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ABSTRACT

Manufacturing, automotive, and aerospace environments use em-
bedded systems for control and automation and need to fulfill strict
real-time guarantees. To facilitate more efficient business processes
and remote control, such devices are being connected to IP net-
works. Due to the difficulty in predicting network packets and the
interrelated workloads of interrupt handlers and drivers, devices
controlling time critical processes stand under the risk of missing
process deadlines when under high network loads. Additionally,
devices at the edge of large networks and the internet are subject
to a high risk of load spikes and network packet overloads.

In this paper, we investigate strategies to detect network packet
overloads in real-time and present four approaches to adaptively
mitigate local deadline misses. In addition to two strategies miti-
gating network bursts with and without hysteresis, we present and
discuss two novel mitigation algorithms, called Budget and Queue
Mitigation. In an experimental evaluation, all algorithms showed
mitigating effects, with the Queue Mitigation strategy enabling
most packet processing while preventing lateness of critical tasks.
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1 INTRODUCTION

Safety-critical application areas like plant floors, automotive and
aerospace use embedded real-time systems for control, monitoring
and automation [5, 12]. With the advent of the industrial Internet
of Things (IoT), industrial control systems are connected to large
IP networks [9]. Receiving network traffic is accomplished by trig-
gering interrupts for incoming network packets which preempts
the process currently running on the assigned core independent
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of its priority. However, the timing and load of network packets
is difficult to predict. Connecting the used microcontrollers with
low processing power to IP networks might expose critical infras-
tructure to the traffic patterns of a larger network or the internet.
Hence, the impact of networking might break real-time guarantees.

When a device is subject to high packet loads, local processes
can be fully preempted by interrupt service routines (ISRs) and
driver processes, amounting to a denial of service (DoS) whether
maliciously or by network fault. In real-time scenarios this becomes
especially relevant as unpredictable processing delays can have
deadline breaking effects [1]. Mission critical and hard real-time
devices must therefore detect high network loads and mitigate their
consequences with limited processing resources.

Mitigating the effect of network-generated interrupts from soft-
ware in a real-time operating system is challenging as the timing
impact of mitigation techniques themselves has to be kept mini-
mal. They are furthermore restricted to react after interrupts have
already occurred as this is controlled by hardware.

Addressing this, our paper presents:

o Three metrics for detecting amounts of network traffic that
may jeopardize the local real-time guarantees: The network
interrupt count, receive queue fill state, as well as the lateness
of critical processes.

e Four techniques to mitigate the impact of high packet loads
while maintaining the network services on a best-effort ba-
sis. Burst Mitigation caps packets received per time slice,
Hysteresis Mitigation puts lower and upper boundaries on
earliness, the novel Budget Mitigation calculates how much
time is left for handling interrupts, and finally, the novel
Queue Mitigation uses the queue fill-state as an indicator for
interrupt activity.

e Experiments evaluating the four mitigation techniques on
the real-time operating system FreeRTOS.

Outline. Section 2 presents three detection metrics and four mitiga-
tion techniques. We then evaluate the approaches in Section 3. The
results are discussed in Section 4. We give an overview of related
work in Section 5, while Section 6 concludes this paper.
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2 APPROACH

In the following section, we present detection techniques and miti-
gation algorithms to handle network-generated interrupt floods in
real-time systems.

2.1 Detection

To prevent a critical task from being drowned by network interrupts,
we first need to detect such a situation. There are several different
direct or indirect metrics we can use to do that.

Early- or Lateness. The most direct metric is the critical task’s early-
or lateness. In many real-time systems, a process periodically per-
forms a critical computation, targeting to finish it within a fixed
duration. When the critical task completes this computation in time
(i.e. in less time than the target duration), we have positive earliness,
defined as the target duration minus the actual time spent. When,
however, the critical task exceeds its target duration, it incurs late-
ness, defined as how much longer it took than targeted. We will
express lateness as a ratio of the critical task’s target duration, e. g.
100% lateness means it took twice as long as intended.

This metric very directly corresponds to what we are trying
to detect but also has a few drawbacks: For once, it introduces
latency as processes can only report earliness/lateness once per
task cycle. Thus, mitigation techniques might need to be overly
cautious (disabling networking while there is still some earliness)
because otherwise, it will react too late, when lateness already crept
in. Additionally, there is the more practical concern that the metric
may be hard to come by in real systems since somehow, the metric
must be reported. We may thus call mitigation techniques relying
on this cooperative.

Network Interrupt Count. A less direct metric is the number of
incoming interrupts, discretized by dividing time into fixed time
slices and counting network interrupts in them.

