
MNIST [34], which is more complex than MNIST and has
been extensively used for research on DNNs [5], [17]. This
dataset consists of 60,000 train and 10,000 test images, which
are 28 × 28 pixel, gray-scale images of clothing, each belong-
ing to a certain class. There are 10 items of clothing overall;
T-shirt, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker,
Bag, and Ankle boot. The usual supervised task associated to
this dataset is to predict the class each example belongs to.

To illustrate the model instantiation at its fullest potential,
we define the multitask fashion-MNIST problem as composed
of three different tasks:

1) Classification: 10-class classification as usually defined
in the fashion-MNIST problem.

2) Regression: Firstly, we have computed a histogram for
each of the images regarding the gray-scale values, with
32 bins. Then, these histograms were scaled between 0
and 1. This way, we have a 32-value regression problem
to solve.

3) Generation: The generation of samples similar to those
given to the model in the input.

In Fig. 3, we show three examples of the data available
in the fashion-MNIST dataset, with the values desired to be
obtained for each one, in each task.
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A. Model parameters

To initialize the model structure, the only information
required is the number and types of inputs and outputs together
with their corresponding dimensions. In our case, we can
define I = {i0} and O = {o0, o1, o2}, where i0 = (vi0 , tio),
|vi0 | = 28 × 28 = 784 and ti0 = Numeric. o0 = (ψ0, fo0)
where |ψ0

0 | = 32, and tψ0
0

= Numeric, o1 = (ψ1, fo1) where
|ψ0

1 | = 10, and tψ0
1

= Discrete, and o2 = (ψ2, fo2), where
|ψ0

2 | = 28×28 = 784 and tψ0
2

= Samples. fo0 = fo1 = fo2 =
Λ.

The next concern is to design a model (i.e., the primary
networks and connections in the model) that can provide
predictions for all required outputs, while matching the ap-
propriate data type (Section III-A).

The choice of the loss functions is a relevant decision to be
made in this framework. As mentioned in Section III-C, four
necessary loss function types have been identified:
• For the regression output, L0 = (l0, pl0 , g0), where l0 is

the mean squared error between pl0 and g0:

arg min
θVALP

1

|pl0 |
∑

(pl0 − g0)2 (1)

• For the classification output, L1 = (l1, pl1 , g1), where l1
is the cross entropy between pl1 and g1:

arg min
θVALP

−
∑
x

pl1 log g1 (2)

• For the sampling output, L2 = (l2, pl2 , g2), where l2 is
the log-likelihood of pl2 being g2:

arg min
θVALP

Ex∼g2 [Eqθ(z|x)[−log(pl2)]] (3)

where qθ(z|x) represents the probability distribution (pre-
dicted by a Generic MLP) inside the model, before any
Decoder in a VALP.

• For each output of the generic MLPs whose output (pl3 )
feeds a decoder, L3 = (l3, pl3 , g3), where l3 is the KL:

arg min
θVALP

Ex∼pdata(x)[KL(pl3 ||g3)] (4)

As commonly, g3 ∼ N (0, I).
This model also considers different optimization pressures

[2] on each of the terms of the global loss function. We add
a scaling vector parameter (β), so that the optimization of the
combined loss function is correctly performed.

B. VALP structure designing algorithm

For this example, we have designed a procedure for creating
the VALP structure. As it will be discussed in Section VI,
the conception of efficient algorithms for designing VALP
structures is an interesting open challenge.

The structure initialization algorithm employed in this work,
which follows a back-to-front building approach, ensures that
the adequate data type is provided to each model output. The
strategy is based on an updated set of model components
that have not had an input assigned; act cmp ⊂ N ∪ O.
The algorithm is a recursive function that incrementally and
randomly develops the model until the maximum number

of primary networks for the model (a parameter given at
initialization) is met. It produces a configuration in which not
having a component without an input for it is guaranteed, and
the output types match the requirements. The model outputs
can receive their predictions from a network that produces
the data type that satisfies it, while the networks can receive
inputs from either another network, or a model input, i.e., the
data. The only restriction applied to this algorithm is that a
decoder must have at least one Generic MLP providing input.
The reason behind this constraint is that the input of a decoder
must be numeric and optimizable, as we require it to follow
a certain continuous distribution (N (0, I)).

