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Techniques are presented for navigating between adjacent triangles of greater or equal size in
a hierarchical triangle mesh where the triangles are obtained by a recursive quadtree-like
subdivision of the underlying space into four equilateral triangles. These techniques are useful
in a number of applications, including finite element analysis, ray tracing, and the modeling of
spherical data. The operations are implemented in a manner analogous to that used in a
quadtree representation of data on the two-dimensional plane where the underlying space is
tessellated into a square mesh. A new technique is described for labeling the triangles, which
is useful in implementing the quadtree triangle mesh as a linear quadtree (i.e., a pointer-less
quadtree); the navigation can then take place in this linear quadtree. When the neighbors are
of equal size, the algorithms have a worst-case constant time complexity. The algorithms are
very efficient, as they make use of just a few bit manipulation operations, and can be
implemented in hardware using just a few machine language instructions. The use of these
techniques when modeling spherical data by projecting it onto the faces of a regular solid
whose faces are equilateral triangles, which are represented as quadtree triangle meshes, is
discussed in detail. The methods are applicable to the icosahedron, octahedron, and tetrahe-
dron. The difference lies in the way transitions are made between the faces of the polyhedron.
However, regardless of the type of polyhedron, the computational complexity of the methods is
the same.
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1. INTRODUCTION

The representation of spatial data is an important issue in the development
of efficient algorithms for applications in computer graphics, virtual real-
ity, visualization, image processing, and geographic information systems
(GIS). There are several ways of characterizing spatial data. The most
common is by the dimensionality of the underlying space from which the
data is drawn. The second takes the dimensionality of the underlying space
as a given, and distinguishes between different data types by the extent or
amount of the underlying space that they span. This allows us to easily see
the difference between points, lines, regions, surfaces, volumes, and even
data of higher dimensionality. In particular, point data has zero extent, in
contrast to the remaining data types which have nonzero extents—they
usually span more than one point in the underlying space.

In many applications, a hierarchical representation of the data is useful
as a way of recursively partitioning the underlying space from which the
data is drawn into smaller regions, where the decomposition criteria are
usually based on data homogeneity or data distribution. There are many
ways of positioning the partition lines. The two principal methods are
choosing from a limited predefined set of positions, or permitting the
partition lines to lie anywhere. Methods based on the region quadtree
[Hunter 1978 ; Klinger 1971] (see also Samet [1990a; 1990b]) are examples
of the former, while those based on the BSP tree [Fuchs et al. 1980] are an
example of the latter.

In this paper we focus on representations such as the region quadtree
(referred to as a quadtree in the rest of this discussion), as they result in a
recursive partition of the underlying space into n congruent parts. The
most common quadtree representation recursively decomposes the two-
dimensional plane into four squares. Thus the underlying space is said to
be spanned by a square mesh where the squares are of different sizes. We
are interested in the case where the two-dimensional plane is recursively
decomposed into four congruent triangles, where we assume that the initial
underlying space is an equilateral triangle. In this case, the underlying
space is said to be spanned by a triangular mesh. We term the result a
triangle quadtree.

Such meshes find uses in many applications such as finite element
analysis (e.g., Bank et al. [1983]; Bern et al. [1990]; De Floriani et al.
[1997]; Eck et al. [1995]; Eppstein [1992]; Hoppe [1997]; Kela et al. [1986];
Perucchio et al. [1989]; Saxena and Perucchio [1989]; da Silva and Duarte-
Ramos [1990]; Yerry and Shephard [1983]), where, for example, the mesh
serves as a discrete representation of a region over which a particular
function must be evaluated. The analysis is used, for example, to improve
the accuracy of solving a partial differential equation over a region by
controlling the error (e.g., Bank et al. [1983]). Meshes are also used in ray
tracing as a way of representing a scene. In this situation, the meshes
usually consist of cubical three-dimensional elements, in which case we are
dealing with an octree; but they can also be two-dimensional, e.g., trian-
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gles. Regardless of the application, many operations on the data require the
ability to examine a neighbor of a triangular element of the mesh (i.e., a
node or a block) as well as making a transition to it. Usually the neighbor is
of equal size, but this need not always be the case. In this paper, we show
how to efficiently make such transitions when using a triangular mesh
resulting from the use of a quadtree-like decomposition.

Triangular meshes are not restricted to purely two-dimensional data.
They are also useful in the modeling of data that lies on the surface of a
sphere, as is the case, for example, in applications that involve modeling
the earth (e.g., De Floriani et al. [1996]). Traditional ways of representing
such data invariably resort to projections onto the plane (e.g., Tobler and
Chen [1986]) using one of many possible projections (e.g., Snyder [1987]).
Clearly, there is no perfect projection. Ideally, we would like the projection
to facilitate a decomposition into units of equal area. The difficulty here is
that units of equal area in the projection do not necessarily correspond to
units of equal area on the surface of the sphere. For example, it would be
ideal if the projection made use of the common concepts of latitudes and
longitudes, as in the case of the Mercator projection (e.g., Snyder [1987]).
Unfortunately, this leads to great distortion around the poles, thereby
precluding the use of equally-spaced lines of latitude.

These problems have led to the use of an approximation of the sphere by
projecting its surface onto the faces of an inscribed regular polyhedron (e.g.,
Dutton [1984; 1990]; Fekete [1990]; Fekete and Davis [1984]; Goodchild
and Yang [1992]; Otoo and Zhu [1993]), which are subsequently recursively
decomposed using conventional techniques such as region quadtrees for
two-dimensional planar data. The result is that each face is a triangular
mesh in the form of a triangle quadtree; the sphere is represented as a
collection of n quadtrees, where n is the number of faces in the inscribed
polyhedron. The decomposition criteria can vary from equal value, as is the
case when attempting to distinguish between oceans and land masses, to
ranges of elevations when modeling terrain-like data.

