
Adaptive and Efficient Mutual Exclusion*

[Extended Abstract]

Hagit Attiya and Vita Bortnikov
Department of Computer Science

The Technion
Haifa 32000, Israel

hagit @ cs.technion.ac.il
vitab@cs.technion.ac.il

ABSTRACT
A distributed algorithm is adaptive if its performance de-
pends on k, the number of processes that are concurrently
active during the algorithm execution (rather than on n, the
total number of processes). This paper presents adaptive
algorithm for mutual exclusion using only read and write
operations.

The worst case step complexity cannot be a measure for the
performance of mutual exclusion algorithms, because it is
always unbounded in the presence of contention. Therefore,
a number of different parameters are used to measure the
algorithm's performance: The remote step complexity is the
maximal number of steps performed by a process where a
wait is counted as one step. The system response time is
the time interval between subsequent entries to the critical
section, where one time unit is the minimal interval in which
every active process performs at least one step.

The algorithm presented here has O(k) remote step com-
plexity and O(log k) system response time, where k is the
point contention. The space complexity of this algorithm is
O(nN), where N is the range of processes' names.

The space complexity of all previously known adaptive al-
gorithms for various long-rived problems depends on N. We
present a technique that reduces the space complexity of our
algorithm to be a function of n, while preserving the other
performance measures of the algorithm.

1. INTRODUCTION
The mutual exclusion problem is to design a protocol that
guarantees mutually exclusive access to a critical section
among competing processes. This problem has been studied

*This research was supported by the fund for the promotion
of research in the Technion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without t~e provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To cop2,'
otherwise, to republish, to post on servers or to redistribute to lists
requires prior specific permission and/or a fee.
PODC 2000 Portland Oregon
Copyright ACM 2000 1-58113-183-6/00/07...$5.00

for many years, dating back to the seminal paper of Dijkstra
[13]. Most of the published solutions to the mutual exclusion
problem require an incoming process to look at every other
potential competitor as a part of its entry code. Recently
it has been observed that the worst case complexity of dis-
tributed algorithms could be adaptive, that is, bounded by
a function of the number of actually active processes, which
can be very small.

Lamport [16] suggested a mutual exclusion algorithm which
requires a constant number of steps when a process runs
alone and an unbounded number of steps if two or more
processes run concurrently. Alur and Taubenfeld [5] showed
that for any asynchronous mutual exclusion algorithm there
is no bound on the number of shared-memory operations
taken by the winning process in the presence of contention.
Thus, the step complexity of any mutual exclusion could not
be adaptive. Following this, a number of different parame-
ters were suggested to measure the effectiveness of mutual
exclusion algorithms. The remote step complexity [11, 17,
20] is the maximal number of shared memory operations
performed by a process, where a wait is counted as a single
operation (this parameter is well-defined only for lockout-
free algorithms). The number of remote memory references
[21] is a stronger version of this parameter. It assumes a
model where each shared location is local to a single process
and remote for all other processes, and counts the number
of remote memory references, assuming process spins only
on local locations. The system response time [11] is the time
interval between subsequent entries into the critical section,
where a time unit is the minimal interval of time in which
every active process performs at least one step.

An algorithm is adaptive if its complexity is bounded by a
function of the number of contending processes, denoted k;
k is unknown in advance, and it may change in different exe-
cutions of the algorithm. The strongest form of adaptiveness
requires the complexity of an operation to be bounded by
a function of its point contention, defined as the maximum
number of processes executing concurrently at some point
during the operation's interval.

Our basic algorithm has O(k) remote step complexity and
its system response time is O(log k), where k is point con-
tention. The algorithm is constructed from an adaptive
long-lived non-wait-free k-renaming and an adaptive tourna-

91

http://crossmark.crossref.org/dialog/?doi=10.1145%2F343477.343525&domain=pdf&date_stamp=2000-07-16

A l g o r i t h m s

Choy and Singh [11]
Adaptive Bakery Algorithm [4]
Afek et al. [3]
Anderson and Kim [7]
First Algorithm
Second Algorithm

R e m o t e S t e p
C o m p l e x i t y

O(N)
O(k ~)

O(min(k ~, k log N))
O(k)
o(k)
o(k)

S y s t e m
R e s p o n s e T i m e

O(k)
O(k ')
O(k ~)
o(k)

O(log a)
O(log a)

S p a c e C o m p l e x i t y

O(N)
O(N ~)

O(N2 ~)
O(N)

O(nN)
O(n ~)

T a b l e 1: C o m p a r i s o n w i t h p r e v i o u s a d a p t i v e m u t u a l e x c l u s i o n a l g o r i t h m s

ment tree for mutual exclusion. Our non-walt-free renaming
algorithm has a much bet ter remote step complexity and
system response time than all known adaptive long-lived
wait-free renaming algorithms.

Arguing about the point contention in the complexity proofs
of our algorithms requires novel proof techniques. Proofs of
this style appear in [1, 2, 4], and resemble the potential
method used in amortized analysis.

The space complexity of this algorithm is O(nN). We
present a technique to make the space complexity depend
solely on n. This technique achieves O(n 2) space complex-
ity, however the remote step complexity of the first entry to
the critical section of every process increases to O(k'), where
k' is the operation's interval contention- the total number
of processes that are active during the operation interval.

A number of mutual exclusion algorithms with o(N) time
complexity were designed.

Choy and Singh [11] presented an adaptive mutual exclusion
algorithm with O(k) system response time and O(N) remote
step complexity. The amortized system response time of
their algorithm is O(1).

Yang and Anderson [21] presented an algorithm that uses
a tournament tree, where in each node a two-process mu-
tual exclusion algorithm is located. Their algorithm induces
O(log N) remote memory references; even if there is no con-
tention, O(log N) steps should be performed by a process
to enter the critical section. Anderson and Kim [6, 7] pre-
sented an algorithm with O(1) remote memory references in
the absence of contention and O(log N) under contention.
They also mention [7] an algorithm with O(k) remote mem-
ory references.