The number of interrupts can be easily counted since Interrupt
Service Routines (ISRs) often run custom code anyway. Since many
network interrupts occur per time slice, the metric’s resolution is
equally high. Timing precision is not crucial because misattributing
the first few packets to the passed time slice does not introduce
significant errors.

The drawback of this metric is that it only correlates with the
situations we are trying to prevent if certain preconditions are
true: The network interrupt count shows approximately how much
strain the interrupts are putting on a CPU. We can thus estimate
overall system resource usage if the resource requirements of the
critical task stay approximately the same for each of its cycles. The
first precondition, therefore, is that the critical task has to require
the same amount of resources at all times — mitigation techniques
relying on this can not react elastically to load change. Furthermore,
this metric assumes that the processing of each packet takes about
the same time. Mitigation techniques using this metric can only
be effective if the ensemble of incoming packets is homogeneous
enough such that the assumption that each packet takes approxi-
mately the same time to process is either true or practical because
of the regular distribution of packet response time.

Network Receive Queue Fill State. A third possible metric is detecting
if the queue of received packets to be processed by the network
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driver is full or not. The queue fill state shows whether the network
driver can keep pace with the incoming packets. If more packets
arrive than the network driver can handle, the queue will fill up
until it reaches maximum capacity; it would empty in the opposite
case.

Of course, the queue’s capacity impacts the quality of this metric.
With a queue capacity that is too low, the metric will show satura-
tion even for short bursts of packets that are not representative of
the overall traffic pace. Low queue sizes will also lead to saturation
if the scheduler did not wake up the network driver for some time.
If, conversely, the queue is too large it acts as a cushion and will
delay alerting by filling up, allowing the network routines to stay
activated for longer than is prudent.

The metric scales well in terms of packet response time deviation
and elastic critical loads because it directly mirrors the ability of
the network driver to process incoming traffic. It has to be coupled
with a mechanism like scheduler priority that moderates network
driver execution such that an appropriate resource ceiling is found
for the tasks.

2.2 Mitigation Techniques

In the following, we present four different mitigation techniques.
With the Burst Mitigation, we suggest a technique that prevents
unresponsiveness in case of short packet bursts. The Hysteresis
Mitigation controls the networking tasks based on the early- or
lateness of the critical task. This idea taken further, the novel Budget
Mitigation attempts to balance out the networking part and the
critical task by assigning a networking budget to the driver that is
derived from the critical task’s earliness. Finally, the novel Queue
Mitigation takes a step back and explores a different way to detect
high load, enabling a simple yet effective mitigation technique.

Burst Mitigation. Burst Mitigation is a simple approach to deal with
very high packet loads in short periods. Conceptually, time is split
into fixed time slices, each having a fixed maximum packet capacity.
The network ISR tracks these time slices by querying the operating
system for the tick count each time it is invoked, starting a new
slice if enough time has passed since the start of the last one. In
each slice, the number of packets is counted. If this packet count
surpasses the fixed capacity, network interrupts are disabled until
the start of the next time slice. We visualize this in Figure 1: The
length of each time slice is 20ms and the curve plots the number of
received packets in each slice. The red zone on top is off-limits —
when 600 packets are reached, interrupts are disabled.
Technically, the maximum number of packets that are accepted
in a very short amount of time may be up to twice as large as
the capacity limit. To see this, consider the following case: When
capacity-many packets arrive directly at the end of one slice, the
counter is reset immediately after that burst, allowing another burst
of up to capacity-many packets. However, since the limit must be
tuned manually anyway, this is not important conceptually.

Hysteresis Mitigation. When the network load exceeds the trigger
capacity for the Burst Mitigation by a small amount, network in-
terrupt activation will oscillate quite a bit. We used the number of
packets per time frame to detect whether we had to act to maintain
the local real-time guarantees. This, however, is just an imperfect
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Figure 1: Burst Mitigation: Visualization of time slices.
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Figure 2: Hysteresis Mitigation: Late- / earliness on a scale
with the block and unblock thresholds.

proxy for the metric we are actually interested in: The critical task’s
performance, i. e. the lateness of the critical task. Therefore, we
based this mitigation on it.

Hysteresis is a popular technique for controlling processes [7].
It defines two thresholds: A maximum allowable threshold for a
metric above which whatever action contributing to the rise of
that metric will be ceased and a minimum threshold below which
the action will be re-started. We use the lateness/earliness metric
reported by the critical task, i.e. how much time is left in the time
slice when the task has been accomplished as the hysteresis control
metric. Once the earliness falls below the minimum allowable value,
we stop processing new packets in the network driver, deactivate
interrupts from there and wait (in a loop that sleeps for some time
in every iteration) for the critical task to report an earliness higher
than the threshold.