The requirement of regularity precludes the use of other space decompo-
sition methods (e.g., bintrees [Knowlton 1980; Samet and Tamminen 1988;
Tamminen 1984], which are regular decomposition variants of a k-d tree
[Bentley 1975]). This requirement also limits the choice of the inscribed
polyhedra to one of the five Platonic solids: tetrahedron, cube, octahedron,
dodecahedron, and icosahedron. The need to be able to recursively decom-
pose the faces eliminates the dodecahedron from consideration, as it has 12
pentagonal faces. Clearly, the greater the number of faces in the inscribed
polyhedron, the better the approximation. Therefore the icosahedron, with
20 triangular faces, is the most attractive. Figure 1 shows the top-level
triangular faces of an icosahedron corresponding to the surface of the earth
where the continents are highlighted. A case has also been made for using
the octahedron, with eight triangular faces, as a representation for spheri-
cal data such as the earth [Dutton 1984; Goodchild and Yang 1992] because
it can be aligned so that the poles are at opposite vertices of the octahedron
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and the prime meridian and the equator intersect at another vertex. In
addition, one subdivision line of each face is parallel to the equator. The
tetrahedron with four triangular faces could also be used, but it is more
difficult to find an intuitive rationale for its use.

The quadtree representation of the mesh is usually implemented as a
tree with pointers from the root to its four children, which in turn contain
pointers to their four children, etc. However, such an implementation can
be rather wasteful of storage and has led to the development of a number of
alternative quadtree representations that do not use pointers. The most
common of these representations is known as the linear quadtree [Gargan-
tini 1982]; here the quadtree is represented as a collection of numbers
corresponding to its leaf nodes. In particular, for each quadtree correspond-
ing to one of the faces of the inscribed polyhedron, leaf node i is repre-
sented by a unique pair of numbers known as its location code where the
first number indicates the depth in the tree at which i is found and the
second number indicates the path from the root of the tree to i. The path
consists of the concatenation of the two-bit numbers corresponding to the
child types of each node that is traversed on the path from the root to i. We
refer to the path as the path array component of the location code. The
quadtree is said to be linear because the pairs of numbers can be concate-
nated and the result stored in a sorted order that corresponds to a
particular traversal of the underlying leaf nodes.1

One of the attractions of the linear quadtree when the faces are square is
the ability to make use of binary arithmetic to navigate between any pair of
adjacent nodes (i.e., nodes corresponding to squares of equal size) in time
that is independent of the depth of the quadtree in which the nodes are
found [Schrack 1992]). This enables the navigation to be performed very

1This traversal can be said to be postorder, preorder, or inorder, as nonleaf nodes are not
visited.

Fig. 1. Example showing the top-level triangle faces of an icosahedron corresponding to the
surface of the earth; the continents are highlighted.
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efficiently, as it just requires a few bit manipulation operations that can be
implemented in hardware using just a few machine language instructions.
In this paper we show how to adapt the linear quadtree to triangular
meshes so that such navigation can also be performed in time independent
of the depth of the quadtree.

This technique has many potential applications. For example, it can be
used in a ray tracer where a surface is represented by a quadtree triangle
mesh instead of a quadtree square mesh [Fujimoto et al. 1986; Glassner
1984; Kaplan 1985; Samet 1989; Tamminen et al. 1984]. It can also be used
in finite element analysis. For example, in many applications it is desirable
to transform an arbitrary triangular mesh to a more restricted mesh with
“subdivision connectivity” [Eck et al. 1995] by applying a “remeshing”
process that yields a triangular hierarchy where groups of four triangles
are aggregated into larger triangles (but see De Floriani et al. [1997] which
uses a different approach to create a hierarchy based on the time and the
location at which the mesh refinement takes place). The results of this
“remeshing” process (i.e., Eck et al. [1995]) can be traversed efficiently
using our techniques. In other applications (e.g., Bank et al. [1983]), the
triangulation is not hierarchical, thereby causing some difficulty in per-
forming operations such as finding ancestors, descendants, and neighbors.
Our technique makes these operations much easier to perform. Others have
devised special methods such as clipping the corners of the mesh elements
(e.g., Kela et al. [1986]; Yerry and Shephard [1983]) to overcome the fact
that the mesh elements are square (e.g., da Silva and Duarte-Ramos
[1990], which has the drawback that the square mesh elements are not
congruent, although they still form a hierarchy). Square mesh elements are
viewed as attractive due to the ease of finding neighbors and being able to
perform local refinement. With our methods, we can make use of the more
natural triangular hierarchy, without the addition of special “corner”
handling, while still being able to find neighbors and do local refinement
efficiently.

In order to see the generality of our approach, in this paper we treat the
more general navigation problem where the underlying surface is a sphere
represented by a collection of quadtree triangle meshes. In particular,
without loss of generality, we assume that the sphere is approximated by
an icosahedron whose 20 faces are represented by quadtree triangle
meshes. In our implementation, the adjacent triangles are not restricted to
lie on the same face of the icosahedron, and the triangles whose neighbors
are being sought can be at any depth in the tree. Thus the meshes are
assumed to be continuous across the face of the sphere.

Although only our navigation solution for neighbors of equal size exe-
cutes in time independent of the depth in the quadtree at which the nodes
are found, we also show how to navigate between a node and its neighbor of
greater or equal size with slightly greater execution time complexity. Our
solution is in contrast to an existing method [Fekete 1990] which always
has a worst-case execution time proportional to the maximum level of
decomposition (i.e., the maximum depth of the quadtree, or resolution),
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regardless of whether the neighbors are of equal size. It is important to
note that our approach is not restricted to the icosahedron and, as we shall
show, can be used with the octahedron or a tetrahedron representation. In
this case too, our methods differ from existing ones (e.g., Goodchild and
Yang [1992]; Otoo and Zhu [1993]), which also have a worst-case execution
time proportional to the maximum level of decomposition.