Afek et al. [4] demonstrated how adaptive long-lived col-
lect can be used to transform the Bakery algorithm [1.5]
into an adaptive mutual exclusion algorithm. Since adap-
tive long-lived collect has O(k 4) step complexity, the remote
step complexity of the resulting mutual exclusion algorithm
is also O(k 4). They present another adaptive mutual exclu-
sion algorithm [3]; both the system response time and the
remote step complexity of this algorithm are O(k2).

Table 1 summarizes the results of this paper and compares
them to the known adaptive mutual exclusion algorithms.

2. PRELIMINARIES
We assume a s tandard asynchronous shared-memory model
of computat ion [14]. A system consists of n processes,
p l , . . . ,pn, communicating by reading and writing to shared
registers. Each process can read from and write to any reg-
ister (multi-writer multi-reader registers).

A process part icipating in the mutual exclusion algorithm
loops through the following sections: entry (enter proce-
dure), critical, exit (exit procedure) and remainder.

Let a be an execution of a mutual exclusion algorithm A;
let o / b e a finite prefix of or.

Process pi is active at the end of a ' if a ' includes an invo-
cation of enter by pi without a re turn from the matching
exit. Cont(o/) is the set of active processes at the end of o/.
The point contention at the end of o / i s ICont(~')l, denoted
PntCont(a ').

Consider a finite execution interval /3 of a ; we can write
a = al/3a~. The point contention during /3, denoted
PntCont(/3), is the maximum point contention over all pre-
fixes a l /3 ' of al/3. If the point contention during/3 is k, then
for some prefix /3' of/5, PntCont(al/3') = k.

The interval contention of/3, denoted lntCont(/3), is the
total number of different processes that are active dur-
ing the operation interval. Clearly, for any interval /3,
PntCont(/3) _< IntCont(/3) and the interval contention of
/3 is bounded by n, the total number of processes.

The remote step complexity of process pl during /3 is the
number of steps performed by pi in/3, when a wait operation
is counted as one step. The remote step complexity of a
mutual exclusion algorithm is adaptive (to point contention)
if there is a bounded function S, such that the remote step
complexity of any process pi in an execution interval of enter,
/3, and the matching exit is at most S(PntCont(/3)).

The time complexity of fl is the number of time units during
/3, where one time unit is the minimal execution interval
in which each active process performs at least one step. An
algorithm has adaptive (to point contention) system response
time, if there is a bounded function T, such that the time
complexity of any interval/3 between two subsequent critical
section executions is at most T(PntCont(/3)).

3. THE BASIC ALGORITHM
In this section we present a basic algorithm using an un-
bounded memory. A technique to bound the memory is

92

described in Section 4. In the algorithm, a process gets a
name in a range of size O(k) using long-lived renaming [8,
18], and uses this name to enter an adapt ive tou rnamen t
tree for mutual exclusion. The winner of the tournament
tree enters the critical section.

Many long-rived renaming algori thms are known [1, 2, 10,
18], and some of them are adapt ive [1, 2]. Unfortunately, us-
ing any of these algori thms drives for very high complexity.
In the context of mutua l exclusion, the complexity of re-
naming could be significantly improved, since wait-freedom
is not required.

3.1 Non-Wait-Free Renaming
In the long-lived M-renaming problem, processes repeatedly
acquire and release dist inct names in the range {1, . . . , M}.

Our algori thm uses an array of n entries. Each entry con-
tains a pointer to a chain of filters (or simply, a chain). A
process tries to win in the chains, one after the other, unti l
successful in some chain. The name that the process receives
is the index of the chain it wins.

In a chain, filters are conca tena ted one after the other. A
process that enters a filter leaves it by receiving ei ther suc-
cess or fail. Only a process tha t succeeds in a filter proceeds
to the next filter in the chain or concludes tha t it is the
winner of the chain. A process that fails in a filter, loses in
the current chain and moves to the following chains. If the
process failed in the r ' t h filter of the l ' t h chain, then it skips
the next r - 1 chains and tries to win in the (l + r) ' t h chain.

We show below tha t if one or more processes enter a chain,
then exactly one process wins it. Moreover, if some process
fails in the r ' t h filter in a chain, then there are processes tha t
failed in filters 0 . . . r - 1 of the chain. We prove tha t process
pi accesses the l ' t h chain only if there are at least l processes
which are simultaneously active at some point during pi's
enter operation. We will also argue that the winner of the
chain is determined in O(log k) t ime units, where k is the
point contention during the winner 's execution interval.

3.1.1 The Code
The pseudocode appears in Algor i thm 1. Chains are s tored
in an array Chains. There is an infinite number of filters in
each chain, numbered 0, 1 , An additional shared da t a
s t ructure is an array startFilter[O,..., n - 1]; startFilter[l]
contains the index of the current entry filter of Chains[If.

Procedure getName, obtaining a new name, invokes proce-
dure executeChain for executing a chain with a chain 's index
as parameter , executeChain returns a pair: win or lose in-
dicating whether the processes wins or loses the chain, and
the index of the last accessed filter in the chain.

Our filter is a modificat ion of the filter of Choy and Singh
[11]. Their filter provides the following properties:

S a f e t y : If k processes enter the filter, then no more than
r r] processes succeed in it.

P r o g r e s s : If one or more processes enter the filter, then at
least one process succeeds in it.

