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ABSTRACT 
A distributed algorithm is adaptive if its performance de- 
pends on k, the number of processes that are concurrently 
active during the algorithm execution (rather than on n, the 
total number of processes). This paper presents adaptive 
algorithm for mutual exclusion using only read and write 
operations. 

The worst case step complexity cannot be a measure for the 
performance of mutual exclusion algorithms, because it is 
always unbounded in the presence of contention. Therefore, 
a number of different parameters are used to measure the 
algorithm's performance: The remote step complexity is the 
maximal number of steps performed by a process where a 
wait is counted as one step. The system response time is 
the time interval between subsequent entries to the critical 
section, where one time unit is the minimal interval in which 
every active process performs at least one step. 

The algorithm presented here has O(k) remote step com- 
plexity and O(log k) system response time, where k is the 
point contention. The space complexity of this algorithm is 
O(nN), where N is the range of processes' names. 

The space complexity of all previously known adaptive al- 
gorithms for various long-rived problems depends on N. We 
present a technique that reduces the space complexity of our 
algorithm to be a function of n, while preserving the other 
performance measures of the algorithm. 

1. INTRODUCTION 
The mutual exclusion problem is to design a protocol that 
guarantees mutually exclusive access to a critical section 
among competing processes. This problem has been studied 
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for many years, dating back to the seminal paper of Dijkstra 
[13]. Most of the published solutions to the mutual exclusion 
problem require an incoming process to look at every other 
potential competitor as a part of its entry code. Recently 
it has been observed that the worst case complexity of dis- 
tributed algorithms could be adaptive, that is, bounded by 
a function of the number of actually active processes, which 
can be very small. 

Lamport  [16] suggested a mutual exclusion algorithm which 
requires a constant number of steps when a process runs 
alone and an unbounded number of steps if two or more 
processes run concurrently. Alur and Taubenfeld [5] showed 
that for any asynchronous mutual exclusion algorithm there 
is no bound on the number of shared-memory operations 
taken by the winning process in the presence of contention. 
Thus, the step complexity of any mutual exclusion could not 
be adaptive. Following this, a number of different parame- 
ters were suggested to measure the effectiveness of mutual 
exclusion algorithms. The remote step complexity [11, 17, 
20] is the maximal number of shared memory operations 
performed by a process, where a wait is counted as a single 
operation (this parameter is well-defined only for lockout- 
free algorithms). The number of remote memory references 
[21] is a stronger version of this parameter. It assumes a 
model where each shared location is local to a single process 
and remote for all other processes, and counts the number 
of remote memory references, assuming process spins only 
on local locations. The system response time [11] is the time 
interval between subsequent entries into the critical section, 
where a time unit is the minimal interval of time in which 
every active process performs at least one step. 

An algorithm is adaptive if its complexity is bounded by a 
function of the number of contending processes, denoted k; 
k is unknown in advance, and it may change in different exe- 
cutions of the algorithm. The strongest form of adaptiveness 
requires the complexity of an operation to be bounded by 
a function of its point contention, defined as the maximum 
number of processes executing concurrently at some point 
during the operation's interval. 

Our basic algorithm has O(k) remote step complexity and 
its system response time is O(log k), where k is point con- 
tention. The algorithm is constructed from an adaptive 
long-lived non-wait-free k-renaming and an adaptive tourna- 
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A l g o r i t h m s  

Choy and Singh [11] 
Adaptive Bakery Algorithm [4] 
Afek et al. [3] 
Anderson and Kim [7] 
First  Algorithm 
Second Algorithm 

R e m o t e  S t e p  
C o m p l e x i t y  

O(N) 
O(k ~) 

O(min(k ~, k log N)) 
O(k) 
o(k) 
o(k) 

S y s t e m  
R e s p o n s e  T i m e  

O(k) 
O(k ') 
O(k ~) 
o(k) 

O(log a) 
O(log a) 

S p a c e  C o m p l e x i t y  

O(N) 
O(N ~) 

O(N2 ~) 
O(N) 

O(nN) 
O(n ~) 

T a b l e  1: C o m p a r i s o n  w i t h  p r e v i o u s  a d a p t i v e  m u t u a l  e x c l u s i o n  a l g o r i t h m s  

ment tree for mutual  exclusion. Our non-walt-free renaming 
algorithm has a much bet ter  remote step complexity and 
system response time than all known adaptive long-lived 
wait-free renaming algorithms. 

Arguing about the point contention in the complexity proofs 
of our algorithms requires novel proof techniques. Proofs of 
this style appear  in [1, 2, 4], and resemble the potential 
method used in amortized analysis. 

The space complexity of this algorithm is O(nN). We 
present a technique to make the space complexity depend 
solely on n. This technique achieves O(n 2) space complex- 
ity, however the remote step complexity of the first entry to 
the critical section of every process increases to O(k'), where 
k' is the operation's  interval contention- the total  number 
of processes that  are active during the operation interval. 

A number of mutual  exclusion algorithms with o(N) time 
complexity were designed. 

Choy and Singh [11] presented an adaptive mutual  exclusion 
algorithm with O(k) system response time and O(N) remote 
step complexity. The amortized system response time of 
their algorithm is O(1). 

Yang and Anderson [21] presented an algorithm that  uses 
a tournament tree, where in each node a two-process mu- 
tual exclusion algorithm is located. Their algorithm induces 
O(log N) remote memory references; even if there is no con- 
tention, O(log N) steps should be performed by a process 
to enter the critical section. Anderson and Kim [6, 7] pre- 
sented an algorithm with O(1) remote memory references in 
the absence of contention and O(log N) under contention. 
They also mention [7] an algorithm with O(k) remote mem- 
ory references. 