The pseudo-code of this strategy is shown in Algorithm 1.

Algorithm 1: Model structure initialization algorithm.

1 Function initialize(A, I , N , O, act cmp):
2 if (max n− |N |) == |act cmp ∩O| then
3 return complete model(model)
4 end
5 con out = random(O ∪N )
6 found, con in = random(I ∪N , con out)
7 if random numb(0, 1)< α ∨ ¬found then
8 con in = create rand network(c)
9 N = N ∪ {con in}

10 act out = act out ∪ {con in}
11 end
12 ψ =random choice(con in)
13 A = A ∪ (con in, con out, ψ)
14 act out = act out− {con out}
15 return initialize(A, I , N , O, act cmp)

This algorithm considers two parameters; max n= 11,
which handles the maximum number of primary networks in
a VALP, and α = 0.5, which regulates the reutilization of
primary networks. More specifically, the α parameter is used
to decide whether a source of data c1 (if available) is used as
an input for another component c2 (c1 ∈ I ∪N , c2 ∈ N ∪O).
In addition to these parameters, this algorithm uses a set of
auxiliary functions, which are explained below:
• complete model(model): If |N |==max n, then

act cmp==0, and the function does nothing. If
|N | < max n, it searches for components that can
serve the elements in act cmp (in terms of data typing)
and establishes connections between them. If no such
components exist, this function creates new primary
networks, and uses them as bridges between the available
components and those in act cmp.

• random numb(a, b): It returns a random number in [a, b).
• random(set[, out]): If only the set parameter is provided,

this function returns a random element from the set. If
both parameters are present, it returns a random compo-
nent from the set, such that it can serve as input to the out
component (in typing terms, and not allowing recurrent
connections) and found=True. If no such element exists,
found=False.

• random choice(i): This function draws a random amount
of numbers n from 0 ≤ n < j, without replacement.
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j = |vcon in| ↔ i ∈ I, j = |vonw | ⇔ i ∈ N
The initial call to the recursive algorithm is

initialize({}, I, O, {}, act cmp), where act cmp is
a copy of O.

The first if statement (line 2) is the exit condition. In
case it is not met, the algorithm selects a random component
(con out) that can take an input, i.e., a model output or a
primary network. con out will have a new input once the
actual recursion is finished. The algorithm searches for another
component (con in) that can provide a data unit which can
serve as an input for the first one.

If no such element is found, or if a random number is lower
than the alpha parameter (line 7), a new primary network
(con in) that can serve as input to the first component is
created and added to N and act out. Finally, con out and
con in are connected. Because con out now has an input,
it cannot be part of act out. This algorithm avoids recurrent
connections.

For example, when using this algorithm to create the exam-
ple displayed in Fig. 2, the first step would consist of N = {}
and act cmp={o0, o1, o2}. In the first recursion, n3 could be
added, a generic MLP, since it needs to provide a regression
prediction. In the following recursion, act cmp={o0, n3, o2},
because o1 already has n3 giving it an input, and n3 would
be added. This recursion would end up with at least three
primary networks providing information to the outputs, and
no component without a data input, act cmp= {}.

Once the model structure is defined, the parameters of the
primary networks (weights and biases) are randomly initialized
and trained with regular backpropagation, taking as the global
loss function a combination of the elements in L (according
to the β parameter).