A l g o r i t h m 1 Adapt ive long-lived non-wait-free k-renaming

private variables
lastFilter : integer

procedure getName 0 / / get a new name
1: 1 : = 0
2: index:= - 1
3: repeat
4: l : = l + index+ 1
5: {result, index) := executeChain(l)
6: until result = w i n
7: lastFilter := startFilter[l] + index
8: re turn l

procedure releaseName(narne) / / re lease a name
1: startFilter[name] := lastFilter + 1

procedure executeChain(l)
1: Filters := Chains[l][startFilter[l]]

/ / a c c e s s chain l

/ / m o v e the pointer to the s tar t
2: curt := 0
3: while (t r u e)
4: if executeFilter(Filters[curr]) = s u c c e s s then
5: if curr > 0 and -~Filters[curr - 1].c then
6: r e tu rn {win, curt)
7: else curt++ / / p roceed to the next filter
8: else re turn {lose, curt)

procedure executeFilter(filter)
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11: else
12: filter.d := t r u e
13: re turn s u c c e s s

/ / a c c e s s a specific filter
if filter.turn 7£± then re turn fa i l
filter.turn := id
if filter.d then re turn fa i l
wait until ~fi l ter .b or filter.turn ~ id or filter.d
if filter.d then re turn fa i l
if filter.turn = id then filter.b := t r u e
if filter.turn ~ id then / / f a i l i n g in the filter

filter.c := t r u e
filter.b := f a l s e
re turn fa i l

/ / s u c c e e d i n g in the filter

We upgrade the filter so it also have the following property:

T i m e c o m p l e x i t y : Some process succeeds in the filter
O(1) t ime units af ter the first process enters it.

The major difference be tween the code of our filter and the
code of Choy and Singh filter is the second condition in Line
4. If a process determines tha t turn ~ id (Line 4), then this
process will never succeed in the filter, and therefore it fails
at this point (and does not continue to wait for --b).

3.1.2 Correctness Proof
The proofs of the safety and progress properties of the filter
are similar (al though not identical) to the proofs in [11];
they are pos tponed to the full version of the paper.

We say that a process enters a filter if it passes Line 1 of
executeFilter. The first two lines of executeFilter ensure that

93

the last process enters the filter O(1) t ime units af ter the
first process enters it. In addit ion, b becomes f a l se O(1)
t ime units af ter turn is set by the last entering process.
This implies the t ime complexity proper ty of the filter.

All processes entering a filter read turn in Line 1 of
executeFilter before the first entering process writes its id
to turn in Line 2. Thus, all these processes are active at the
first write of turn. Therefore, we have the following lemma:

LEMMA 3.1 (TIME COMPLEXITY). Some process suc-
ceeds in the filter O(1) t ime units after the f irst process en-
ters it.

LEMMA 3.3. I f some process enters a filter, then there is a
point in its execution interval in which all processes entering
this filter are active.

The safety and progress propert ies of the filter ensure that
exactly one process is eventually left in the chain and wins
it. Formally, process pi wins chain l if i t re turns win from
executeChain(l). We refer to pi as a winner of chain l even
before it actually wins.

A process tha t is not in the remainder section, is ac-
cessing the last filter it called executeFilter for, and
the chain this filter belongs to. Chain 1 is busy if
Chains[l][startFilter[l]].turn ¢ .k and empty otherwise;
tha t is, the chain 's winner is accessing it.

For chain l, an execution is par t i t ioned into rounds. The
first round s tar ts at the beginning of the execution; a new
round s tar ts when chain ! becomes empty. A winner is ac-
cessing the chain unti l the end of the round. Fil ters in chain
i are counted relative to the value of startFil ter[l] at the
beginning of the round, where the first filter is counted 0. A
process enters chain I if i t enters the first filter of the current
round of chain 1. In the following, we refer to a single round
of a chain, lmless specified otherwise.

LEMMA 3.2. I f some process enters a chain, then exactly
one process wins it.

SKETCH OF PROOF. By the progress property, if some
process enters a filter then at least one process succeeds in
it. By the algori thm, the process tha t succeeds in Filters[r]
either wins the chain or enters Fil ters[r + 1]. Hence, in
any execution of the algori thm some process ei ther wins the
chain or enters Filters[[log k] + 1]. By the safety property,
at most one process enters Filters[[log k]]; this process suc-
ceeds in Filters[[log kq + 1], finds Filters[[log kl].e = f a l se
and wins the chain. Hence, some process wins the chain.

When a winner executes Line 5 and discovers tha t
F i l t e r s [c u r r - 1].c = fa lse , no process has failed in
Fi l ters[cur t - 1]. Therefore, no o ther process is currently in
Filters[curr]. The winner checks Fil ters[curr - 1].c after
set t ing Filters[curr].d to true. Hence, every process that
enters Filters[curr] from this point on, re turns f a i l in Line
3 of executeFilter and does not succeed in this filter. There-
fore, there is a single winner. []

The last l emma implies tha t no two processes have the same
name at the end of an execution prefix.

An execution interval of a process includes one i terat ion of
enter, critical section, and exit.

Therefore, if k processes enter a filter, the point content ion
during execution i terval of each entering process is at least
k. From the chain definition, if k processes enter a chain,
then the point content ion of the winner 's execution interval
is at least k. By the safety proper ty of a filter, at most
one process enters Filters[[logk]]; this process suceeds in
Filters[[log k] +1], finds Filters[[log k]].c = fa l se and wins
the chain. This implies the following lemma:

LEMMA 3.4. I f k processes enter the chain, then some
process wins the chain in [log k] + 2 filters.

From the last two lemmas we conclude tha t O(log k) filters
are required to determine the winner in a chain, where k
is the point content ion of the winner ' s execution interval.
By the t ime complexi ty proper ty of the filter, af ter O(1)
t ime units there is a process tha t succeeds in a single filter.
Therefore, we have the following lemma:

LEMMA
t ime units
contention

3.5. Some process wins the chain within O(log k)
after the chain became busy, where k is the point
of the winner's execution interval.

Thus, the system response t ime of our renaming algori thm
is O(log k). The following lemmas lead to the remote step
complexity of the algori thm.

LEMMA 3.6. I f some process Pi fails in Filters[r] of some
chain l, then there are processes Pmo, . . • ,Prn~_l that enter
and fail in Fi l ters[Of , . . . , Fi l ters[r - 1] of chain l, respec-
tively.