Afek et al. [4] demonstrated how adaptive long-lived col- 
lect can be used to transform the Bakery algorithm [1.5] 
into an adaptive mutual exclusion algorithm. Since adap- 
tive long-lived collect has O(k 4 ) step complexity, the remote 
step complexity of the resulting mutual exclusion algorithm 
is also O(k 4). They present another adaptive mutual exclu- 
sion algorithm [3]; both the system response time and the 
remote step complexity of this algorithm are O(k2). 

Table 1 summarizes the results of this paper  and compares 
them to the known adaptive mutual exclusion algorithms. 

2. PRELIMINARIES 
We assume a s tandard asynchronous shared-memory model 
of computat ion [14]. A system consists of n processes, 
p l , . . .  ,pn, communicating by reading and writing to shared 
registers. Each process can read from and write to any reg- 
ister (multi-writer multi-reader registers). 

A process part icipating in the mutual  exclusion algorithm 
loops through the following sections: entry (enter proce- 
dure), critical, exit (exit procedure) and remainder. 

Let a be an execution of a mutual  exclusion algorithm A; 
let o / b e  a finite prefix of or. 

Process pi is active at the end of a '  if a '  includes an invo- 
cation of enter by pi without a re turn from the matching 
exit. Cont(o/) is the set of active processes at the end of o/. 
The point contention at the end of o / i s  ICont(~')l, denoted 
PntCont(a '). 

Consider a finite execution interval /3 of a ;  we can write 
a = al/3a~. The point contention during /3, denoted 
PntCont(/3), is the maximum point contention over all pre- 
fixes a l /3 '  of al/3. If the point contention during/3 is k, then 
for some prefix /3' of/5, PntCont(al/3') = k. 

The interval contention of/3, denoted lntCont(/3), is the 
total  number of different processes that  are active dur- 
ing the operation interval. Clearly, for any interval /3, 
PntCont(/3) _< IntCont(/3) and the interval contention of 
/3 is bounded by n, the total  number of processes. 

The remote step complexity of process pl during /3 is the 
number of steps performed by pi in/3, when a wait operation 
is counted as one step. The remote step complexity of a 
mutual  exclusion algorithm is adaptive (to point contention) 
if there is a bounded function S, such that  the remote step 
complexity of any process pi in an execution interval of enter, 
/3, and the matching exit is at most S(PntCont(/3)). 

The time complexity of fl is the number of time units during 
/3, where one time unit is the minimal execution interval 
in which each active process performs at  least one step. An 
algorithm has adaptive (to point contention) system response 
time, if there is a bounded function T, such that  the time 
complexity of any interval/3 between two subsequent critical 
section executions is at  most T(PntCont(/3)). 

3. THE BASIC ALGORITHM 
In this section we present a basic algorithm using an un- 
bounded memory. A technique to bound the memory is 
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described in Section 4. In the algorithm, a process gets a 
name in a range of size O(k) using long-lived renaming [8, 
18], and uses this name to enter  an adapt ive tou rnamen t  
tree for mutual  exclusion. The  winner of the tournament  
tree enters the critical section. 

Many long-rived renaming  algori thms are known [1, 2, 10, 
18], and some of them are adapt ive  [1, 2]. Unfortunately,  us- 
ing any of these algori thms drives for very high complexity. 
In the context  of mutua l  exclusion, the complexity of re- 
naming could be significantly improved, since wait-freedom 
is not  required. 

3.1 Non-Wait-Free Renaming 
In the long-lived M-renaming problem, processes repeatedly  
acquire and release dist inct  names in the range {1, . . .  , M}.  

Our algori thm uses an array of n entries. Each entry con- 
tains a pointer  to a chain of filters (or simply, a chain). A 
process tries to win in the chains, one after  the other,  unti l  
successful in some chain. The  name that  the process receives 
is the index of the chain it wins. 

In a chain, filters are conca tena ted  one after  the other.  A 
process that  enters a filter leaves it by receiving ei ther  suc- 
cess or fail. Only a process tha t  succeeds in a filter proceeds 
to the next  filter in the chain or concludes tha t  it is the 
winner of the chain. A process that  fails in a filter, loses in 
the current chain and moves to the following chains. If the 
process failed in the r ' t h  filter of the l ' t h  chain, then it skips 
the next  r - 1 chains and tries to win in the (l + r ) ' t h  chain. 

We show below tha t  if one or  more processes enter  a chain, 
then exactly one process wins it. Moreover,  if some process 
fails in the r ' t h  filter in a chain, then there are processes tha t  
failed in filters 0 . . .  r - 1 of the chain. We prove tha t  process 
pi accesses the l ' t h  chain only if there are at least l processes 
which are simultaneously active at some point during pi's 
enter operation. We will also argue that  the winner of the  
chain is determined in O(log k) t ime units, where k is the 
point contention during the winner 's  execution interval.  

3.1.1 The Code 
The  pseudocode appears  in Algor i thm 1. Chains are s tored 
in an array Chains. There  is an infinite number  of filters in 
each chain, numbered  0, 1 , . . . .  An additional shared da t a  
s t ructure is an array startFilter[O,..., n - 1]; startFilter[l] 
contains the index of the current  entry filter of Chains[If. 

Procedure getName, obtaining a new name, invokes proce- 
dure executeChain for executing a chain with a chain 's  index 
as parameter ,  executeChain returns  a pair: win or lose in- 
dicating whether  the processes wins or loses the chain, and 
the index of the last accessed filter in the chain. 

Our  filter is a modificat ion of the filter of Choy and Singh 
[11]. Their  filter provides the following properties:  

S a f e t y :  If k processes enter  the filter, then no more than  
r r ]  processes succeed in it. 

P r o g r e s s :  If one or more processes enter  the filter, then at 
least one process succeeds in it. 