C. Experimental design

For the multitask fashion-MNIST problem, we performed a
preliminary experiment and found that there were no problems
with optimizing L0, L1, L2 with β0, β1, β2 = 1. L3, how-
ever, did present an obstacle with optimizing L0, L1, and L2.
Therefore, we set β3 = 10−4. This way, we prevent the oscil-
lating effect of the KL loss function rendering the optimizer
futile once L0, L1, L2 reach a value below that of L3.

The max n was arbitrarily set to 11. The mini-batch size
for training the model was 50, and the model was trained for
40,000 epochs. Therefore, P = (β = (β0 = 1, β1 = 1, β2 =
1, β3 = 10−4), α = 0.5,max n = 11).

In order to have a glimpse of the performance of this VALP
instantiation, the structural generation and learning procedures
were randomly initialized and performed 500 times. This way,
we perform a random search over 500 generable structures.

D. Experiments results

After training the 500 random VALP configurations, we em-
ployed each model to perform the described tasks considering
the test set of the fashion-MNIST dataset, and recorded differ-
ent metric values to get a measurement of their performance.
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Fig. 4. Model performances plotted in terms of both classification accuracy
and MSE reached on the regression problem. The vertical red line represents
the performance of the MLP specifically learned for the classification problem.
The horizontal green line represents the performance of the MLP specifically
learned for the regression problem. Blue points represent VALP configurations
that performed worse than both baselines, yellow points are models that
improved only the regression problem results, and models represented in green
did so in the classification problem, and red ones offered better results than
both baselines.

1) Classification and regression: In Fig. 4, we can observe
how the 500 models have performed on the regression (MSE
represented on the y axis in a logaritmic scale) and the
classification problem (accuracy, on the x axis). Each point
in the grid represents a random VALP configuration.

The horizontal green line represents the performance of a
100-neuron single-hidden-layer MLP with ReLU activation
function trained exclusively for the regression problem. Anal-
ogously, the vertical red line represents the classification ac-
curacy of the same model (with a softmax activation function
in the output layer). Note that the goal of this experimental
section is not, by any means, the comparison of the VALP
against other models devoted to specific tasks. These are
displayed solely to give an idea of where the modeling power
of this particular VALP specification stands.

Regarding the classification problem, we can see that 158
VALP configurations produced a classification accuracy of
nearly 10%. Considering that there are 10 classes, this re-
sembles random classification. The architectures producing
these results probably have a decoder that deletes the path
between i0 and o1 after training. The other weak outcomes
are probably a result of similar structures, or models whose
optimizing algorithm has focused on the other loss functions
involved. As an additional observation, we can see that the
classification prediction is competitive with the baseline: 215
instances above 85%. It has to be taken into account that the
VALP is managing at least four different loss functions at the
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same time, whereas the MLP is focusing only on classification.
With respect to the regression problem, we can observe that

only 9 configurations performed poorly compared to the vast
majority of the models; MSE superior to 0.007. Contrasting
these results with the baseline MLP, which had a 0.00047
error, we can observe that 131 models produced better results.

As a general remark on the joint performance, we can
observe that 7 models performed better than both baselines
(in classification and regression). The fact that a random
search was able to obtain VALP configurations that have
stronger performances in both objectives, while optimizing the
sampling loss functions at the same time, shows the validity
of the proposal at tackling HMTL problems.

2) Generation: Once it has been shown that the VALP can
perform the tasks classically attached to the simple DNNs,
it is time to investigate the sampling capabilities of the
model. Specifically, we want to extract information of two
different aspects from the generative power of the model,
which are related to the mode collapsing problem. Mode
collapsing is an issue that concerns the generative modeling
community, specially that part focused on GANs [32]. In the
experimentation carried out in this paper, we identify two types
of mode collapsing. The global case, the worst one, is that
in which all the generated samples look very similar to each
other. In the local mode collapsing scenario, not as serious as
the previous one, the model would learn to generate samples
from the different classes of the dataset, yet those belonging
to a certain class are still too similar to each other.