PROOF. We prove the l emma by induct ion on r. The base
case, r = 0 is trivial.

For the induct ion step, assume the l emma holds for
Filters[r], and consider Fil ters[r + 1]. By the progress
property, if pi fails in Fil ters[r + 1], then there is an-
o ther process pj that succeeds in Fil ters[r + 1]. By the
algori thm, bo th pi and pj succeed in Filters[r]. There-
fore, by the safety property, at least one process Pmr enters
and fails in Filters[r]. Thus, by the induct ion hypothe-
sis, there are processes Pmo, . . . ,Pm~_l tha t enter and fail
in Filters[Of Fi l ters[r - 1], respectively. Process Pmr
is not one of P m o , . - - , P m r - ~ , since it enters Filters[r], and
therefore succeeds in Filters[Of , Fi l ters[r - 1]. Thus,
there are processes Pmo, - - - ,pm._~ ,pm~ tha t enter and fail
in Fi l ters[Of , . . . , Fi l ters[r - 1], Filters[r], respectively. []

94.

T h e following l emmas argue a b o u t the en t i re execut ion of
a chain and not a single round of it. For a finite execut ion
prefix a ~, the cu r ren t round of chain l is the r o u n d of chain l
a t t he end of a~. W h e n e v e r we refei- to f i l ter r of a chain a t
the end of a~, we m e a n the r ' t h filter of the cu r r en t r o u n d
of th is chain.

Cons ider process pi accessing the r ' t h f i l ter of chain l a t t he
end of c~ ~. T h e location of pi a t a ~ is def ined as follows:
if pi is the winner of the cur ren t r o u n d of chain l t h e n i ts
loca t ion is ! o therwise i ts locat ion is l-t-r + 1. T h e loca t ion of
pi is u p d a t e d by execut ing Line 2 of executeFilter, if i t en te r s
the fi l ter a n d by execut ing Line 1 of executeFilter, o therwise .
Th i s implies t h a t p i ' s locat ion is i n c r e m e n t e d by a t mos t 1
in one s tep of pi .

T h e locat ion of filter r of chain l is l + r -I- 1.

Let o~ ~ be a prefix of c~ in which no process ha s loca t ion s,
and let c~" be the longest prefix of oJ in which chain s is
busy. By the defini t ion of locat ion, cha in s is e m p t y a t o/ .
L e t / 3 be the in terval be tween c~ ~ a n d oJ, t h a t is oJ = oJ~/3.
Note t h a t cha in s is emp ty in ~3.

LEMMA 3.7. The number o f processes wi th locat ions
s, . . . , c<~ at the end o f oJ is at m o s t the n u m b e r o f processes
wi th locat ions s , . . . , cxD at the end o f cr".

PROOF. By the definit ion of/3, the re is no process wi th
loca t ion s a t t he end o f /3 . Therefore , any process t h a t
changes i ts loca t ion from s - 1 to s in ,3 has loca t ion _> s + 1
a t the end of/3. Assume t h a t process pl ha s loca t ion L: s - 1
a t t he beg inn ing of/3 and has locat ion > s -t- 1 a t t he end of
/3. Cons ider the possible ways for pi to change i ts loca t ion
f r o m s t o s + l :

Case 1: pl fails in some filter wi th loca t ion s. Thus , pi
changes i ts locat ion to s + 1 only when it accesses t he first
fil ter of chain s, bu t i t is no t the winner of t he chain. How-
ever, when p, u p d a t e s i ts location, t u r n ~ .L for the first
f i l ter of chain s, con t rad ic t ing the fact t h a t cha in s is e m p t y
d u r i n g / 3 .

Case 2: pi succeeds in some filter wi th loca t ion s a n d en te r s
a fi l ter w i th locat ion s + 1. By p i ' s definit ion, i ts loca t ion is
< s a t t he beg inn ing of/3. Therefore , i t en te r s some filter
wi th loca t ion s and succeeds in i t in /3. However, by the
fact t h a t pl is no t the winner of chain s a n d by L e m m a 3.6,
the re is a process P3 t h a t enters and fails in t he same filter.
By L e m m a 3.3, pj accesses this fi l ter concur ren t ly wi th pi .
Hence, p j fails in some filter wi th loca t ion s a n d changes i ts
loca t ion f rom s to s + 1 in /3. However, such process does
not exist by the same a rgumen t s as for process pi in Case
2. []

For a n execut ion cr, let a m be the prefix w i th the first m
events of a . T h e next l e m m a is the key to showing t h a t the
s tep complexi ty a d a p t s to the point con ten t ion .

LEMMA 3.8. A s s u m e that process pl has locat ion si and
that the po in t con ten t ion dur ing p i ' s opera t ion is k , then

f o r every s ' _< si , the number o f processes wi th locat ions
s ' , . . . , oo is at m o s t k - s ' .

PROOF. T h e p roof is by induc t ion on the l eng th of the
execut ion prefix. Assume t h a t the l e m m a holds a f te r m
events , a m , a n d t h a t the (m + 1) th event in o~ is by process
pj (pj may be equal to pi). We only have to consider events
t h a t change the loca t ion of p j .

Assume th i s is the first ope ra t ion of pj in o~; t h a t is, p j
accesses fi l ter 0 of chain 0. By the def ini t ion of locat ion, the
loca t ion of p j is 1 if t u r n ~.1_ for th is filter, o therwise , i ts
loca t ion is 0. F rom the defini t ion of po in t con ten t ion , there
are a t mos t k - 1 o t h e r processes accessing chains a t the end
of am . Therefore , in the case p j has loca t ion 0, the claim
holds. If t u r n ~ . L at the end of otto+l, t h e n cha in 0 is busy
a t the end of am+a . Thus , there is a winner of chain 0 which
is act ive a t the end of o~m+l a n d has loca t ion 0. Therefore ,
the re are a t mos t k - 1 processes wi th locat ions 1 , . . . , oo a t
the end of a m + l a n d the claim holds.