A l g o r i t h m  1 Adapt ive  long-lived non-wait-free k-renaming 

private variables 
lastFilter : integer  

procedure getName 0 / /  get a new name 
1: 1 : =  0 
2: index:= - 1  
3: repeat  
4: l : = l +  index+ 1 
5: {result, index) :=  executeChain(l) 
6: until result = w i n  
7: lastFilter :=  startFilter[l] + index 
8: re turn  l 

procedure releaseName(narne) / / re lease  a name 
1: startFilter[name] :=  lastFilter + 1 

procedure executeChain(l) 
1: Filters :=  Chains[l][startFilter[l]] 

/ / a c c e s s  chain l 

/ / m o v e  the pointer  to the s tar t  
2: curt :=  0 
3: while ( t r u e )  
4: if executeFilter(Filters[curr]) = s u c c e s s  then 
5: if curr > 0 and -~Filters[curr - 1].c then 
6: r e tu rn  {win, curt) 
7: else curt++ / / p roceed  to the next  filter 
8: else re turn  {lose, curt) 

procedure executeFilter(filter) 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: else 
12: filter.d :=  t r u e  
13: re turn s u c c e s s  

/ / a c c e s s  a specific filter 
if filter.turn 7£± then  re turn  fa i l  
filter.turn := id 
if filter.d then  re turn  fa i l  
wait until ~fi l ter .b  or filter.turn ~ id or filter.d 
if filter.d then re turn  fa i l  
if filter.turn = id then  filter.b := t r u e  
if filter.turn ~ id then  / / f a i l i n g  in the filter 

filter.c :=  t r u e  
filter.b :=  f a l s e  
re turn fa i l  

/ / s u c c e e d i n g  in the filter 

We upgrade the filter so it also have the following property:  

T i m e  c o m p l e x i t y :  Some process succeeds in the filter 
O(1) t ime units af ter  the first process enters it. 

The  major  difference be tween the code of our filter and the 
code of Choy and Singh filter is the second condition in Line 
4. If a process determines  tha t  turn ~ id (Line 4), then this 
process will never succeed in the filter, and therefore it fails 
at  this point (and does not  continue to wait for --b). 

3.1.2 Correctness Proof 
The  proofs of the safety and progress properties of the filter 
are similar (al though not  identical) to the proofs in [11]; 
they are pos tponed to the full version of the paper.  

We say that  a process enters a filter if it passes Line 1 of 
executeFilter. The  first two lines of executeFilter ensure that  
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the last process enters the filter O(1) t ime units af ter  the 
first process enters it. In addit ion,  b becomes f a l se  O(1) 
t ime units af ter  turn  is set by the last entering process. 
This  implies the t ime complexity proper ty  of the filter. 

All processes entering a filter read turn  in Line 1 of 
executeFilter before the first entering process writes its id 
to turn  in Line 2. Thus,  all these processes are active at the 
first write of turn.  Therefore,  we have the following lemma:  

LEMMA 3.1 (TIME COMPLEXITY). Some process suc- 
ceeds in the filter O(1) t ime units after the f irst  process en- 
ters it. 

LEMMA 3.3. I f  some process enters a filter, then there is a 
point  in its execution interval in which all processes entering 
this filter are active. 

The  safety and progress propert ies  of the filter ensure that  
exactly one process is eventually left in the chain and wins 
it. Formally, process pi wins chain l if i t  re turns  win  from 
executeChain(l).  We refer to pi as a winner of chain l even 
before it actually wins. 

A process tha t  is not  in the remainder  section, is ac- 
cessing the  last filter it called executeFilter for, and 
the chain this filter belongs to. Chain  1 is busy if 
Chains[l][startFilter[l]].turn ¢ .k and empty  otherwise; 
tha t  is, the  chain 's  winner is accessing it. 

For chain l, an execution is par t i t ioned into rounds. The  
first round s tar ts  at  the beginning of the execution;  a new 
round s tar ts  when chain ! becomes empty. A winner is ac- 
cessing the chain unti l  the end of the round.  Fil ters in chain 
i are counted relative to the value of startFil ter[l]  at  the 
beginning of the round, where the first filter is counted 0. A 
process enters chain I if i t  enters the first filter of the current  
round of chain 1. In the following, we refer to a single round 
of a chain, lmless specified otherwise.  

LEMMA 3.2. I f  some process enters a chain, then exactly 
one process wins it. 

SKETCH OF PROOF. By the progress property,  if some 
process enters a filter then at  least one process succeeds in 
it. By the algori thm, the process tha t  succeeds in Filters[r] 
either wins the chain or enters Fil ters[r  + 1]. Hence, in 
any execution of the algori thm some process ei ther wins the 
chain or  enters Filters[[log k] + 1]. By the safety property,  
at most  one process enters Filters[[log k]]; this process suc- 
ceeds in Filters[[log kq + 1], finds Filters[[log kl].e = f a l se  
and wins the chain. Hence, some process wins the chain. 

When a winner executes Line 5 and discovers tha t  
F i l t e r s [ c u r r -  1].c = fa lse ,  no process has failed in 
Fi l ters[cur t  - 1]. Therefore,  no o ther  process is currently in 
Filters[curr].  The  winner checks Fil ters[curr  - 1].c after  
set t ing Filters[curr].d to true. Hence, every process that  
enters Filters[curr] from this point  on, re turns  f a i l  in Line 
3 of executeFilter and does not  succeed in this filter. There-  
fore, there is a single winner. [ ]  

The  last l emma implies tha t  no two processes have the same 
name at the end of an execution prefix. 

An execution interval of a process includes one i terat ion of 
enter, critical section, and exit. 

Therefore,  if k processes enter  a filter, the  point content ion 
during execution i terval  of each entering process is at least 
k. From the chain definition, if k processes enter  a chain, 
then  the point  content ion of the winner 's  execution interval  
is at  least k. By the safety proper ty  of a filter, at  most  
one process enters Filters[[logk]]; this process suceeds in 
Filters[[log k] +1],  finds Filters[[log k]].c = fa l se  and wins 
the chain. This  implies the  following lemma:  

LEMMA 3.4. I f  k processes enter  the chain, then some 
process wins the chain in [log k] + 2 filters. 