We achieve this by introducing a new method of labeling the elements of
the triangular meshes corresponding to the faces of the icosahedron (which,
we point out, is also applicable to the octahedron and tetrahedron) and
showing how traditional two-dimensional neighbor-finding techniques
[Samet 1982; 1990b] for quadtree square meshes (which work for both
pointer-based and linear quadtrees) can be adapted to deal with quadtree
triangle meshes. Neighbor-finding using these methods has a worst-case
execution time proportional to the maximum level of decomposition, al-
though the average has been shown to be constant [Samet 1982; 1990b]
using techniques similar to amortized cost analysis. Next, we describe how
the methods of Schrack [1992] for quadtree square meshes implemented as
linear quadtrees can be adapted to quadtree triangle meshes represented
as linear quadtrees, and we present our solution to handling adjacency
between different faces of the icosahedron. This results in worst-case
constant time algorithms for finding neighbors of equal size. We also show
how to handle adjacencies between different faces of an octahedron and a
tetrahedron. We conclude with a discussion of how to handle neighbors of
greater size.

Our triangle labeling method is similar to that used for the octahedron
[Goodchild and Yang 1992]. However, the difference is that the neighbor-
finding methods used in Goodchild and Yang [1992] have a worst-case
execution time proportional to the maximum level of decomposition, al-
though they are based on the same principle as our methods (i.e., on Samet
[1982; 1990b]) which have the same execution time complexity. In contrast,
our triangle labeling method is very different from that used by Fekete
[1990] for the icosahedron, as well as by Dutton [1990] and Otoo and Zhu
[1993] for the octahedron.

The neighbor-finding methods of Dutton [1990], Fekete [1990], and Otoo
and Zhu [1993] are quite different from ours. For example, Dutton [1990]
and Fekete [1990] form new triangular regions for each level of decomposi-
tion by bisecting the edges of the parent triangle. This way of viewing the
subdivision process results in a “floating” labeling scheme, as opposed to
the fixed schemes used by us as well as by Goodchild and Yang [1992]. In
other words, the labeling of children at each level varies based on the
orientation of the parent triangle, which is effectively determined by the
path from the root to the parent instead of being based on its global
orientation. The advantage of this labeling technique [Fekete 1990] is that
the path components of all location codes that correspond to the neighbors
of a particular triangle differ by one directional code (at different depths of
the hierarchy—that is, equivalently, at different positions in the code), at
the expense of added complexity for the neighbor-finding process. Unfortu-
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nately, the fact that the transitions and node labels depend on orientation
makes it difficult to adapt these methods to use binary arithmetic. More-
over, this technique [Fekete 1990] has the further disadvantage that
finding neighbors that lie on different faces of the icosahedron is much
harder. Otoo and Zhu [1993] use a square quadtree labeling scheme with
an additional bit at the final decomposition level to distinguish between the
orientations of the pair of triangles that make up each square. This makes
it possible to use algorithms and techniques developed for quadtree square
meshes, including a variant of the worst-case constant time neighbor-
finding algorithm (not mentioned in Otoo and Zhu [1993]), but generally
needlessly complicates neighbor-finding algorithms, especially when the
neighbors are not of the same size. In contrast, our labeling method is
considerably simpler and can be easily used to yield a neighbor-finding
method that locates equal-sized neighbors in worst-case constant time.

2. TREE NODE LABELING

The icosahedron has 20 triangular faces each of which is decomposed
recursively into four equilateral triangles. The result is a triangle quadtree.
Every node in the tree represents a triangle. We use the terms triangle and
node interchangeably. Each triangle has three edges, also termed sides or
boundaries, and three vertices (also termed corners, e.g., Yerry and Sheph-
ard [1983]). These triangles always have one of two orientations: tip-up and
tip-down. Tip-up means that the corresponding triangle points upward, and
tip-down means that the triangle points downward. As tip-up triangles
cover a different section of space than tip-down triangles (and cannot be
made to cover the same space without some transformation such as
rotation), we subdivide the two triangle types differently. We will see that
using different subdivisions for the two types actually makes certain
operations easier (e.g. point location). Since we plan on linearizing our tree,
the discussions and algorithms all make use of a location code for each
triangle consisting of two fields LEV and CODEcorresponding to the depth
and path arrays, respectively. As these location codes determine a triangle
rather than just a point, the terms location code and triangle code are used
interchangeably. We also often use the term code to refer to the path array.
Moreover, since we decompose each triangle into four smaller equal-sized
triangles, each child triangle adds two bits to the path array component of
the location code of the parent. Regardless of the orientation of a triangle,
we use the terms vertical, left, and right to refer to neighboring triangles of
equal size along its horizontal, left angular, and right angular edges,
respectively.

Tip-up triangles use the following bit patterns for children (see Figure 2(a)):

Top triangle: 00
Bottomleft triangle: 01
Center triangle: 10
Bottomright triangle: 11

Tip-down triangles use the following bit patterns for children (see Figure 2(b)):
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Topleft triangle: 01
Center triangle: 10
Topright triangle: 11
Bottom triangle: 00

Our node-labeling scheme is almost the same as that proposed by
Goodchild and Yang [1992]. The difference is that they use the label 0 for
the middle triangle, 2 for the left triangle, 3 for the right triangle, and 1 for
the upper or lower triangles. As we see in Section 5, our labeling scheme
permits us to make right and left transitions by use of addition and
subtraction, which will enable us to perform the operations in constant
time across the entire sphere. It is different from other methods (e.g.,
Dutton [1990]; Fekete [1990]), which are based on a “floating” labeling
scheme (see Lee and Samet [1998] for an example).

There are several other advantages to using our node-labeling scheme. If
we use the topmost or bottommost point to locate a triangle (since we only
need one vertex, the orientation, and the size to determine the other two
vertices), it is quite simple to traverse the tree using only local computa-
tions to determine where we are in space. The vertices of children are easy
to determine relative to the positions of their parents. In particular, a child
is always half the size (one quarter the area) of its parent. Child 10 always
has the opposite orientation of its parent. The remaining three children
always have the same orientation as the parent. See Figure 3 for an
example of a tree that is encoded using this node-labeling method. This is
in contrast to other methods (e.g., Dutton [1990]; Fekete [1990]; Otoo and
Zhu [1993]), which lead to more complex neighbor-finding methods.