Assume pj changes locat ion f rom s j - 1 to s j . If s j > sl , t h e n
the claim of t he l e m m a is no t affected. Therefore , a ssume
sj < si . By the induc t ion hypothesis , the re are a t mos t
k - s j + 1 processes wi th locat ions s j - 1 , . . . , oo a t the end
of am . If a t t he end of a~n+l there is some process still w i th
loca t ion s j - 1, t h e n a t the end of a m the re are a t least two
processes w i th loca t ion s / - 1 and thus, a t mos t k - s j - 1
processes w i th loca t ion s j , . . . ,exT. Therefore , a t t he end
of a m + l t he re are a t mos t k - s j processes wi th loca t ion
s j , . . . , c~ a n d the claim holds.

If a t t he end of a m + l there is no process wi th loca t ion s j - 1,
t hen by the def ini t ion of location, chain s j - 1 is empty.
W h e n chain s j - 1 becomes empty, the n u m b e r of processes
wi th loca t ions s j - 1 , . . . , oo is a t mos t (k - s j + 1) - 1. By
L e m m a 3.7, the re are a t mos t k - s j processes wi th locat ions
s j - 1 , . . . , (x~ a t the end of a m + l , and the claim holds. []

By th is l emma, if the poin t con ten t ion of p i ' s execut ion in-
terval is k, t h e n a t mos t one process accesses chain k - 1.
Therefore , if pl does no t win before chain k - 1, i t accesses
th is cha in a lone a n d thus wins it. Hence, we have the fol-
lowing corollary:

COROLLARY 3.9. I f the po in t con ten t ion dur ing pi 's op-
erat ion is k , then pi wins in chain l _< k - 1.

According to the a lgor i thm, if a process accesses m filters
in some chain and loses, it skips the following r n - 1 chains.
Therefore , the process reaches the chain i t wins a f t e r access-
ing a t mos t k + 1 filters. By L e m m a 3.4, i t accesses O(log k)
filters in the chain it wins. By the fi l ter 's code, each filter re-
quires O(1) s teps. Therefore , a process executes O (k) steps
before it wins some chain.

LEMMA 3.10. A process wins some chain w i th in O (k)
steps.

9 5

1

2 3

8 9 10 11 12 13 14 15

F i g u r e 1 : A n a d a p t i v e t o u r n a m e n t t r ee

3.2 An Adaptive Tournament Tree
After processes obtain names in the range 0, . . . , k - 1, the
process that enters the critical section is picked using an
adaptive tournament tree. The first mutual exclusion algo-
rithm that used a binary tournament tree is that given by
Peterson and Fischer [19]. Our tree is an adaptive variant
of the balanced binary tournament tree of Yang and An-
derson [21]. The tree we use is an unbalanced binary tree,
constructed from log N complete binary trees of exponen-
tially growing sizes (1, 2, 22, . . . nodes), which are connected
by a single path of nodes (Figure 1). In each inner node of
the tree, a fair two-process mutual exclusion algorithm (pro-
posed by Yang and Anderson [21]) is located. The algorithm
induces O(1) remote steps.

The leaves of the tree are the leaves of the complete binary
trees. The leaves are numbered from left to right, so the
leftmost leaf is the leaf of tree with size 1. The name ob-
tained by a process in the renaming algorithm determines
the leaf at which the process starts climbing up the tree: A
process with name xi enters the tree at the (xl + 1)th leaf.
A process performs the copies of the two-process mutual ex-
clusion algorithm associated with the nodes along its path
to the root, and enters the critical section by winning the
root of the tree.

Since a single process starts at each leaf, only one process
wins the root. The proof is similar to the tournament tree
presented by Yang and Anderson [21].

Appendix A defines the tree and explains why a process with
a name in the range 0 , . . . , k - 1 climbs at most 2 log k + 1
nodes.

At each node, the execution of two-process mutual exclusion
requires O(1) steps. This implies that a process enters the
critical section in O(log k) steps after it enters the tourna-
ment tree. The winner of each node is found in O(1) time
units, thus some process enters the critical section O(log k)
time units after some (possibly other) process enters the
tournament tree.

3.3 Complexity
Finally, we calculate the complexities of the algorithm. Let
k be the point contention during an execution interval of
process pl. By Lemma 3.10, pi is elected as a winner in
some chain within O(k) steps, and executes the tournament
tree in O(log k) steps. Thus, the remote step complexity of

the entry section is O(k). When exiting from the critical
section, pi cleans all the nodes of its path in the tournament
tree. The number of such nodes is O(log k). In addition, pi
updates the corresponding entry in startFilter. Therefore,
the exit section requires O(log k) steps.

By Lemma 3.5, in O(log k) time units the winner of a busy
chain is elected. In the next O(log k) time units the win-
ner of the tournament tree is determined (according to the
properties of the tournament tree). Thus, in O(log k) time
units some process enters the critical section.

4. BOUNDING THE NUMBER
OF FILTERS

The number of filters in a chain is bounded by recycling
previously used filters. A filter can not be simply recycled,
since slow processes may still be working in the filter. These
processes can corrupt the filter and confuse processes that
are re-using the filter. In our algorithm, the process that
exits from the critical section detects "slow" processes and
promotes them to enter the critical section, thus allowing
filters to be recycled. Similar ideas for memory reuse appear
in [1, 2, 11].

Instead of using an unbounded number of filters, a chain
has only 2N filters, which are used cyclically. Each filter in
the chain is associated with a unique process, namely, filter
r is associated with process prmodg. After executing the
critical section, a chain winner iterates through the filters
accessed in this round, from the filter it started from in this
chain to the filter it succeeded in. For each filter, it checks
whether the process associated with it is still active in the
current chain. If so, this process enters the critical section
immediately. We say that this slow process is promoted into
the critical section. After promoting a slow process, the
winner stops scanning and leaves. The promoted process
continues the scan from the same point upon exit from the
critical section. This "takeover" mechanism frees the winner
from waiting for the slow process to exit the critical section.