From the last two lemmas we conclude tha t  O(log k) filters 
are required to determine  the winner  in a chain, where k 
is the point  content ion of the winner ' s  execution interval.  
By the t ime complexi ty proper ty  of the filter, af ter  O(1) 
t ime units there is a process tha t  succeeds in a single filter. 
Therefore,  we have the following lemma:  

LEMMA 
t ime units 
contention 

3.5. Some process wins the chain within O(log k) 
after the chain became busy, where k is the point  
of the winner's  execution interval. 

Thus,  the system response t ime of our renaming algori thm 
is O(log k). The  following lemmas  lead to the remote  step 
complexity of the algori thm. 

LEMMA 3.6. I f  some process Pi fails in Filters[r] of some 
chain l, then there are processes Pmo, . .  • ,Prn~_l that enter 
and fail in Fi l ters[Of , . . . ,  Fi l ters[r  - 1] of chain l, respec- 
tively. 

PROOF. We prove the l emma by induct ion on r. The  base 
case, r = 0 is trivial. 

For the induct ion step, assume the l emma holds for 
Filters[r], and consider Fil ters[r  + 1]. By the progress 
property,  if pi fails in Fil ters[r  + 1], then there is an- 
o ther  process pj that  succeeds in Fil ters[r  + 1]. By the 
algori thm, bo th  pi and pj succeed in Filters[r]. There-  
fore, by the safety property,  at least one process Pmr enters 
and fails in Filters[r]. Thus,  by the induct ion hypothe-  
sis, there are processes Pmo, . . . ,Pm~_l  tha t  enter  and fail 
in Filters[Of . . . . .  Fi l ters[r  - 1], respectively. Process Pmr 
is not  one of P m o , . - - , P m r - ~ ,  since it  enters Filters[r], and 
therefore succeeds in Filters[Of . . . .  , Fi l ters[r  - 1]. Thus,  
there are processes Pmo, - - - ,pm._~ ,pm~ tha t  enter  and fail 
in Fi l ters[Of , . . . ,  Fi l ters[r  - 1], Filters[r], respectively. []  
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T h e  following l emmas  argue a b o u t  the  en t i re  execut ion  of 
a chain  and  not  a single round  of it. For  a finite execut ion  
prefix a ~, the  cu r ren t  round  of chain  l is the  r o u n d  of chain  l 
a t  t he  end  of a~. W h e n e v e r  we refei- to  f i l ter  r of a chain  a t  
the  end  of a~, we m e a n  the  r ' t h  filter of the  cu r r en t  r o u n d  
of th is  chain.  

Cons ider  process  pi accessing the  r ' t h  f i l ter  of chain  l a t  t he  
end  of c~ ~. T h e  location of pi a t  a ~ is def ined as follows: 
if pi is the  winner  of the  cur ren t  r o u n d  of chain  l t h e n  i ts  
loca t ion  is ! o therwise  i ts locat ion is l-t-r  + 1. T h e  loca t ion  of 
pi is u p d a t e d  by execut ing Line 2 of executeFilter,  if i t  en te r s  
the  fi l ter a n d  by execut ing  Line 1 of executeFilter,  o therwise .  
Th i s  implies t h a t  p i ' s  locat ion is i n c r e m e n t e d  by  a t  mos t  1 
in one s tep  of pi .  

T h e  locat ion of filter r of chain l is l + r -I- 1. 

Let  o~ ~ be  a prefix of c~ in which no  process  ha s  loca t ion  s, 
and  let  c~" be  the  longest  prefix of oJ in  which  chain  s is 
busy. By the  defini t ion of locat ion,  cha in  s is e m p t y  a t  o/ .  
L e t / 3  be  the  in terval  be tween  c~ ~ a n d  oJ, t h a t  is oJ = oJ~/3. 
Note  t h a t  cha in  s is emp ty  in ~3. 

LEMMA 3.7. The number  o f  processes  wi th  locat ions  
s, . . . , c<~ at  the end  o f  oJ is at  m o s t  the n u m b e r  o f  processes  
wi th  locat ions  s , . . .  , cxD at  the end  o f  cr". 

PROOF. By the  definit ion of/3,  the re  is no  process  wi th  
loca t ion  s a t  t he  end  o f /3 .  Therefore ,  any  process  t h a t  
changes  i ts  loca t ion  from s - 1 to  s in ,3 has  loca t ion  _> s + 1 
a t  the  end  of/3. Assume  t h a t  process  pl ha s  loca t ion  L: s - 1 
a t  t he  beg inn ing  of/3 and  has  locat ion > s -t- 1 a t  t he  end  of 
/3. Cons ider  the  possible ways for pi to  change  i ts  loca t ion  
f r o m s  t o s + l :  

Case 1: pl  fails in some filter wi th  loca t ion  s. Thus ,  pi 
changes  i ts  locat ion to s + 1 only when  it  accesses t he  first 
fil ter of chain  s, bu t  i t  is no t  the  winner  of t he  chain.  How- 
ever, when  p, u p d a t e s  i ts  location,  t u r n  ~ .L for  the  first 
f i l ter of chain  s, con t rad ic t ing  the  fact  t h a t  cha in  s is e m p t y  
d u r i n g / 3 .  

Case 2: pi succeeds in some filter wi th  loca t ion  s a n d  en te r s  
a fi l ter w i th  locat ion s + 1. By p i ' s  definit ion,  i ts  loca t ion  is 
< s a t  t he  beg inn ing  of/3.  Therefore ,  i t  en te r s  some filter 
wi th  loca t ion  s and  succeeds in i t  in /3. However,  by the  
fact  t h a t  pl is no t  the  winner  of chain s a n d  by  L e m m a  3.6, 
the re  is a process  P3 t h a t  enters  and  fails in  t he  same  filter. 
By L e m m a  3.3, pj  accesses this  fi l ter concur ren t ly  wi th  pi .  
Hence,  p j  fails in some filter wi th  loca t ion  s a n d  changes  i ts  
loca t ion  f rom s to s + 1 in /3. However,  such  process  does  
not  exist  by the  same a rgumen t s  as for process  pi in  Case 
2. [] 

For a n  execut ion  cr, let a m  be  the  prefix w i th  the  first m 
events  of a .  T h e  next  l e m m a  is the  key to showing t h a t  the  
s tep  complexi ty  a d a p t s  to the  point  con ten t ion .  