Budget Mitigation. This novel mitigation technique ties the earli-
ness metric more closely to the amount of work that is permissible
within the network subsystems. For example, there could be a local
critical task load that uses up 90% of computation time per cycle.
Even a minuscule network load could then lead to the Hysteresis
Mitigation permanently disabling the network. Furthermore, we
wanted to use the late-/earliness metric to react more responsively
to elastic loads.

Budget Mitigation is another cooperative approach. The critical
task reports its earliness to the network driver after each completed
cycle of computation. This earliness is interpreted as the time bud-
get of the network driver. The driver will measure the time of its
operations and subtract that from the latest budget. Once the budget
is depleted, the network subsystems will be suspended (including
the interrupts) until a new earliness notification is issued. For this
mitigation to work, we set both the critical and the network driver
task to equal priorities such that the network driver has a chance
to deplete its budget after which it will actively yield to the critical
task. This is an important tweak since the Budget Mitigation acts
as a specialized scheduler by deciding when the network subsys-
tem has to cease to operate. It would otherwise be defeated by the
scheduler’s time slice logic.

Queue Mitigation. We looked at three mitigation techniques so far
— a very simple approach that requires a manual definition of a
capacity limit and two cooperative ones that require communication
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Figure 3: Budget Mitigation: Timelines of tasks on CPU. The
network driver can preempt the critical task until its budget
is depleted.
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Figure 4: Queue Mitigation: After the packet queue fills up, all
incoming packets are dropped until it is empty again.

with the critical task. With Queue Mitigation, we propose a new,
more universal, yet effective non-cooperative mitigation.

This mitigation technique is based on the simple observation
with regards to the network queue we made in Section 2.1: The
network driver can keep up with the traffic when the packet queue
is not full. Thus, with queue mitigation, we simply disable network
interrupts if they fail to put a packet into the queue (because it was
already full) and only re-enable the interrupts from the driver once
it has processed all queued packets.

When using this mitigation technique, we assign a higher pri-
ority to the critical task. As a result, the network driver is the first
process running out of time when CPU resources get scarce or the
interrupt frequency rises. The direct effect is that the queue fills
up. With a reasonable queue size, the networking is then disabled
before the critical task is too stressed, thus protecting the critical
task from interrupt overload.

3 EVALUATION

To investigate the effectiveness of the presented metrics and tech-
niques, we test on the ESP32 microcontroller. The controller is a
common ARM-based development board with two CPU cores and
the lightweight FreeRTOS operating system. FreeRTOS provides
basic task scheduler and interrupt management as well as some data
structures for our application. The multi-core platform allows us to
separate the traffic generator from the traffic consumer by placing
each on one of the two cores. A local task simulating time-critical
computation is additionally placed on the consuming core such
that both compete for CPU time.

In our test setup, the interrupt handler fills up a FreeRTOS queue
while the network driver empties it, thus processing the incoming
data. This allows us to analyze the effect of both, the interrupts and
the driver on the critical computation load.

The traffic generator running on the second core generates net-
work loads with a pyramid-shaped load pattern. It sets a GPIO pin
to high for each received packet, triggering a GPIO interrupt on
the other core over a GPIO bridge. There, the network simulator
synthesizes a TCP SYN packet and places it into a queue for con-
sumption by the network driver which acknowledges the packet’s
arrival. Meanwhile, the observed critical task (also running on the
first core) calculates an ascending series of binomial coefficients to
generate an equal work load for each task cycle. Its goal is to reach
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a target (n, k) in a small time frame of 10ms. If the target is reached
before the permissible time expired, the critical task will sleep the
remaining time and start over in the next period. If, however, the
critical task fails to reach its target in time, it will accumulate late-
ness, i.e. continue until it reached the target values and then start
its new period immediately. Figure 5 provides a graphical overview
of this setup.
The amount of

e interrupts triggered on the second core
e interrupts executed on the first core

o packets processed in the network driver
e critical task cycles

e accumulated critical task lateness

are saved into atomic variables of a monitoring routine running on
core 1. Every second, the controller reports these variables via the
serial interface and then clears the counters.

The design imposes a few limitations: First, it does not account
for interrupt sources other than network interrupts. However, in
high network load situations, network interrupts should signifi-
cantly outnumber other interrupts such that this is not too much
of a problem (for reference, in a typical FreeRTOS system there are
1000 background interrupts per second to control the scheduler, in
contrast to 100,000 network interrupts in high-load scenarios [4]).

Secondly, the critical task may only use one core since we need
one of the ESP32’s cores for traffic generation and analysis. We
believe that this is not a significant drawback since most current
microcontrollers remain single-cored [3].