To test whether the model configurations suffered from
global mode collapsing, an auxiliary DNN that classifies
samples of the fashion-MNIST was trained. This DNN was
used to classify the generated samples, giving a metric of
how distributed the generations are class-wise. This DNN was
based on the MobileNet model [15], [18], followed by a single
dense layer. This model reached a 99.5% accuracy on the
training set and 94.5% on the test set and it was used to classify
the samples generated by each VALP configuration. In terms of
classes, we consider a sampling model to be perfect if it is able
to obtain the same class distribution it has been shown. Given
that the classification problem being addressed is balanced, one
could expect that the perfect model generated the same number
of instances of each class. Because this is a 10-class problem,
a perfect generator would generate an example of a certain
class with 0.1 probability. Once the labels from the classifier
were obtained, the capacity of the model of generating samples
from different classes was measured as the entropy of the set
of predicted labels. The higher the entropy value which ranges
between 0 and 1, the better the model is considered.

The class distribution can be visualized in Fig. 5. The figure
in the top represents the distribution of the entropy values of
the 500 VALP configurations. We have chosen 7 representative
examples from the whole set (pictured as vertical lines). The
probability distributions of said examples are represented in
the general parallel coordinates. In this example, we can
observe how several VALP configurations (low entropy values)
are poor data samplers, as they tend to generate images
that MobileNet classifies as Pullover (class 2). This category
usually consists of a set of pixels with high values in the
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Fig. 5. The box in the top shows the distribution of entropy values and
seven selected VALP examples. Each representative example is displayed by
a vertical line. The probabilities of generating a sample of a certain class by
each representative example are shown in the general parallel coordinates.

middle of the image. The usual result of poor generators is
producing images that consist of means of all the images which
results in blurry images that posteriorly MobileNet classifies
as Pullover. A similar effect happens with class 6 (Shirt). In
contrast, the VALP configurations with higher entropy values
(equal or larger to 0.8) show much more distributed generation
probabilities.

3) Conditioned sampling: Regarding the sampling capabil-
ities of the VALP, we recognize that some problem domains
could benefit by being able to force the model to create data
that meets certain criteria. This is, rather than creating it from
the whole known space, data is created from a specific sub-
region of the whole space. By designing the VALP as highly
flexible as it is, we have made the VALP instances in this work
capable of carrying out this specific kind of sampling. This is
an interesting characteristic that can be exploited for various
tasks, such as generating images with certain attributes [35]
or reconstructing corrupted images [16].

To address this issue, we added a parameter φ that regulates
the probability of a decoder not having an input deleted, i.e.,
we can have conditioned decoders that receive information
from the model inputs, even when the training phase has
finished. This parameter can only affect the model when a
decoder receives more than one input, and it guarantees that
at least one input is deleted.

To test how conditioned the samples can be towards the
input of data given to the VALP, we computed a precision
metric that evaluates the agreement (measured as an accuracy)
between MobileNet’s prediction for the test image used to con-
dition the generation and the prediction for the corresponding
VALP generated sample.

The results of this metric along with the entropy can be
observed in Fig. 6. Each VALP configuration is represented
by a point, and they are located in the grid regarding the class
entropy and the conditioning accuracy. It can be observed
that most models have a high entropy value, which means
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that there is not a strong global mode collapsing problem.
Part of the figure has been cut out, as there were no models
that generated conditioning values between 0.15 and 0.45.
Additionally, this figure shows a heatmap representing the
confusion matrix comparing the class that MobileNet predicted
to the conditioning examples, and the class the Mobilenet
predicted for the produced samples by the VALP represented
with the red star.