LEMMA 3.8. A s s u m e  that  process pl has locat ion si and  
that  the po in t  con ten t ion  dur ing  p i ' s  opera t ion  is k ,  then 

f o r  every  s '  _< si ,  the number  o f  processes  wi th  locat ions 
s ' ,  . . . , oo is at  m o s t  k - s ' .  

PROOF. T h e  p roof  is by induc t ion  on the  l eng th  of the  
execut ion  prefix. Assume  t h a t  the  l e m m a  holds  a f te r  m 
events ,  a m ,  a n d  t h a t  the  (m + 1) th  event  in o~ is by  process  
pj  (pj  may be  equal  to  pi ). We only have  to consider  events  
t h a t  change  the  loca t ion  of p j .  

Assume  th i s  is the  first ope ra t ion  of pj  in  o~; t h a t  is, p j  
accesses fi l ter 0 of chain  0. By the  def ini t ion of locat ion,  the  
loca t ion  of p j  is 1 if t u r n  ~.1_ for th is  filter, o therwise ,  i ts  
loca t ion  is 0. F rom the  defini t ion of po in t  con ten t ion ,  there  
are a t  mos t  k - 1 o t h e r  processes accessing chains  a t  the  end  
of am .  Therefore ,  in the  case p j  has  loca t ion  0, the  claim 
holds. If t u r n  ~ . L  at  the  end  of otto+l, t h e n  cha in  0 is busy  
a t  the  end  of am+a .  Thus ,  there  is a winner  of chain  0 which 
is act ive a t  the  end  of o~m+l a n d  has  loca t ion  0. Therefore ,  
the re  are  a t  mos t  k - 1 processes wi th  locat ions  1 , . . .  , oo a t  
the  end  of a m + l  a n d  the  claim holds. 

Assume  pj  changes  locat ion f rom s j -  1 to  s j .  If  s j  > sl ,  t h e n  
the  claim of t he  l e m m a  is no t  affected. Therefore ,  a ssume 
sj  < si .  By the  induc t ion  hypothesis ,  the re  are a t  mos t  
k - s j  + 1 processes  wi th  locat ions  s j  - 1 , . . .  , oo a t  the  end  
of am .  If a t  t he  end  of a~n+l there  is some process  still w i th  
loca t ion  s j  - 1, t h e n  a t  the  end  of a m  the re  are  a t  least  two 
processes  w i th  loca t ion  s / -  1 and  thus,  a t  mos t  k - s j  - 1 
processes  w i th  loca t ion  s j , . . .  ,exT. Therefore ,  a t  t he  end  
of a m + l  t he re  are  a t  mos t  k - s j  processes wi th  loca t ion  
s j , . . .  , c~ a n d  the  claim holds. 

If a t  t he  end  of a m + l  there  is no process  wi th  loca t ion  s j  - 1, 
t hen  by the  def ini t ion of location,  chain  s j  - 1 is empty.  
W h e n  chain  s j  - 1 becomes  empty,  the  n u m b e r  of processes 
wi th  loca t ions  s j  - 1 , . . .  , oo is a t  mos t  (k  - s j  + 1) - 1. By 
L e m m a  3.7, the re  are  a t  mos t  k - s j  processes wi th  locat ions  
s j  - 1 , . . .  , (x~ a t  the  end  of a m + l ,  and  the  claim holds.  [ ]  

By th is  l emma,  if the  poin t  con ten t ion  of p i ' s  execut ion  in- 
terval  is k, t h e n  a t  mos t  one process accesses chain  k - 1. 
Therefore ,  if pl does no t  win before chain  k - 1, i t  accesses 
th is  cha in  a lone a n d  thus  wins it. Hence, we have  the  fol- 
lowing corollary:  

COROLLARY 3.9. I f  the po in t  con ten t ion  dur ing  pi 's op- 
erat ion is k ,  then  pi wins  in chain l _< k - 1. 

According  to the  a lgor i thm,  if a process  accesses m filters 
in some chain  and  loses, it skips the  following r n -  1 chains.  
Therefore ,  the  process  reaches the  chain  i t  wins a f t e r  access- 
ing a t  mos t  k + 1 filters. By L e m m a  3.4, i t  accesses O(log k) 
filters in the  chain  it wins. By the  fi l ter 's  code, each filter re- 
quires O(1)  s teps.  Therefore ,  a process executes  O ( k )  steps 
before it wins some chain. 

LEMMA 3.10. A process wins  some  chain  w i th in  O ( k )  
steps.  
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F i g u r e  1 :  A n  a d a p t i v e  t o u r n a m e n t  t r ee  

3.2 An Adaptive Tournament Tree 
After processes obtain names in the range 0, . . . ,  k - 1, the 
process that enters the critical section is picked using an 
adaptive tournament tree. The first mutual exclusion algo- 
rithm that used a binary tournament tree is that given by 
Peterson and Fischer [19]. Our tree is an adaptive variant 
of the balanced binary tournament tree of Yang and An- 
derson [21]. The tree we use is an unbalanced binary tree, 
constructed from log N complete binary trees of exponen- 
tially growing sizes (1, 2, 22, . . .  nodes), which are connected 
by a single path of nodes (Figure 1). In each inner node of 
the tree, a fair two-process mutual exclusion algorithm (pro- 
posed by Yang and Anderson [21]) is located. The algorithm 
induces O(1) remote steps. 