Regardless of whether a triangle is tip-up or tip-down, the triangles do
not all have to be the same size. In other words, the triangles may be at
different depths in the quadtree. As mentioned earlier, in the case of a
linear quadtree, the depth is recorded in the LEV field. Assuming a
maximum tree depth of n, the CODEfield has 2n bits. For nodes or triangles
at a depth i where i , n, the rightmost n 2 i pairs of bits are 00 (i.e., the
2 z ~n 2 i! least significant bits are 0).

3. NEIGHBOR FINDING

In this section we describe how to find an equal-sized neighbor of a node p
along an edge in the same face of the icosahedron. The algorithm is
equivalent to the one described in Goodchild and Yang [1992], which is

00

01
10

11

01 11
10

00

(a) (b)

Fig. 2. Two possible orientations for a triangle: (a) tip-up, and (b) tip-down.
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based on the approach of Samet [1982; 1990b]. We present it here because
it is the basis of our extension to the entire sphere in Section 4, as well as
our constant-time algorithm in Section 5. The node whose neighbor is being
sought can be at any depth in the set of quadtrees corresponding to the
faces; it is not restricted to being at the deepest level.

The algorithm does not need to make use of the actual coordinate values
of the triangle block corresponding to p. Instead, it just processes the path
array component of the location code (referenced by field name CODE, and
often referred to simply as the code or the bit pattern of the location code).
Elements of the path array are referenced using array notation. Assuming
that the root triangle is at depth 0, given a triangle t with location code P,
we say that CODE(P)[i] refers to the relative position (i.e., the child type)
of the descendant at depth i of the root triangle that is also an ancestor of
t. In this manner, we can effectively trace the path from the root of the tree
to a given node by looking at CODE(P)[i] for successive values of i.

It is important to note that the procedures that we describe are destruc-
tive (i.e., in-place), in the sense that the location code P whose neighbor is
being computed is overwritten with the location code of the neighboring
triangle of equal size. If the original location code is to be preserved, it
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Fig. 3. Labeling of a tree that is three levels deep.
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should be saved prior to being transmitted as a parameter to the neighbor-
finding algorithm.

3.1 Step One: Locating the Nearest Common Ancestor

The first step is to find an ancestor of the current node which also contains
the desired neighbor of that node. This node is called the nearest common
ancestor of the two nodes. The technique used for finding the nearest
common ancestor is effectively the same as that found in most standard
quadtree implementations [Samet 1982; 1990b] that use trees. Of course,
we aren’t actually dealing with tree nodes. Instead, we want to find the
location code of the nearest common ancestor within p ’s location code.

We now show how to find the right neighbor of p. If we start with p and
work our way up (right to left in the path array corresponding to the
location code), then we can stop scanning upward (leftward) when we find
the ancestor of p that must contain the right neighbor of p. We stop when
we encounter a node that has a right sibling (its parent contains a node
that is adjacent to and to the right of p). If we look at Figure 2(a) , we see
that this is true for children 01 and 10 . Also, in Figure 2(b), children 01
and 10 have right siblings. Thus, we can stop as soon as we find a 01 or 10
in the path array corresponding to the location code.

As an example, consider the location code with path array
010010110000 . Let us use EXCODEto refer to this path array. Therefore,
EXCODE[6]500 (the last two bits). If we want to start searching for the
right neighbor of the node corresponding to EXCODE, we need to examine
the bits while looking for a 01 or 10 . EXCODE[6] does not equal 01 or 10 , so
we continue upward. EXCODE[5] is the same as EXCODE[6], so we continue
upward. EXCODE[4]511 does not equal 01 or 10 , so we continue upward.
EXCODE[3]510 means that we stop here. This sets us up for step two,
described in Section 3.2. Note that the path array corresponding to the
nearest common ancestor in this case is actually 0100 (all of EXCODEending
at EXCODE[2]).

A similar analysis is used to determine the nearest common ancestor
when finding the left or vertical neighbor of a node. This process is encoded
by procedure STEP_ONE. It makes use of the relation STOPTABgiven in
Table I (it is similar to the stop component in the conversion table used in
Goodchild and Yang [1992]). STOPTABis indexed by the bit pair correspond-
ing to the child type and the direction of the neighbor. Entries correspond-
ing to the end of the search for the nearest common ancestor are denoted by
TRUEin the table.

Algorithm 1.

procedure STEP_ONE(CODE,NEIGHBOR_DIR,CHILD_TYPE,DEPTH);
/* Obtain the nearest common ancestor of the node at depth DEPTH
whose location code has path array CODE when seeking a neighbor
in direction NEIGHBOR_DIR. CHILD_TYPE indicates the child type
of the nearest common ancestor while the final value of DEPTH is
its depth. */
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begin
value path_array CODE;
value integer NEIGHBOR_DIR;
reference integer CHILD_TYPE;
reference integer DEPTH;
preload Boolean array STOPTAB[0:2][0:3] with Table I;

CHILD_TYPE 4 CODE[DEPTH];
while not(STOPTAB[NEIGHBOR_DIR][CHILD_TYPE]) do
begin

DEPTH 4 DEPTH–1;

CHILD_TYPE 4 CODE[DEPTH];
end;

end;

3.2 Step Two: Updating the Path to Contain the Neighbor

Step two identifies and sets the position in the path array of the location
code corresponding to the child of the nearest common ancestor (found in
step one) to the appropriate child type of the neighbor. This step is simple.
Say we are looking for a left neighbor q of node p. If we have the nearest
common ancestor and we know what child contains p, it is easy to
determine what child contains q. We move left. If child 10 contains p, child
01 must contain the neighbor node q. If we are looking for a right neighbor,
we move right. The same procedure also holds for vertical neighbors.