Firstly, we observe that only about 100 models generated
poor class entropy, therefore, in that aspect, the models created
offered a good behavior. Fig. 6 also shows that there aren’t
many models that can generate conditioned samples. This was
to be expected, as there is not much probability of producing a
configuration with a decoder that has more than one input, and
from those configurations, only an expected 30% would imple-
ment conditioning structures. Overall, it is easy to distinguish
which models have a sampling conditioning component, as
there is a big gap from 10% (where the unconditioned models
are found) to 45%− 75%, (where the conditioned models are
shown). Overall, the random initialization algorithm, was able
to create 21 models capable of generating conditioned samples,
those in the right-hand side of the figure. The rest, those
near 0.1 conditioning accuracy, are unconditioned samplers.
The configurations in the lower part of the left-hand side of
the figure are the poor quality generators. The model with
the highest conditioning accuracy (∼ 0.75) also happened
to be the one with the largest generation entropy, and it is
represented as a red star.

Regarding the heatmap, we can observe that this particular
VALP found difficulties at generating samples of some classes,
from which the 9-th is the worst case. The VALP was unable
to generate any sample from this category according to Mo-
bileNet. The next worst case is class 2, with 399 generations,
and the rest have at least 511 representatives out of 10.000
generations (A perfect model would have produced 1.000 from
each category).

Fig. 7 contains a schematic representation of the configura-
tion of the VALP represented with the red star in Fig. 6, which,
it is worth noting, achieved 85% and 0.00053 in classification
accuracy and in regression MSE, respectively.

In this figure, we can observe that there are two decoders
in the model, d2 and d8. The samples produced by d8 only
suffered one transformation before being used for o2. The
conditioning part happens with d2, as it receives two inputs
while training, and only one of them is deleted in the feed-
forward phase (represented as a dotted blue line). This enables
the VALP to recycle a piece of information introduced in i0
using the path represented in dashed red arrows, to generate
the samples, ultimately producing conditioned examples.

Determining whether a model suffers from local mode
collapsing is harder than the global type. In Fig. 8, we have dis-
played 10 random generations of the model represented with
the red star in Fig. 6 from each class they were conditioned
towards.

From this figure, three different patterns can be identified.
The first pattern consists of particularly weak samples. We can
observe some blurry examples of Bags (specially the handles),
Trousers (the sixth example), and Dresses (blurry sleeves).
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Fig. 6. Sampling performance of the 500 VALPs according to conditioning
capability and distribution over the possible classes. The red star represents
the VALP configuration with the largest conditioning accuracy. It also displays
a heatmap representing a confusion matrix, comparing the class of the condi-
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T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle Boot

Fig. 8. Randomly chosen samples generated by the model represented with the
red star in Fig. 6. The column names show the class the MobileNet assigned
to them.

However, in most cases, it is possible to idenify what class
each image belongs to.

Then, it is possible to appreciate a second pattern, which
are those classes for which the generated samples are easily
identifiable, even though they look very similar to each other.
A good example of this is the Trouser class, which generated
characteristic trouser images, but which are very similar to
each other.

Finally, there is the third pattern, which are those classes that
had identifiable generated samples, while keeping differences
between them. Clear examples of this good generation are the
Sandal, Ankle Boot, and, in some cases, Bag classes.

Additionally, we can observe in this figure that, even though
MobileNet failed to classify any generation as an Ankle Boot
(classifying them as Sandal or Sneaker), the Ankle Boots were
present among the generations of the model.

VI. OPEN CHALLENGES

After having empirically shown that the VALP is a viable
approach to give a solution to the HMTL problem, the next
step in the path is to identify the directions towards which the
research over the VALP could be developed. In this section,
we enumerate some of these research lines.

A. Structure search

In this paper a simple random procedure has been used to
create VALP models. Every connection within the model in
this experimentation is, both inter, and intra-network, random.
An intelligent search over the space of possible structures
would definitely help to improve the modelling capacity of

the VALP. In this regard, evolutionary algorithms (EAs) arise
as a promising strategy.

CoDeepNEAT [28] is a recently introduced co-evolutionary
algorithm that simultaneously evolves two types of model
components: convolutional cells and empty structures. The
former represents a way to extract high-abstraction features
from data, the latter represents some flexible layout to place the
cells. The algorithm outputs a model where the combination
of the components is expected to be highly efficient for the
task.