The leaves of the tree are the leaves of the complete binary 
trees. The leaves are numbered from left to right, so the 
leftmost leaf is the leaf of tree with size 1. The name ob- 
tained by a process in the renaming algorithm determines 
the leaf at which the process starts climbing up the tree: A 
process with name xi enters the tree at the (xl + 1)th leaf. 
A process performs the copies of the two-process mutual ex- 
clusion algorithm associated with the nodes along its path 
to the root, and enters the critical section by winning the 
root of the tree. 

Since a single process starts at each leaf, only one process 
wins the root. The proof is similar to the tournament tree 
presented by Yang and Anderson [21]. 

Appendix A defines the tree and explains why a process with 
a name in the range 0 , . . . ,  k - 1 climbs at most 2 log k + 1 
nodes. 

At each node, the execution of two-process mutual exclusion 
requires O(1) steps. This implies that a process enters the 
critical section in O(log k) steps after it enters the tourna- 
ment tree. The winner of each node is found in O(1) time 
units, thus some process enters the critical section O(log k) 
time units after some (possibly other) process enters the 
tournament tree. 

3.3 Complexity 
Finally, we calculate the complexities of the algorithm. Let 
k be the point contention during an execution interval of 
process pl. By Lemma 3.10, pi is elected as a winner in 
some chain within O(k) steps, and executes the tournament 
tree in O(log k) steps. Thus, the remote step complexity of 

the entry section is O(k). When exiting from the critical 
section, pi cleans all the nodes of its path in the tournament 
tree. The number of such nodes is O(log k). In addition, pi 
updates the corresponding entry in startFilter. Therefore, 
the exit section requires O(log k) steps. 

By Lemma 3.5, in O(log k) time units the winner of a busy 
chain is elected. In the next O(log k) time units the win- 
ner of the tournament tree is determined (according to the 
properties of the tournament tree). Thus, in O(log k) time 
units some process enters the critical section. 

4. BOUNDING THE NUMBER 
OF FILTERS 

The number of filters in a chain is bounded by recycling 
previously used filters. A filter can not be simply recycled, 
since slow processes may still be working in the filter. These 
processes can corrupt the filter and confuse processes that 
are re-using the filter. In our algorithm, the process that 
exits from the critical section detects "slow" processes and 
promotes them to enter the critical section, thus allowing 
filters to be recycled. Similar ideas for memory reuse appear 
in [1, 2, 11]. 

Instead of using an unbounded number of filters, a chain 
has only 2N filters, which are used cyclically. Each filter in 
the chain is associated with a unique process, namely, filter 
r is associated with process prmodg. After executing the 
critical section, a chain winner iterates through the filters 
accessed in this round, from the filter it started from in this 
chain to the filter it succeeded in. For each filter, it checks 
whether the process associated with it is still active in the 
current chain. If so, this process enters the critical section 
immediately. We say that this slow process is promoted into 
the critical section. After promoting a slow process, the 
winner stops scanning and leaves. The promoted process 
continues the scan from the same point upon exit from the 
critical section. This "takeover" mechanism frees the winner 
from waiting for the slow process to exit the critical section. 

In addition to ensuring that recycled filters are free from 
processes, i.e., no process is executing the filter's code, the 
scan also initializes them. Since slow processes can corrupt 
initialized filters, they re-initialize each filter they could have 
dirtied upon leaving it. 

The recycling algorithm guarantees that every time a new 
round in the chain starts, the next N filters from the starting 
filter of this round are free from processes and initialized. 

The following shared variables are used by the algorithm. 

- A n  array of chains of filters C h a i n s [ O , . . . , n -  
1][0 . . . .  , 2 N -  1]. Entry Chains[If[r] contains filter r 
of chain I. 

- An array busy[O,..., n -  1] of Boolean variables; all en- 
tries are initially false. Entry busy[If indicates whether 
chain I is busy. 

- An array startFilter[O,..., n - 1] of integers; all entries 
are initially 0. Entry startFilter[l] contains the index 
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of the filter in Chains[If where the last round started 
in chain I. 

- An array endFilter[O,. . . ,  n - 1] of integers; all entries 
are initially 0. Ent ry  endFilter[l] contains the index of 
the filter in Chains[If where the last round ended in 
chain I. 

- An array nextToClean[O,.. .  , n - 1] of integers; all en- 
tries are initially 0. Ent ry  nextToClean[l] contains the 
index of the next  filter in Chains[If that  should be 
cleaned (before the cleanup s tar ts  this is the first used 
filter in this round).  

- An integer variable nextToEnter,  initially _L, contains 
the id of the process to be promoted.  A process reads 
this variable after each step and  if it is equal to its 
id, the process executes promotedEnter and enters the 
critical section. 

- An integer variable lastFreeChain, initially _1_, contains 
the index of the last chain tha t  became free. The vari- 
able is used by the promoted process to continue the 
cleanup protocol in this chain. 

The startFilter array is the same as in the algorithm with 
unbounded  memory; the Chains array now has 2N filters in 
each entry. 

The code appears in two parts  (Algori thm 2 and Algo- 
r i thm 3). Since the cleanup is done by the process exiting 
from the critical section, we present  the code of the mutua l  
exclusion algorithm rather  than  the code of the renaming 
algorithm. Procedure getName is embedded into enter and 
procedure releaseNarne is embedded into exit. 

A slow process executes promotedEnter to enter the crit- 
ical section and promotedExit to exit it. The code of 
executeTournamentTree, cleanTournamentTree and islnChain 
is omitted;  their semantics is clear from their names. The 
code of executeFilter appears in Algori thm 1. 

Recall tha t  for chain l, an  execution is part i t ioned into 
rounds. The first round s tar ts  at the beginning of an ex- 
ecution; a new round starts  when busy[If changes from t r u e  
to false .  The following lemma is the key to showing the 
correctness of the algorithm. 

LEMMA 4.1. I f  a round in chain 1 starts at the end of c~ ~ 
then the filters startFiltersfl] . . . . .  (startFiltersfl] ÷ N - 1) 
m o d 2 N  of chain I are free from processes at the end of c~'. 