In addition to ensuring that recycled filters are free from
processes, i.e., no process is executing the filter's code, the
scan also initializes them. Since slow processes can corrupt
initialized filters, they re-initialize each filter they could have
dirtied upon leaving it.

The recycling algorithm guarantees that every time a new
round in the chain starts, the next N filters from the starting
filter of this round are free from processes and initialized.

The following shared variables are used by the algorithm.

- A n array of chains of filters C h a i n s [O , . . . , n -
1][0 , 2 N - 1]. Entry Chains[If[r] contains filter r
of chain I.

- An array busy[O,..., n - 1] of Boolean variables; all en-
tries are initially false. Entry busy[If indicates whether
chain I is busy.

- An array startFilter[O,..., n - 1] of integers; all entries
are initially 0. Entry startFilter[l] contains the index

96

of the filter in Chains[If where the last round started
in chain I.

- An array endFilter[O,. . . , n - 1] of integers; all entries
are initially 0. Ent ry endFilter[l] contains the index of
the filter in Chains[If where the last round ended in
chain I.

- An array nextToClean[O,.. . , n - 1] of integers; all en-
tries are initially 0. Ent ry nextToClean[l] contains the
index of the next filter in Chains[If that should be
cleaned (before the cleanup s tar ts this is the first used
filter in this round).

- An integer variable nextToEnter, initially _L, contains
the id of the process to be promoted. A process reads
this variable after each step and if it is equal to its
id, the process executes promotedEnter and enters the
critical section.

- An integer variable lastFreeChain, initially _1_, contains
the index of the last chain tha t became free. The vari-
able is used by the promoted process to continue the
cleanup protocol in this chain.

The startFilter array is the same as in the algorithm with
unbounded memory; the Chains array now has 2N filters in
each entry.

The code appears in two parts (Algori thm 2 and Algo-
r i thm 3). Since the cleanup is done by the process exiting
from the critical section, we present the code of the mutua l
exclusion algorithm rather than the code of the renaming
algorithm. Procedure getName is embedded into enter and
procedure releaseNarne is embedded into exit.

A slow process executes promotedEnter to enter the crit-
ical section and promotedExit to exit it. The code of
executeTournamentTree, cleanTournamentTree and islnChain
is omitted; their semantics is clear from their names. The
code of executeFilter appears in Algori thm 1.

Recall tha t for chain l, an execution is part i t ioned into
rounds. The first round s tar ts at the beginning of an ex-
ecution; a new round starts when busy[If changes from t r u e
to false . The following lemma is the key to showing the
correctness of the algorithm.

LEMMA 4.1. I f a round in chain 1 starts at the end of c~ ~
then the filters startFiltersfl] (startFiltersfl] ÷ N - 1)
m o d 2 N of chain I are free from processes at the end of c~'.

SKETCH OF PROOF. The proof is trivial when the second
part of the array is not used at the end of a ' . Let s tart
be the value of startFilters[l] at the end of or'. We consider
some process pl and show that pi is not accessing filters
s t a r t , . . . , (s t a r t + N - 1) mod 2 N at the end of a ' .

By the algorithm, filters (s tart - N) mod 2 N , . . . , (s tart -
1) mod 2N were in use after the filters s t a r t , . . . , (s t a r t + N -
1) mod 2N were in use last t ime before d . Between these
filters there must be a filter associated with pi. Thus, there

. A l g o r i t h m 2 Adaptive mutua l exclusion with bounded
memory (part 1)

private variables
l : integer

procedure enter()
1: l := 0
2: index:= - 1
3: repeat
4: l : = l + i ndex+ 1
5: if (! busy[If) then
6: busy[If := t r u e
7: (result, index) := executeChain(l)
8: else index := 0
9: unt i l result = w i n
10: executeTournamentTree(l)

/ / e x e c u t e the tou rnamen t tree from l ' th leaf

procedure exit()
1: nextToClean[l] := startFilter[l]
2: if cleanOsedFilterslnChain(l) then
3: clea nTourna ment'l-ree(l)
4: startFilter[l] := (endFilte,[l] + 1) m o d 2 N
5: busy[l] := fa lse

procedure executeChain(l)
1: Filters := Chains[If
2: curr := startFilter[l]
3: while (t r u e)
4: if executeFilter(Filters[curr]) = w i n then
5: if curr ~ startFilter[l]

and ~Filters[curr - 1].c then
6: endFilter[l] := curr
7: re turn (win , (curt - startFilter[l]) rood 2N)
8: else(curr + +) rood 2N
9: else re turn (lose, (cur t - startFilter[l]) mod 2N)
10: endwhile

is a prefix or" of a ~ such that the entry associated with pi was
cleaned at the end of a " and the filters s t a r t , . . . , (s tart +
N - 1) mod 2N are not used in the interval between a " and
a t. The cleanup protocol ensures tha t either pi was not in
chain at the end of a", or it was promoted to enter the
critical section in a" . Thus there is a point in the interval
between a " and a when pi is not in the chain.