Scheduler. Before diving into custom mitigation techniques, we
take a look at the built-in FreeRTOS-Scheduler as a baseline. The
option to assign (different) priorities to the critical task and network
driver is a first, simple way to balance them out.

As a baseline, we tested how the system performs when both
tasks are assigned equal priority. As expected, the critical task
started to incur significant lateness (up to 500%), while the network
driver was able to process almost all packets. Next, we tested a
configuration where the critical task has higher priority than the
network driver. Interestingly, this alone brought the lateness down
to almost zero.

A slight lateness of about 8% is observed when the number of
packets per second exceeds 50, 000, cf. Fig. 6b). At the same time,

CORE 0

[E] Critical Task:

performs dummy

calculations

CORE 1

|
Network simulator: GPIO bridge | Traffic Generator:
Handles GPIO interrupts | Controls GPIO interrupts

FreeRTOS Queue
Network driver:
Processes queued packets

Figure 5: Setup used to simulate different interrupt load sce-
narios on the ESP32 SoC.
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Figure 6: Performance of the scheduler and Burst Mitigation

the number of packets processed by the driver is far lower than
previously, dropping even more as the interrupt count rises (cf. Fig.
6a).

Burst Mitigation. We evaluated Burst Mitigation with a capacity of
600 packets per 20ms. We assigned a higher scheduler priority to
the critical task since even though we disable the network interrupts,
the network driver still processes queued packets. By setting the
priorities in favor of the critical task, we inhibit not only the ISR
but also the driver from taking too much time off the critical task.

Figure 6c shows the number of sent, received, and processed
packets we measured with the stated parameters. The number of
received packets per second does not exceed 30, 000, as is expected
from 600 packets per 20ms. In this experiment, the critical task
did not introduce lateness, demonstrating the effectiveness of the
mitigation when the parameter value is well chosen. In further tests,
we measured that raising the packet capacity significantly leads
to lateness, showing that 30, 000 is the optimal condition for our
setup.

Hysteresis Mitigation. The network driver’s throughput does not
stabilize as it does with the Burst Mitigation but instead plummets
as the increased interrupt count puts sustained load on the CPU core
Figure (cf. 7a). This does not meet expectations as interrupts should
be turned off together with the processing in the network driver
by the mitigation algorithm. It turns out that the interrupts, once
reactivated, will drown out the network driver where the thresholds
are checked. Once the network driver is permanently preempted
by ISR executions, the mitigation algorithm can no longer take
into effect, explaining why the interrupt count curve starts to fit
the sent packet curve again. Nevertheless, Figure 7b shows that
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Figure 7: Performance of Hysteresis and Budget Mitigation

the Hysteresis Mitigation is quite effective in preventing lateness
except when the load of interrupts itself throttles network driver
execution.

Budget Mitigation. Figure 7c shows that once the budget is depleted
for the first time, there is a drop in received and processed pack-
ets, beyond which both curves continue to track the trend of sent
packets. The slope of the received/processed curves is less steep
than that of the sent packets, suggesting that the budget has a mod-
erating impact but cannot lower the network subsystem activity
enough for the real-time guarantees to be maintained. For each
additional packet received, 0.76 additional packets are processed.

Figure 7d shows that the overestimation of the budget per addi-
tional incoming packet leads to eventually breaking the real-time
guarantees for high loads.

Queue Mitigation. We evaluated the Queue Mitigation with dif-
ferent queue sizes. Figure 8 depicts the packet numbers with a
queue size of 500. While the network stack is not able to cope with
all incoming packets once they rise above 30, 000 per second, the
processed packets nicely trace the received packets.

At the same time, the critical task incurred no lateness in this
setup. Queue Mitigation was thus able to process far more packets
than Burst and Hysteresis Mitigation while protecting the critical
task more effectively.

We also tested smaller and larger queue sizes. Reducing the queue
size to 100 diminished packet throughput, but added no lateness.
This is because a smaller queue makes the mitigation more cautious
as the queue fills up faster. We observed the opposite effect with a
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Figure 8: Queue Mitigation: Number of sent, received, and pro-
cessed packets (higher priority for critical task, queue size
500). The lateness remained at zero.

queue size of 750. Lateness started to emerge because the mitigation
reacted belatedly.

4 DISCUSSION

Using only the scheduler, no priority configuration led to particu-
larly good results—with either lateness or very little packet through-
put. Additionally, its priorities cannot mitigate the problem of in-
terrupts drowning the process, since ISRs always run above the
process priority space. However, the scheduler priorities can still
aid actual mitigation techniques in balancing out the critical task
and network driver, as we will show later. Burst Mitigation allows
to avoid drowning all other computation in interrupts, but depend-
ing on how the threshold was chosen, much time is spent in the
ISR receiving packets that cannot be processed in time.