As a concrete example, consider the location code with path array
010010110000 . This is EXCODEfrom Section 3.1. The nearest common
ancestor was 0100 and the child at EXCODE[3] was 10 . Recall that we want
the right neighbor, which means that the new child at this level should be
on the right of 10 . If we examine Figures 2(a) and 2(b) we find that 11 is to
the right of 10 in both of them. Thus, in this step, we set EXCODE[3] to 11 .

A similar analysis can be used to obtain the neighboring children for
other child types and directions. This process is encoded by procedure
STEP_TWO. It makes use of the relation NEXTTABgiven in Table II (it is
similar to the new address component in the conversion table used in
Goodchild and Yang [1992]). NEXTTABis indexed by the bit pair correspond-
ing to the child type of the child of the nearest common ancestor and the
direction of the neighbor that we are seeking. Its value is the child type of
the neighboring child of the nearest common ancestor.

Table I. STOPTAB (Neighbor_Direction,Child_Type) relation indicating when to cease
search for the nearest common ancestor in step 1 of the neighbor-finding algorithm

Child Type (Bits)

Neighbor Direction

Left Right Vert

00 FALSE FALSE TRUE
01 FALSE TRUE FALSE
10 TRUE TRUE TRUE
11 TRUE FALSE FALSE
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Algorithm 2.

procedure STEP_TWO(CODE,NEIGHBOR_DIR,CHILD_TYPE,DEPTH);
/* Obtain the child type of the neighboring child of the nearest
common ancestor of the node and its neighbor in direction
NEIGHBOR_DIR. CODE is the path array corresponding to the
neighboring node in direction NEIGHBOR_DIR. Set the entry at
depth DEPTH of CODE to the child type of the ancestor of the
neighboring node. CHILD_TYPE indicates the child type of the
child of the nearest common ancestor that is an ancestor of the
current node whose neighbor is being sought. */
begin

reference path_array CODE;
value integer NEIGHBOR_DIR;
value integer CHILD_TYPE;
value integer DEPTH;
preload integer array NEXTTAB[0:2][0:3] with Table II;

CODE[DEPTH] 4 NEXTTAB[NEIGHBOR_DIR][CHILD_TYPE];
end;

3.3 Step Three: Updating the Rest of the Path to the Neighbor

Step three finds the path from the child obtained in step two to the
neighbor of p. This won’t require searching, since we can exploit the fact
that the path to a neighbor of a node is a reflection of the path to the node.
In particular, for square quadtrees, we reflect the path to p to get the path
to the neighbor q. For triangles, things work a little differently, but the
layout of the children that we have chosen (see Section 2) keeps things
simple. Reflection for the triangles works as follows. Keep in mind that a
tip-up triangle is always adjacent to a tip-down triangle (and vice versa).
This leads to three cases (one for each neighboring direction).

For left neighbors, 00 always becomes 11 . Notice that 00 is always within
the same y coordinate range as 01 , 10 , and 11 in the adjacent parent
triangle. Since 11 is the closest of the three children, 11 is the appropriate
“reflected” value. Child 01 always becomes 00 . Only 00 in the adjacent
parent triangle is within the same y coordinate range as 01 , so 00 is the
only candidate for the “reflected” value. Finding the left neighbors of
children 10 and 11 is easy because their neighbors don’t require leaving the
parent node.

Table II. NEXTTAB (Neighbor_Direction,Child_Type) indicating child type of neighboring
child of the nearest common ancestor

Child Type (Bits)

Neighbor Direction

Left Right Vert

00 11 01 10
01 00 10 01
10 01 11 00
11 10 00 11
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For right neighbors, 00 always becomes 01 . Again, 00 is always within
the same y coordinate range as 01 , 10 , and 11 in the adjacent parent
triangle. Since 01 is the closest of the three children, 01 is the appropriate
“reflected” value. Finding the right neighbors of children 01 and 10 is easy
because their neighbors don’t require leaving the parent node. Child 11
always becomes 00 . Only 00 in the adjacent parent triangle is within the
same y coordinate range as 11 , so 00 is the only candidate for the
“reflected” value.

For vertical neighbors, finding the neighbors of children 00 and 10 is
easy because their neighbors don’t require leaving the parent node. For
both 01 and 11 the “reflected” value is equal to the original value (as
Figures 2(a) and 2(b) are vertical reflections of each other).

For example, let’s consider the location code 010010110000 . This is
EXCODEfrom Section 3.1. The nearest common ancestor (from step one) was
0100 and the child at EXCODE[3] was 10 . In step two, we set EXCODE[3] to
11 . The current (processed) portion of EXCODEis 010011 . The entire code is
010011110000 . Thus the remaining portion of EXCODEis 110000 . This is
the part that we will update in this step. We are still trying to find the
right neighbor. EXCODE[4]511 which becomes 00 . EXCODE[5]500 which
becomes 01 . EXCODE[6]500 which becomes 01 . The entire code
010010110000 becomes 010011000101 which gives us the right neighbor.
The process is encoded by procedure STEP THREE.

Algorithm 3.

procedure STEP_THREE(CODE,NEIGHBOR_DIR,CHILD_TYPE,DEPTH,DEPTH_NCA);
/* Calculate the path array entries in CODE corresponding to the
NEIGHBOR_DIR neighbor of the original node at depth DEPTH.
CHILD_TYPE indicates the child type of the nearest common
ancestor while DEPTH_NCA is its depth. */
begin

reference path_array CODE;
value integer NEIGHBOR_DIR;
value integer CHILD_TYPE;
value integer DEPTH,DEPTH_NCA;
preload integer array NEXTTAB[0:2][0:3] with Table II;

while (DEPTH_NCA , DEPTH) do
begin

DEPTH_NCA4 DEPTH_NCA11;

CHILD_TYPE 4 CODE[DEPTH_NCA];

CODE[DEPTH_NCA] 4 NEXTTAB[NEIGHBOR_DIR][CHILD_TYPE];
end;

end;

3.4 Putting It All Together to Find a Neighbor

Now, if we combine the previously described steps, we can find the
neighbor of any node in our tree. The only issue that remains is how to
apply these techniques to the entire sphere. This is discussed in Section 4.
Thus, the following routine is sufficient for finding any neighbor of equal
size within one triangle quadtree.
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Algorithm 4.