Hence, if process pi is accessing chain l, it began to do this
after c~". By the algorithm, filter (s tar t - 1) rood 2N is the
filter where the winner has succeeded in the previous round
in chain I. A process can enter filter r of the chain only by
succeeding in (r - 1) mod 2N. In addition, a process cannot
pass the filter where the winner of the round has succeeded
in. Therefore, at the end of or', pl has not passed filter
s tar t and is not accessing the filters s t a r t , . . . , (s tart + N -
1) rood 2N at the end of or'. Thus, filters startFilters[l], . . . ,
(startFilters[l] + N - 1) m o d 2 N are free from processes at
the end o f a ~. []

A slow process can determine whether the round in the
chain it is accessing has changed by checking if the value
of startFilters[l] changed since it began chain I. It performs

9 7

A l g o r i t h m 3 Adaptive mutual exclusion with bounded
memory (part 2)

procedure promotedEnter(filter)
/ / e n t r y section for promoted process

1: cleanFilter(filter)

procedure promotedExit 0
/ / exit section for promoted process

1: nextToEnter =_L
2: l := lastFreeChain
3: if cleanUsedFilterslnChain (l) then
4: cleanTournamentTree(l)
5: startFilter[l] := (endFilter[l] + 1) mod2N
6: busy[l] := fa lse

procedure cleanUsedFilterslnChain(l) / / c l e a n used filter
1: repeat
2: if nextToClean[l] ~ id

and islnChain(nextToOlean[l]) then
3: lastFreeChain := l
4: nextToEnter := nextToClean[l]
5: return fa lse
6: cleanFilter(Chains[l][nextToClea,[l]])
7: nextToOlean[l] := (nextToClean[l] + 1) mod2N)
8: until (nextToOlean[l] = endFilter[l])
9: return t r u e

procedure cleanFilter(filter)
1: filter.b = fa lse
2: filter.d = false
3: filter.c = fa lse
4: filter.turn = _L

/ / c l e a n a specific filter

this check each time before moving to the next filter in the
chain. If the value does not change, then this is still the
same round in the chain.

Cleanup guarantees that before startFilters[l] gets the same
value again, the entry associated with the process was
cleaned, and if the process was still in the chain, it was
promoted to enter the critical section.

Procedure cleanUsedFiltersChain preserves mutual exclusion,
because the chain is busy as long as the last filter of tiffs
round is not cleaned yet. Therefore, it is not possible that
one process enters the critical section via prornotedEnter, and
the other via regular enter. The cleanup stage is the ordy
change to Algorithm 1, and by Lemma 4.1 there are enough
free filters at the beginning of each round. Therefore, Algo-
rithm 2 guarantees mutual exclusion.

The remote step complexity of cleanUsedFiltersChain is
O(log k) since a process cleans O(log k) filters and each fil-
ter is cleaned O(1) steps. The space complexity of the algo-
rithm is dominated by the size of the array Chains, which
is O(nN).

5. REDUCING THE SPACE COMPLEXITY
The space complexity of our algorithm is a function of N,
the range of process names; N may be very large compared
to the total number of processes, n. Thus, transforming the

A l g o r i t h m 4 Procedures for one-shot renaming.

procedure getSmallName()
1: ch := entryChain
2: index:= - 1
3: result := lose
4: repeat
5: ch := ch + index W 1
6: if (ch < entryChain)
7: ch := entryChain
8: (result, index) := executeChain(gamesChains[ch])
9: until result = win
10: name := ch

procedure updateEntryChain 0
1: if (entryChain < name)

/ / m o v e the next chain after name, if it was before
2: entryChain := name + 1

space complexity of the algorithm to be a function of n,
could improve it significantly. This is done by having each
process execute one-shot n-renaming before its first entry to
the critical section, and using the obtained name from there
on. Once a process receives a name, it never releases this
name.

The step complexity of known one-shot renaming algorithms
depends on the number of allocated names. Since processes
that exit the critical section do not release their names, em-
ploying one of these algorithms will cause the step complex-
ity of the resulting mutual exclusion algorithm to depend on
n and not on k.

The solution employs the fact that one-shot renaming is used
as part of a mutual exclusion algorithm. We introduce a one-
shot non-wait-free n-renaming algorithm, with O(log k) sys-
tem response time and O(k') remote step complexity, where
k ~ is the interval contention.

This algorithm uses the same array of chains of filters as
long-lived renaming algorithm described in Section 3. Unlike
the long-lived renaming algorithm, the entry point to the
array, which is initially the first chain, is not fixed. Each
process that leaves the critical section makes sure that the
entry point to the next chain is after its name.

The data structures that serve the one-shot renaming algo-
rithm (which are distinct from those used by the mutual ex-
clusion algorithm itseff) are as follows. The array of chains
is the NamesChains array. A new shared integer variable
entryChain contains the index of the Chain from which the
next call to getSmaHName starts to execute.

Algorithm 4 contains the code of procedures getSmallName
and updateEntryChain. Procedure enter should be modified
to check whether the process has a small name and call
getSmallName if it does not. Hence, getSmallName is called
only when the process executes enter for the first time. After
that, the name of the process remains the same throughout
the algorithm. Procedure updateEntryChain is called by each
process upon exit from the critical section.

The properties of chains that have been proved for our first

98

algorithm guarantee that n o t w o processes receive the same
name, and that the range of names is 0 , . . . , n - 1.

A process that s tar ts getSmalIName skips the names occu-
pied by inactive processes. This makes the remote step com-
plexity of getSmalIName be O(k') , where k ' is the interval
contention. Thus, O(k') is the remote step complexity of the
first call to enter. The remote step complexity of all subse-
quent calls to enter does not change. Since getSmalIName is
called only once, the amortized remote step complexity of
the algorithm is not affected.

The mechanism for updat ing and checking the entry chain
turns the system response time of getSmallName to be iden-
tical to the system response time of the algorithm from Sec-
tion 3. Therefore, the system response time of the whole
algorithm remains O(log k), where k is a point contention.

The space complexity of the one-shot renaming algorithm is
O(n log n), since n chains are used and each chain contains
log n filters. The space complexity of our mutual exclusion
algorithm is n times the range of names, that is, O(n2).

6. DISCUSSION
We presented a mutual exclusion algorithm which adapts to
point contention; this is the strongest notion of adaptiveness
known in the literature. The algorithm has O(k) remote step
complexity and O(log k) system response time. We showed
how to make the space complexity of the algorithm depend
only on n.

Cypher [12] has shown that there is no mutual exclusion
algorithm with constant remote step complexity. It is an
obvious open problem to improve the remote step complex-
ity of our algorithm or to show that it is optimal.