SKETCH OF PROOF. The proof is trivial when the second 
part  of the array is not  used at  the end of a ' .  Let s tart  
be the value of startFilters[l] at the end of or'. We consider 
some process pl and show that  pi is not  accessing filters 
s t a r t , . . . , ( s t a r t  + N - 1) mod 2 N  at the end of a ' .  

By the algorithm, filters (s tart  - N )  mod 2 N , . . .  , (s tart  - 
1) mod 2N were in use after the filters s t a r t , . . . ,  ( s t a r t + N -  
1) mod 2N were in use last t ime before d .  Between these 
filters there must  be a filter associated with pi. Thus, there 

. A l g o r i t h m  2 Adaptive mutua l  exclusion with bounded 
memory  (part  1) 

private variables 
l : integer 

procedure enter() 
1: l :=  0 
2: index:= - 1  
3: repeat  
4: l : = l +  i ndex+  1 
5: if (! busy[If) then 
6: busy[If :=  t r u e  
7: (result, index) :=  executeChain(l) 
8: else index :=  0 
9: unt i l  result = w i n  
10: executeTournamentTree(l) 

/ / e x e c u t e  the tou rnamen t  tree from l ' th  leaf 

procedure exit() 
1: nextToClean[l]  :=  startFilter[l] 
2: if cleanOsedFilterslnChain(l) then 
3: clea nTourna ment'l-ree(l) 
4: startFilter[l] :=  (endFilte,[l] + 1) m o d 2 N  
5: busy[l] :=  fa lse  

procedure executeChain(l) 
1: Filters :=  Chains[If 
2: curr :=  startFilter[l] 
3: while ( t r u e )  
4: if executeFilter(Filters[curr]) = w i n  then 
5: if curr ~ startFilter[l] 

and ~Filters[curr - 1].c then 
6: endFilter[l] :=  curr 
7: re turn  (win ,  (curt  - startFilter[l]) rood 2N) 
8: else(curr + +)  rood 2N 
9: else re turn  (lose, (cur t  - startFilter[l]) mod 2N) 
10: endwhile 

is a prefix or" of a ~ such that  the entry associated with pi was 
cleaned at  the end of a "  and the filters s t a r t , . . . ,  (s tart  + 
N -  1) mod 2N are not  used in the interval between a "  and 
a t. The  cleanup protocol ensures tha t  either pi was not  in 
chain at  the end of a",  or it was promoted to enter the 
critical section in a" .  Thus  there is a point  in the interval 
between a "  and a when pi is not  in the chain. 

Hence, if process pi is accessing chain l, it began to do this 
after c~". By the algorithm, filter (s tar t  - 1) rood 2N is the 
filter where the winner has succeeded in the previous round 
in chain I. A process can enter filter r of the chain only by 
succeeding in (r - 1) mod 2N. In addition, a process cannot  
pass the filter where the winner of the round has succeeded 
in. Therefore, at  the end of or', pl has not  passed filter 
s tar t  and  is not  accessing the filters s t a r t , . . . ,  (s tart  + N - 
1) rood 2N at the end of or'. Thus,  filters startFilters[l], . . . ,  
(startFilters[l] + N - 1) m o d 2 N  are free from processes at 
the end o f a  ~. []  

A slow process can determine whether  the round in the 
chain it is accessing has changed by checking if the value 
of startFilters[l] changed since it began chain I. It performs 
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A l g o r i t h m  3 Adaptive mutual exclusion with bounded 
memory (part 2) 

procedure promotedEnter(filter) 
/ / e n t r y  section for promoted process 

1: cleanFilter(filter) 

procedure promotedExit 0 
/ /  exit section for promoted process 

1: nextToEnter =_L 
2: l := lastFreeChain 
3: if cleanUsedFilterslnChain (l) then 
4: cleanTournamentTree(l) 
5: startFilter[l] := (endFilter[l] + 1) mod2N 
6: busy[l] := fa lse  

procedure cleanUsedFilterslnChain(l) / / c l e a n  used filter 
1: repeat 
2: if nextToClean[l] ~ id 

and islnChain(nextToOlean[l]) then 
3: lastFreeChain := l 
4: nextToEnter := nextToClean[l] 
5: return fa lse  
6: cleanFilter(Chains[l][nextToClea,[l]]) 
7: nextToOlean[l] := (nextToClean[l] + 1) mod2N)  
8: until (nextToOlean[l] = endFilter[l]) 
9: return t r u e  

procedure cleanFilter(filter) 
1: filter.b = fa lse  
2: filter.d = false  
3: filter.c = fa lse  
4: filter.turn = _L 

/ / c l e a n  a specific filter 

this check each time before moving to the next filter in the 
chain. If the value does not change, then this is still the 
same round in the chain. 

Cleanup guarantees that before startFilters[l] gets the same 
value again, the entry associated with the process was 
cleaned, and if the process was still in the chain, it was 
promoted to enter the critical section. 

Procedure cleanUsedFiltersChain preserves mutual exclusion, 
because the chain is busy as long as the last filter of tiffs 
round is not cleaned yet. Therefore, it is not possible that 
one process enters the critical section via prornotedEnter, and 
the other via regular enter. The cleanup stage is the ordy 
change to Algorithm 1, and by Lemma 4.1 there are enough 
free filters at the beginning of each round. Therefore, Algo- 
rithm 2 guarantees mutual exclusion. 

The remote step complexity of cleanUsedFiltersChain is 
O(log k) since a process cleans O(log k) filters and each fil- 
ter is cleaned O(1) steps. The space complexity of the algo- 
rithm is dominated by the size of the array Chains, which 
is O(nN). 