procedure FIND_NEIGHBOR(P,NEIGHBOR_DIR);
/* Return in P the location code corresponding to the neighbor
in the NEIGHBOR_DIR direction of the node corresponding to
location code P. */
begin

value pointer location_code P;
value integer NEIGHBOR_DIR;
integer CHILD_TYPE;
integer DEPTH;

DEPTH 4 LEV(P);
STEP_ONE(CODE(P),NEIGHBOR_DIR,CHILD_TYPE,DEPTH);
STEP_TWO(CODE(P),NEIGHBOR_DIR,CHILD_TYPE,DEPTH);
STEP_THREE(CODE(P),NEIGHBOR_DIR,CHILD_TYPE,LEV(P),DEPTH);

end;

Since step one (finding the nearest common ancestor) involves examining
each two-bit pair in the path array of the location code, its worst-case
execution time is on the order of the length of the code (related to the
height of the tree). Step two (changing two bits in the location code) always
takes a constant amount of time. Step three (changing the remaining bits)
requires examining the same bits as in step one, so its worst-case execution
time is on the order of the length of the code. Overall, in the worst case,
neighbor-finding requires time proportional to the length of the location
code, which, of course, is the maximum level of decomposition.

4. EXTENSIONS TO THE ENTIRE SPHERE

Indexing the entire icosahedron (rather than just one of its faces) actually
requires 20 of the previously described triangle quadtrees. This means that
whenever we reach the top level (or root) of one of these trees, a bit of extra
work is required. We label the 20 nodes corresponding to the roots of the
quadtrees of the faces of the icosahedron using a 6-bit code ranging from
000000 (decimal 0) to 010011 (decimal 19). We could have fit the 20 values
into just 5 bits, but we decided to use an even number of bits because the
machine word length is always an even number of bits. The order in which
the triangle faces of the icosahedron are numbered isn’t important, since
tables will be used most of the time. Thus we have numbered the faces
using a simple left-to-right and top-to-bottom order (see Figure 1). Our
numbering scheme has the property that triangles 0 to 4 are tip-up, 5 to 9
are tip-down, 10 to 14 are tip-up, and 15 to 19 are tip-down.

Neighbor finding in the entire icosahedron involves several modifications
to our algorithm for a single face, but these changes are minor and have
little impact on the computational complexity of the algorithms. We con-
tinue to work with the location code only. No coordinate values are used.

The only necessary modification to step one is that if we reach the top
level of the spherical quadtree (or if there are no remaining bits to examine
in the location code because we are at CODE[0] ), we stop looking for the
nearest common ancestor. Obviously, the entire sphere contains every
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possible location, and is therefore an ancestor of every node. No additional
stop tables are required. We always stop at the top level. This process is
encoded by procedure EXT_STEP_ONE, not given here (see Lee and Samet
[1998]), as the only change is the addition of the check for DEPTH. 0 to
yield a loop of the form:

while DEPTH . 0 and not(STOPTAB[NEIGHBOR_DIR][CHILD_TYPE]) do

Also, note that since Figure 1 is really a sphere, every triangle has a
neighbor in every direction (the triangles on the ends wrap around), so we
are well-prepared for step two.

As an example, consider the location code with path array
000010010001010001 . We refer to it by EXCODE2. Our path array uses the
extended format for the sphere so EXCODE2[0]5000010 (the first six bits)
and EXCODE2[6]501 (the last two bits). Let’s suppose we are looking for
the left neighbor of EXCODE2. Table III traces the execution of procedure
EXT_STEP_ONEfor this neighbor. Notice that in this case the nearest
common ancestor is the entire sphere.

Step two is similar to the one described in Section 3.2 and is encoded by
procedure EXT_STEP_TWO. The only modification from procedure STEP_TWO
is the use of a different relation NEXTTOP(Table IV) to indicate how to
update CODE[0] . It summarizes the actions for all possible neighbors from
Figure 1 and replaces relation NEXTTABin the algorithm for this case. This
relation is used only when the nearest common ancestor from step one is
the entire sphere. As an example, for the left neighbor of EXCODE2, from
Table IV we find that the node to the left of EXCODE2[0] (000010 in binary
or 2 in decimal) is 1. Thus, in step two, we set EXCODE2[0] to 000001 .

Algorithm 5.

procedure EXT_STEP_TWO(CODE,NEIGHBOR_DIR,CHILD_TYPE,DEPTH);
/* Obtain the child type of the neighboring child of the nearest
common ancestor of the node and its neighbor in direction
NEIGHBOR_DIR. CODE is the path array corresponding to the
neighboring node in direction NEIGHBOR_DIR. Set the entry at
depth DEPTH of CODE to the child type of the ancestor of the
neighboring node. CHILD_TYPE indicates the child type of the
child of the nearest common ancestor which is an ancestor of the
current node whose neighbor is being sought. */

Table III. Execution Trace of Procedure EXT_STEP_ONEfor the Left Neighbor of
000010010001010001

DEPTH Child_Type STOPTAB CONDITION VALUE

6 01 FALSE TRUE
5 00 FALSE TRUE
4 01 FALSE TRUE
3 01 FALSE TRUE
2 00 FALSE TRUE
1 01 FALSE TRUE
0 000010 ALWAYS STOP AT 0
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begin
reference path_array CODE;
value integer NEIGHBOR_DIR;
value integer CHILD_TYPE;
value integer DEPTH;
preload integer array NEXTTAB[0:2][0:3] with Table II;
preload integer array NEXTTOP[0:2][0:19] with Table IV;

if DEPTH .0 then CODE[DEPTH] 4 NEXTTAB[NEIGHBOR_DIR][CHILD_TYPE]

else CODE[0] 4 NEXTTOP[NEIGHBOR_DIR][CHILD_TYPE];
end;

Step three requires one more relation called REFLTOP, given in Table V,
to deal with the special case of reflection needed for nodes 0 to 4 and nodes
15 to 19 . All other nodes still use the NEXTTABrelation from Table II in
Section 3.3. The rationale for this additional relation is as follows. If we
consider the left neighbor case and use a standard “mirror reflection,” we
see that 00 stays 00 and 01 reflects to 11 . 10 and 11 cannot occur along the
left edge of a node. Similarly, if we consider the right neighbor case, we see
that 00 stays 00 and 11 reflects to 01 . 01 and 10 cannot occur along the
right edge of a node. The vertical case doesn’t need to be updated. The
algorithm in Section 3.3 works for the entire sphere if we use the reflection
relation REFLTOP instead of NEXTTAB. Note that the vertical neighbor
entries are identical to those in relation NEXTTABgiven in Table II, since no
special treatment is required for the vertical case.