Some similarities between the structures evolved by
CoDeepNEAT and the VALP structures can be found (convo-
lutional cells and primary networks, and empty structures and
CALP connection structure), which suggests that the evolu-
tionary algorithm could be used to optimize VALP structures.
Even so, the application of this algorithm to the VALP would
require some adjustments. The main difference resides in the
fact that the convolutional cells do not have the identity that
characterizes the primary network. Therefore, CoDeepNEAT
should be extended to simultaneously evolve VALP structures,
and networks from each type separately, instead of considering
all primary networks as equals.

Another approach the VALP could benefit from is that based
on path finding on supernetworks. The authors of [6] design
a sizable DNN and collect sets of related, still homogenous,
problems such as image recognition (MNIST [25], CIFAR
[22], SVHN [29]) and reinforcement learning (several Atari
games). The EA consists of a population of agents that
determine a path of neurons across the randomly initialized
DNN. Each individual is evaluated by training the parameters
in the path of the network using the standard procedure -
backpropagation- for the first task. Then, the next task is
selected, and the weights of the connections that have been
trained are frozen. Subsequently, the network is trained with
the second task using another agent. This process is iteratively
repeated until all tasks have been learned by the super network.

This algorithm could also be applied to the VALP. The
model would be initialized using a vast amount of random
primary networks and connections, always satisfying type
restrictions. From this superVALP, only a subset of primary
networks would be trained to perform each of the tasks,
i.e., the paths described by the agents would specify primary
networks instead of neurons. This algorithm would need
further adaptation, since it does not contemplate the quality
of the elements in the path, and the primary neural networks
usually have hyperparameters that need to be tuned to provide
the maximum performance. This issue could be addressed
using AutoML methods [30], [21], [20], that can optimize the
structures of the primary networks. For example, when using
an agent to train the superVALP to learn a task, the learning
procedure could include an AutoML technique.

By extending and refining the data types used by VALP,
expert knowledge can be introduced, in a way similar to the
one used for extending other AutoML methods [7].

B. New components
In the VALP architectures considered in this work, all the

primary networks were fully connected layers sequentially
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placed. Future VALP variants could implement other archi-
tectures (some of which have already been identified in this
work) that offer an excelling performance in different areas.
One clear example would be adding recurrence to the VALP
for an improved addressing of problems with sequential data.
One way to incorporate this concept to a VALP instance
would be to allow recurrent connections within the primary
networks, which was not contemplated in the random structure
search used in our example. A more straightforward (and
even complementary) way would consist of designing new
primary networks that contained recurrent connections within
themselves, e.g., primary networks consisting of LSTM [10]
or GRU [4] cells, for example.

CNNs would also play an important role in VALP, as
they would allow the model to maximize its performance in
problems with image (or similar) data. These type of networks
have already been defined in this work as primary networks of
a VALP. However, they are yet to be evaluated in this context.

C. Loss functions

We selected one single loss function per task type, namely,
cross-entropy for classification, mean squared error for re-
gression, and the log-likelihood for the sampling problem.
However, more options exist for each of these problems, and
these could be included in the optimization process of the
model [8], [33], since some loss functions could have positive
contributions towards the optimal training of the model [8]
(for example, any of the GAN loss functions for the generative
task [11]). This incorporation would remove the necessity for
a Generic MLP-Decoder structure in a sampling VALP. Not
having a Decoder in a VALP configuration would mean not
having to change the model structure (connection deletion)
once it has been trained. This would be an upgrade in terms
of flexibility.

Linked to the loss function selection topic, the weights
applied to each of the sub-loss functions in the overall loss
function have also been manually selected, after observing that
the KL component could neutralize the effectiveness of the
gradient descent algorithm. These parameter selection issues
could be taken care of in the aforementioned optimization
procedure, as a parameter tuning. Moreover, the multi-loss-
function issue could also be addressed as a multi-objective
problem of different VALP configurations that offer perfor-
mances of varying quality over the different loss functions.