5. REDUCING THE SPACE COMPLEXITY 
The space complexity of our algorithm is a function of N, 
the range of process names; N may be very large compared 
to the total number of processes, n. Thus, transforming the 

A l g o r i t h m  4 Procedures for one-shot renaming. 

procedure getSmallName() 
1: ch := entryChain 
2: index:= - 1  
3: result := lose 
4: repeat 
5: ch := ch + index W 1 
6: if ( ch < entryChain) 
7: ch := entryChain 
8: (result, index) := executeChain(gamesChains[ch]) 
9: until result = win  
10: name := ch 

procedure updateEntryChain 0 
1: if (entryChain < name) 

/ / m o v e  the next chain after name, if it was before 
2: entryChain := name + 1 

space complexity of the algorithm to be a function of n, 
could improve it significantly. This is done by having each 
process execute one-shot n-renaming before its first entry to 
the critical section, and using the obtained name from there 
on. Once a process receives a name, it never releases this 
name. 

The step complexity of known one-shot renaming algorithms 
depends on the number of allocated names. Since processes 
that  exit the critical section do not release their names, em- 
ploying one of these algorithms will cause the step complex- 
ity of the resulting mutual exclusion algorithm to depend on 
n and not on k. 

The solution employs the fact that one-shot renaming is used 
as part of a mutual exclusion algorithm. We introduce a one- 
shot non-wait-free n-renaming algorithm, with O(log k) sys- 
tem response time and O(k') remote step complexity, where 
k ~ is the interval contention. 

This algorithm uses the same array of chains of filters as 
long-lived renaming algorithm described in Section 3. Unlike 
the long-lived renaming algorithm, the entry point to the 
array, which is initially the first chain, is not fixed. Each 
process that leaves the critical section makes sure that the 
entry point to the next chain is after its name. 

The data structures that serve the one-shot renaming algo- 
rithm (which are distinct from those used by the mutual ex- 
clusion algorithm itseff) are as follows. The array of chains 
is the NamesChains array. A new shared integer variable 
entryChain contains the index of the Chain from which the 
next call to getSmaHName starts to execute. 

Algorithm 4 contains the code of procedures getSmallName 
and updateEntryChain. Procedure enter should be modified 
to check whether the process has a small name and call 
getSmallName if it does not. Hence, getSmallName is called 
only when the process executes enter for the first time. After 
that, the name of the process remains the same throughout 
the algorithm. Procedure updateEntryChain is called by each 
process upon exit from the critical section. 

The properties of chains that have been proved for our first 

98  



algorithm guarantee that  n o t w o  processes receive the same 
name, and that  the range of names is 0 , . . . ,  n - 1. 

A process that  s tar ts  getSmalIName skips the names occu- 
pied by inactive processes. This makes the remote step com- 
plexity of getSmalIName be O(k') ,  where k '  is the interval 
contention. Thus, O(k') is the remote step complexity of the 
first call to enter. The remote step complexity of all subse- 
quent calls to enter does not change. Since getSmalIName is 
called only once, the amortized remote step complexity of 
the algorithm is not affected. 

The mechanism for updat ing and checking the entry chain 
turns the system response time of getSmallName to be iden- 
tical to the system response time of the algorithm from Sec- 
tion 3. Therefore, the system response time of the whole 
algorithm remains O(log k), where k is a point contention. 

The space complexity of the one-shot renaming algorithm is 
O(n log n), since n chains are used and each chain contains 
log n filters. The space complexity of our mutual exclusion 
algorithm is n times the range of names, that  is, O(n2). 

6. DISCUSSION 
We presented a mutual  exclusion algorithm which adapts  to 
point contention; this is the strongest notion of adaptiveness 
known in the literature. The algorithm has O(k) remote step 
complexity and O(log k) system response time. We showed 
how to make the space complexity of the algorithm depend 
only on n. 

Cypher [12] has shown that  there is no mutual exclusion 
algorithm with constant remote step complexity. It is an 
obvious open problem to improve the remote step complex- 
ity of our algorithm or to show that  it is optimal. 

Anderson and Kim [7] mention an algorithm with O(k) re- 
mote memory references, however, the system response time 
of this algorithm is O(k). Since two process mutual  exclu- 
sion of Yang and Anderson is used in the nodes of our adap- 
tive tournament tree, it has O(log k) remote memory refer- 
ences. Thus, designing a long-lived renaming algorithm with 
adaptive number of remote memory references and system 
response time of O(log k) will result in a mutual exclusion 
algorithm with the same properties. 
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APPENDIX 
A. AN ADAPTIVE TOURNAMENT TREE 
Our adaptive tournament tree is similar to the adaptive tree 
used for lattice agreement [9]. This is an unbalanced binary 
tree T~ defined inductively as follows: To consists of a root 
v0 with a single left child. For r >_ 0, suppose Tr is defined 
with an identified node v~, which is the last node in the in- 
order traversal of Tr; notice that vr does not have a right 
child in T~. T~+i is obtained by inserting a new node vr+l 
as the right child of v,., and inserting a complete binary tree 
C~+i of height r + 1 as the left subtree of v~+l. By the 
construction, vr+l is the last node in an in-order traversal 
of T~+i. 

By the construction, the leaves of Tr are the leaves of the 
complete binary subtrees Co, C1, . . .  , Cr. Therefore, the to- 
tal number of leaves in Tr is ~ = 0  2j = 2"+1 - 1. The proof 
of the next lemma appears in [9]. 

LEMMA A.1. Letw be the i-th leaf of T,. , 1 < i < 2~+1-1, 
counting from left to right. Then the depth o] w is 2[log iJ + 
1. 

We use Tlog n, which has n leaves (for simplicity, we assume 
that n is a power of 2). 

A process with a new name xi starts the algorithm at the 
(xi -4- 1)th leaf of the tree, counting from left to right. Since 
k < n, ~ o g ,  has enough leaves for names in a range of size 
k. 

By Lemma A.1, a process starts in a leaf of depth at most 
2 Llog kJ -4-1 . Therefore, pi accesses at most 2 log k-t- 1 nodes. 
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