As an example, consider again the location code with path array
000010010001010001 , which was previously labeled as EXCODE2. The

Table IV. NEXTTOP (Neighbor_Direction,Child_Type) indicating neighbors for triangles
corresponding to faces of the icosahedron

Child Type

Neighbor Direction

Left Right Vert

0 4 1 5
1 0 2 6
2 1 3 7
3 2 4 8
4 3 0 9
5 14 10 0
6 10 11 1
7 11 12 2
8 12 13 3
9 13 14 4

10 5 6 15
11 6 7 16
12 7 8 17
13 8 9 18
14 9 5 19
15 19 16 10
16 15 17 11
17 16 18 12
18 17 19 13
19 18 15 14
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current (processed) portion of EXCODE2is 000001 . The entire path array
(after the previously mentioned example steps) is 000001010001010001 .
Thus the remaining portion of EXCODE2is 010001010001 . This is the part
that we update in step three. Once again, we want to find the left neighbor.
Using Table V, EXCODE2[1] (01) becomes 11 , EXCODE2[2] (00) stays 00 ,
EXCODE2[3] (01) becomes 11 , EXCODE2[4] (01) becomes 11 , EXCODE2[5]
(00) stays 00 , and EXCODE2[6] (01) becomes 11 . Thus, 010001010001
becomes 110011110011 . The final path array is 000001110011110011 ,
which is the left neighbor that we desired.

Algorithm 6.
procedure EXT_STEP_THREE(CODE,NEIGHBOR_DIR,CHILD_TYPE,DEPTH,DEPTH_NCA);
/* Calculate the path array entries in CODE corresponding to the
NEIGHBOR_DIR neighbor of the original node at depth DEPTH.
CHILD_TYPE indicates the child type of the nearest common
ancestor while DEPTH_NCA is its depth. */
begin

reference path_array CODE;
value integer NEIGHBOR_DIR;
value integer CHILD_TYPE;
value integer DEPTH,DEPTH_NCA;
preload integer array NEXTTAB[0:2][0:3] with Table II;
preload integer array REFLTOP[0:2][0:3] with Table V;
if DEPTH_NCA.0 or (4 , CHILD_TYPE and CHILD_TYPE , 15) then
begin

while (DEPTH_NCA ,DEPTH) do
begin

DEPTH_NCA4 DEPTH_NCA11;
CHILD_TYPE4 CODE[DEPTH_NCA];
CODE[DEPTH_NCA]4 NEXTTAB[NEIGHBOR_DIR][CHILD_TYPE];

end;
end
else
begin

while (DEPTH_NCA ,DEPTH) do
begin

DEPTH_NCA4 DEPTH_NCA11;
CHILD_TYPE4 CODE[DEPTH_NCA];
CODE[DEPTH_NCA]4 REFLTOP[NEIGHBOR_DIR][CHILD_TYPE];

end;
end;

end;

Table V. REFLTOP(Neighbor_Direction,Child_Type) indicating the child type when finding
neighbors across the top five and bottom five triangle faces of the icosahedron taking

reflection into account

Child Type (Bits)

Neighbor Direction

Left Right Vert

00 00 00 10
01 11 — 01
10 — — 00
11 — 01 11
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The procedure for finding the neighbor that combines the three steps
(i.e., FIND_NEIGHBORgiven in Section 3.4) does not need to be modified,
except for changing the names of the three procedures that it invokes by
prepending “EXT_” to them. The result is encoded by procedure EXT_FIND_
NEIGHBOR, not given here (see Lee and Samet [1998]).

5. CONSTANT-TIME NEIGHBOR-FINDING ALGORITHM

In this section we describe how neighbor finding can be accomplished in
worst-case constant time. The algorithms presented here make use of the
carry (borrow) property of addition (subtraction) to quickly find a neighbor
without specifically searching for a nearest common ancestor and reflecting
the path to the neighbor. We replace the iteration in steps one and three of
the algorithm presented in Sections 3 and 4 by an arithmetic operation that
takes constant time instead of as much as the depth of the tree as in the
worst case of the iterative process. The resulting algorithms make use of
just a few bit manipulation operations that can be implemented in hard-
ware using just a few machine language instructions. Of course, the
constant time bound arises because the entire path array for each location
code can fit in one computer word. If more than one word is needed, then
the algorithms are a bit slower but still take constant time. Our algorithms
are based on the method devised by Schrack [1992] for square quadtrees
implemented using pointer-less quadtrees represented by the location codes
of the leaf nodes. Our contribution is twofold:

(1) Its adaptation to triangle quadtrees and the formulation of the appro-
priate triangle quadtree node-labeling technique.

(2) Its adaptation to the icosahedron in the sense that we make it work for
neighboring triangles that are in different base triangles of the icosahe-
dron.

Our algorithms also work for the octahedron and the tetrahedron. The only
modification that is needed is to include a mechanism to handle the case
where the neighboring triangles are in different base triangles of the solid
(i.e., tetrahedron or octahedron). This is discussed in Section 6.