Hysteresis Mitigation can be effective in environments without
network interrupt loads able to drown the network driver task. In
a high-load environment, it has to be coupled with an interrupt-
reducing mechanism like Burst Mitigation in the ISR, which re-
moves some of the advantages of stand-alone usage tested above.

Unlike the Burst Mitigation, the mechanism does not require
any knowledge about system throughput - the required threshold
constants generalize better across platforms with differences in
processing power and are more closely aligned with the goal of
minimizing lateness.

The Budget Mitigation, not unlike the FreeRTOS scheduler, accu-
mulates more lateness the higher the load, the link is approximately
linear. This is due to its underestimation of packet processing time
mentioned in Sec. 3. The behavior can partially be explained by the
fact that only the activity in the driver and not in the ISR is timed
due to implementation difficulties. The ISR activity thus does not
impact budget consumption.

The characteristics of earliness as a reporting mechanism are also
crucial: Our critical task reports the difference of the timestamps
between cycle termination and cycle target, not the time spent on
the critical task alone. If, therefore, the network driver has been
allocated a large budget in one cycle, it will compete with the critical
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task for processing time, leading to it closely matching its deadline,
and reporting little earliness. The critical task can then terminate
early the next cycle because the network task had a small budget,
introducing oscillations in the budget ceiling.

Queue Mitigation always keeps the critical task on time while
the packet throughput remains at a constant level. The number of
packets received by the ISR and processed by the driver is almost
equal. This indicates that interrupt handling and processing in the
driver are well-balanced.

Alas, with Queue Mitigation there is still a hyper-parameter we
need to tune, as with Burst Mitigation. However, we argue that the
queue size is a parameter that must be defined in any case, with
any mitigation, and as argued in Section 2.1 defining a fixed queue
length still leaves the system more flexible and elastic than defining
a fixed burst capacity.

5 RELATED WORK

The authors of [10] present rate-limiting schedulers (both in soft-
ware and hardware) and a burst scheduler, which is very similar
to our Burst Mitigation. However, in comparison to our mitiga-
tion techniques, their approach is not specifically tuned to network
interrupts and as such cannot use metrics like the queue fill state.

Many approaches to solving the problem of high interrupt counts
breaking real-time priorities include extending the system with
additional hardware. The Peripheral Control Processor is a proposed
co-processor that executes interrupts and remaps priorities to unify
the priority space between tasks and interrupts [11].

FPGA hardware monitoring and controlling the interrupt’s exe-
cution of a connected microcontroller [13] can be a viable strategy.
Although the proposed soft- and hardware interrupt limiters per-
form very well, the downside is the increased system cost.

To analyse real-time behaviour under different network loads
and hardware configurations [2] presents a playground for network
interrupt experiments in IoT environments. The tool allows to run
experiments on real-time embedded systems with different network
interface controller implementations, load generators and timing
utilities.

The approach of [8] simulates control and background traffic to
a hypothetical critical power plant control system that is exposed to
the internet and as such a target of DoS attacks. The paper presents
a interrupt-overload detection. However, its mitigation techniques
have the same limitations as our Burst and Hysteresis mitigation.
The high processing power requirements are addressed by putting
a more powerful router between the network and the embedded
devices.

The router strategy is extended by [14]. The paper demonstrates
how to use a software-defined network architecture for edge DDoS
protection, possibly leveraging infrastructure that is already in
place.

Detection can be refined by using LSTMs and CNNs for traffic
classification [6]. Here, packets are passed through the closest edge
server for execution of the models.

6 CONCLUSION

The trend of putting embedded devices at the edge of the network
to perform critical tasks can expose the whole system to risk. The
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edge devices may fail to hold up to a sudden surge in traffic or be
targeted by denial of service attacks.

We analyzed the network interrupt count and queue fill state
as well as the lateness of a critical task running on an embedded
SoC while it was flooded with network traffic. We developed four
mitigation strategies to maintain smooth operation and timeliness
of a critical process using signals derived from the data obtained
during the analysis: Burst Mitigation, Hysteresis Mitigation, Budget
Mitigation, and finally, Queue Mitigation.

In our experiments, we measured the quality of the different
mitigation strategies through the lateness of a critical task that runs
concurrently to a network simulation triggering a high amount of
interrupts. An evaluation has shown that Queue Mitigation per-
formed the best since it receives and processes the most network
packets while also protecting the critical task from lateness.
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