Finally, this work has expanded MTL to the combination of
different types of tasks: prediction (regression and classifica-
tion), and data generation. Other popular paradigms, such as
reinforcement learning, have not been included. Combining so
many loss functions of different natures and training them all
in the same model presents itself as a very challenging task.

VII. CONCLUSIONS

In this paper, we have addressed the heterogeneous variant
of the multi-task learning problem; the HMTL. This problem
consists of training a single model to perform several tasks at
the same time, these tasks being of different natures (e.g.,
regression and data sampling). To deal with this problem,

we have proposed the innovative VALP model, a DNN-
based approach. We have firstly provided a formal definition
of the approach to lay the groundwork over which several
different work directions can be developed. The main strength
of the VALP is its capacity to manage different kinds of
sub-DNNs and loss functions, which enables the model to
produce different types of data that accurately approximate any
distribution, using an optimization procedure over the different
loss functions.

In this work, we have defined and focused on the fashion-
MNIST HMTL problem, which consists of three different
tasks (classification, regression, data generation). A particular
VALP implementation has been designed to fit the particu-
larities of said problem. A random search over the many-
dimensional search space showed that the VALP can effec-
tively and simultaneously carry out various tasks of different
types, which also involve loss functions of completely different
nature.

More specifically, we found VALP configurations that were
able to optimize the classical prediction tasks (classification
and regression), while still producing reasonably good results
at data sampling. Some configurations were even able to
partially avoid one of the most concerning issues in the
generative community, mode collapsing. It is remarkable that
VALP models whose architectures were randomly designed
were able to obtain such strong results in both classification
and regression, while still having reasonably good results in
data generation.

Finally, we have enumerated a collection of detailed future
research lines that the newly created VALP model can benefit
from. Applying techniques that have produced high-quality
results in other models to the VALP will help to determine
where the strengths and limitations of the model lie.
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[4] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations using
RNN encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[5] D. Ciregan, U. Meier, and J. Schmidhuber. Multi-column deep neural
networks for image classification. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, pages 3642–3649.
IEEE, 2012.

[6] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu,
A. Pritzel, and D. Wierstra. Pathnet: Evolution channels gradient descent
in super neural networks. arXiv preprint arXiv:1701.08734, 2017.

[7] U. Garciarena, R. Santana, and A. Mendiburu. Evolving imputa-
tion strategies for missing data in classification problems with TPOT.
arXiv:1706.01120 [cs, stat], June 2017. arXiv: 1706.01120.

[8] U. Garciarena, R. Santana, and A. Mendiburu. Evolved GANs for
generating Pareto set approximations. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 434–441. ACM, 2018.

[9] U. Garciarena, R. Santana, and A. Mendiburu. Expanding variational
autoencoders for learning and exploiting latent representations in search
distributions. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pages 849–856, Kyoto, Japan, 2018. ACM.

[10] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget:
Continual prediction with LSTM. Technical report, 1999.



12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[11] I. Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks.
arXiv:1701.00160 [cs], Dec. 2016. arXiv: 1701.00160.

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680,
2014.

[13] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507, 2006.

[14] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[16] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation
with conditional adversarial networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1125–
1134, 2017.

[17] K. Jarrett, K. Kavukcuoglu, Y. LeCun, and others. What is the best
multi-stage architecture for object recognition? In 2009 IEEE 12th
International Conference on Computer Vision (ICCV), pages 2146–2153.
IEEE, 2009.

[18] S. Jianlin. A baseline of Fashion MNIST (MobileNet 95%). Blog entry:
https://kexue.fm/archives/4556, Aug. 2017.

[19] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv
preprint arXiv:1312.6114, 2013.