Anderson and Kim [7] mention an algorithm with O(k) re-
mote memory references, however, the system response time
of this algorithm is O(k). Since two process mutual exclu-
sion of Yang and Anderson is used in the nodes of our adap-
tive tournament tree, it has O(log k) remote memory refer-
ences. Thus, designing a long-lived renaming algorithm with
adaptive number of remote memory references and system
response time of O(log k) will result in a mutual exclusion
algorithm with the same properties.

7. REFERENCES
[1] Y. Afek, H. Attiya, A. Fouren, G. Stupp, and

D. Touitou. Adaptive long-lived renaming using
bounded memory. Unpublished manuscript available
at
www.cs.tech nion.ac.il/,,~hagit/pu bs/AAFST99disc.ps.gz,
Apr. 1999.

[2] Y. Afek, H. Attiya, A. Fouren, G. Stupp, and
D. Touitou. Long-lived renaming made adaptive. In
Proceedings of the 18th Annual ACM Symposium on
Principles of Distributed Computing, pages 91-103,
1999.

[3] Y. Afek, G. Stupp, and D. Touitou. Long-lived
adaptive splitter and applications. Unpublished
manuscript, Dec. 1999.

[4] Y. Afek, G. Stupp, and D. Touitou. Long-lived and
adaptive collect with applications. In Proceedings of
the 4Oth IEEE Symposium on Foundations o]
Computer Science, pages 262-272, Oct. 1999.

[5] R. Alur and G. Taubenfeld. Results about fast nmtual
exclusion. In Proceedings o] the Real-Time Systems
Symposium, pages 12-22, Dec. 1992.

[6] J. Anderson and Y. J. Kim. Fast and scalable mutual
exclusion. In Proceedings of the 13th International
Symposium on Distributed Algorithms, pages 180-194.
Springer-Verlag, Sept. 1999.

[7] J. Anderson and Y.-J. Kim. A new fast-path
mechanism for mutual exlusion. Unpublished
manuscript, 1999.

[8] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and
R. Reischuk. Renaming in an asynchronous
environment. J. A CM, 37(3):524-548, July 1990.

[9] H. Att iya and A. Fouren. Adaptive wait-free
algorithms for latt ice agreement and renaming. In
Proceedings of the 17th Annual ACM Symposium on
Principles of Distributed Computing, pages 277-286,
1998. Full version available at
www.cs.tech nion.ac.il/~hagit/pubs/AF98rev.ps.gz.

[10] J. E. Burns and G. L. Peterson. The ambiguity of
choosing. In Proceedings of the 8th Annual ACM
Symposium on Principles of Distributed Computing,
pages 145-158, 1989.

[11] M. Choy and A. K. Singh. Adaptive solutions to the
mutual exclusion problem. Distributed Computing,
8(1):1-17, 1994.

[12] R. Cypher. The communication requirements of
mutual exclusion. In Proceedings of the 7th Annual
ACM Symposium on Parallel Algorithms and
Architectures, pages 147-156, 1995.

[13] E. W. Dijkstra. Solution of a problem in concurrent
programming control. Commun. ACM, 8(9):569, 1965.

[14] M. Herlihy. Wait-free synchronization. A CM Trans.
Prog. Lang. Syst., 13(1):124-149, Jan. 1991.

[15] L. Lamport. A new solution of Dijkstra 's concurrent
programming problem. Commun. A CM,
18(8):453-455, Aug. 1974.

[16] L. Lamport. A fast mutual exclusion algorithm. A CM
Trans. Comput. Syst., 5(1):1-11, Feb. 1987.

[17] M. Merrit t and G. Taubenfeld. Speeding Lamport ' s
fast mutual exclusion algorithm. Inf. Process. Lett.,
45, 1993.

[18] M. Moir and J. H. Anderson. Wait-free algorithms for
fast, long-lived renaming. Sci. Comput. Programming,
25(1):1-39, Oct. 1995.

[19] G. L. Peterson and M. J. Fischer. Economical
solutions for the critical section problem in a
distributed system. In Proceedings of the 9th A CM
Symposium on Theory of Computing, pages 91-97,
1977.

99

[20] E. Styer. Improving fast mutual exclusion. In
Proceedings o] the 11th Annual ACM Symposium on
Principles of Distributed Computing, pages 159-168,
August 1992.

[21] J.-H. Yang and J. Anderson. A fast, scalable mutual
exclusion algorithm. Distributed Computing,
9(1):51-60, Aug. 1995.

APPENDIX
A. AN ADAPTIVE TOURNAMENT TREE
Our adaptive tournament tree is similar to the adaptive tree
used for lattice agreement [9]. This is an unbalanced binary
tree T~ defined inductively as follows: To consists of a root
v0 with a single left child. For r >_ 0, suppose Tr is defined
with an identified node v~, which is the last node in the in-
order traversal of Tr; notice that vr does not have a right
child in T~. T~+i is obtained by inserting a new node vr+l
as the right child of v,., and inserting a complete binary tree
C~+i of height r + 1 as the left subtree of v~+l. By the
construction, vr+l is the last node in an in-order traversal
of T~+i.

By the construction, the leaves of Tr are the leaves of the
complete binary subtrees Co, C1, . . . , Cr. Therefore, the to-
tal number of leaves in Tr is ~ = 0 2j = 2"+1 - 1. The proof
of the next lemma appears in [9].

LEMMA A.1. Letw be the i-th leaf of T,. , 1 < i < 2~+1-1,
counting from left to right. Then the depth o] w is 2[log iJ +
1.

We use Tlog n, which has n leaves (for simplicity, we assume
that n is a power of 2).

A process with a new name xi starts the algorithm at the
(xi -4- 1)th leaf of the tree, counting from left to right. Since
k < n, ~ o g , has enough leaves for names in a range of size
k.

By Lemma A.1, a process starts in a leaf of depth at most
2 Llog kJ -4-1 . Therefore, pi accesses at most 2 log k-t- 1 nodes.

100