[20] B. Komer, J. Bergstra, and C. Eliasmith. Hyperopt-sklearn: automatic
hyperparameter configuration for scikit-learn. In ICML workshop on
AutoML, 2014.

[21] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown.
Auto-WEKA 2.0: Automatic model selection and hyperparameter op-
timization in WEKA. The Journal of Machine Learning Research,
18(1):826–830, 2017.

[22] A. Krizhevsky. Learning multiple layers of features from tiny images.
Master’s thesis, Department of Computer Science, University of Toronto,
2009.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[24] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten
zip code recognition. Neural computation, 1(4):541–551, 1989.

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[26] J. Liang, E. Meyerson, and R. Miikkulainen. Evolutionary Architecture
Search for Deep Multitask Networks. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ’18, pages 466–
473, New York, NY, USA, 2018. ACM.

[27] E. Meyerson and R. Miikkulainen. Beyond Shared Hierarchies: Deep
Multitask Learning through Soft Layer Ordering. arXiv preprint
arXiv:1711.00108, 2017.

[28] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, and Hodjat, B. Evolving
deep neural networks (2017). arXiv preprint arXiv:1703.00548, 2017.

[29] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng.
Reading digits in natural images with unsupervised feature learning. In
NIPS workshop on deep learning and unsupervised feature learning,
volume 2011, page 5, 2011.

[30] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore. Evaluation
of a tree-based pipeline optimization tool for automating data science.
In Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference, pages 485–492. ACM, 2016.

[31] F. Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386,
1958.

[32] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sutton.
Veegan: Reducing mode collapse in GANs using implicit variational
learning. In Advances in Neural Information Processing Systems, pages
3308–3318, 2017.

[33] C. Wang, C. Xu, X. Yao, and D. Tao. Evolutionary generative adversarial
networks. IEEE Transactions on Evolutionary Computation, 2019.

[34] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms, Aug. 2017.
arXiv: cs.LG/1708.07747.

[35] X. Yan, J. Yang, K. Sohn, and H. Lee. Attribute2image: Conditional
image generation from visual attributes. In European Conference on
Computer Vision, pages 776–791. Springer, 2016.

Unai Garciarena received his bachelor degree in computer science in 2015,
before obtaining his masters degree in computer engineering and intelligent
systems, in 2016, both in the University of the Basque Country (UPV/EHU).
He enrolled his Ph.D. studies in 2017 with the University of the Basque
Country (UPV/EHU). His principal research interests are generative modeling,
supervised classification, and optimization.

Alexander Mendiburu received the Ph.D. degree from the University of
the Basque Country, Spain, in 2006. Since 1999, he has been a Lecturer
with the Department of Computer Architecture and Technology, University
of the Basque Country. His current research interests include evolutionary
computation, probabilistic graphical models, and parallel computing.

Roberto Santana received the B.S. degree in computer science and the Ph.D.
degree in mathematics from the University of Havana, Havana, Cuba, in 1996
and 2005, respectively, and the Ph.D. degree in computer science from the
University of the Basque Country, San Sebastian–Donostia, Spain, in 2006.
He is a Researcher with the University of the Basque Country. His research
interests include machine learning, evolutionary computation, probabilistic
graphical models, and neuroscience.


	I Introduction
	II VALP definition
	III VALP instantiation
	III-A Data types
	III-B Primary networks
	III-C Model loss function
	III-C1 Data unit combination


	IV VALP instantiation
	IV-A Formal definition of a VALP instance

	V Testing the potential of a VALP
	V-A Model parameters
	V-B VALP structure designing algorithm
	V-C Experimental design
	V-D Experiments results
	V-D1 Classification and regression
	V-D2 Generation
	V-D3 Conditioned sampling


	VI Open Challenges
	VI-A Structure search
	VI-B New components
	VI-C Loss functions

	VII Conclusions
	References
	Biographies
	Unai Garciarena
	Alexander Mendiburu
	Roberto Santana