5.1 Square Quadtrees

In order to gain a better understanding of the basic idea, let us see how
simple addition can be used with square quadtrees to find right neighbors
of equal size. We make use of the following two definitions in our algo-
rithms:

(1) ODDBITMASKis defined as an alternating bit pattern starting with a 1
at the leftmost bit position, so ODDBITMASK510101010 . . . .

(2) EVENBITMASKis defined as an alternating bit pattern starting with a 0
at the leftmost bit position, so EVENBITMASK501010101 . . . .
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Both masks should be a full code length. For example, if we store the path
array part of the location code in a long integer (4 bytes), then both masks
would contain 32 bits. Our algorithms also make use of the following six
bitwise operators:

(1) COMPLEMENT(param1)returns the complement of param1 .

(2) AND(param1,param2) returns the result of a bitwise “and” between
param1 and param2 .

(3) OR(param1,param2) returns the result of a bitwise “or” between
param1 and param2 .

(4) XOR(param1,param2) returns the result of a bitwise “exclusive or”
between param1 and param2 .

(5) SHIFT_LEFT(param1) returns the result of shifting param1 to the left
by one bit. A bit value of 0 is shifted into the bit string at the extreme
right.

(6) SHIFT_RIGHT(param1) returns the result of shifting param1 to the
right by one bit. A bit value of 0 is shifted into the bit string at the
extreme left.

Neighbor finding in square quadtrees is achieved in worst-case constant
time by using the equivalence between the path array of the location code
and the result of interleaving the bits that comprise the binary representa-
tion of the x and y coordinates of one of the corners (e.g., the upper-leftmost
corner), chosen in a consistent manner, of the blocks corresponding to the
leaf nodes. The result of bit interleaving is also known as a Morton code
[Morton 1966; Samet 1990b]. For example, the Morton code for coordinates
x and y has the form yn21xn21· · ·y1x1y0x0, where the y coordinate is the
most significant. The right neighbor of equal size is obtained by increment-
ing the x coordinate value of the corner of the block by one. Assuming that
we work with the Morton code of the block, instead of the individual
coordinate values, we start this process by incrementing x0 by one. If there
is a carry, we add one to x1. If there is another carry, we add one to x2, and
so on. This process is iterative, in the sense that the carries are propagated
one bit at a time. Ideally, we want to accomplish the propagation of the
carry using one operation. The problem is that when the addition operation
is applied directly to the Morton code value, we need to skip the values of
the corresponding y coordinates.

Schrack [1992] achieves the propagation of the carries in constant time
by saving the values of all of the y bits, replacing their corresponding bit
positions with 1s, performing the addition, and then restoring the y bits to
their original values. This technique is shown in the procedure SCHRACK_
RIGHT given below.
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Algorithm 7.
procedure SCHRACK_RIGHT(P);
/* Determine the location code of the right neighbor of equal
size of the square quadtree node with location code P. This
involves setting the CODE field of P. */
begin

value pointer location_code P;
path_array SAVED_BITS;

/* Save all the y bits */

SAVED_BITS4 AND(CODE(P),ODDBITMASK);

/* Load the y bit positions with 1s */

CODE(P) 4 OR(CODE(P),ODDBITMASK);
/* Add one (move right) */

CODE(P) 4 CODE(P)11;

/* Clear the y bit positions */

CODE(P) 4 AND(CODE(P),EVENBITMASK);

/* Restore the original y bits */

CODE(P) 4 OR(CODE(P),SAVED_BITS);
end;

In order to see how this algorithm works, consider the following example
where x 5 11 and y 5 6. The Morton code is 01101101 . The values of the
odd bits are saved in SAVED_BITS, which for this example is 00101000 . The
result of the first OR with ODDBITMASKchanges our Morton code to
11101111 . Adding one yields 11110000 . The second AND with EVENBIT-
MASKchanges our Morton code to 01010000 . The last ORwith SAVED_BITS
restores our original y value, thereby making our final Morton code
01111000 . We can easily see that this corresponds to a block with x 5 12
and y 5 6, which means that our algorithm did indeed obtain the proper
answer.

Procedures SCHRACK_LEFT, SCHRACK_UP, and SCHRACK_DOWN, not given
here (see Lee and Samet [1998]), use a similar technique to SCHRACK_
RIGHT to calculate the left, up, and down neighbors of equal size. In
particular, SCHRACK_LEFTdiffers from SCHRACK_RIGHTby loading the y
positions with 0s instead of 1s (using EVENBITMASKinstead of ODDBIT-
MASK), and by using subtraction instead of addition. The only difference
between procedures SCHRACK_DOWNand SCHRACK_UP, and procedures
SCHRACK_RIGHTand SCHRACK_LEFT, respectively, is the replacement of
EVENBITMASKby ODDBITMASKand ODDBITMASKby EVENBITMASK.

Using standard Morton codes for square quadtrees, we see that we can
find a neighbor by addition if we just skip every other bit in the Morton
code. This method does not work directly in the case of the triangle
quadtree, although something similar can be made to work. One problem is
the lack of a direct correlation between the coordinate system of the
decomposition induced by the triangle quadtree and the path array values
of the locational codes. Nevertheless, the values of the path array of the
location code in a triangle quadtree can be manipulated in an analogous
manner to the values of the path array of the location code in a square
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quadtree, as shown in the next three subsections. For the sake of simplic-
ity, our presentation assumes that the nodes whose neighbors are being
sought are at the deepest level in the quadtrees corresponding to the faces.
The only modification needed to handle a node at depth i is to add or
subtract 2 i instead of 1 when calculating the path array component (i.e.,
the Morton code) of the location code.

5.2 Rightward Transitions

In this section we consider a transition from a triangle to its right neighbor.
Below, we look at the transitions from the different children. Transitions
from a 01 child to a 10 child or from a 10 to a 11 child are achieved by
adding one when the neighboring triangles are siblings. On the other hand,
the triangle quadtree analog of a carry in the square quadtree arises when
we make a transition from a 00 child to a 01 child or when we move from a
11 child to a 00 child (see Figure 4). This is the case when the neighboring
triangles are not siblings. Making a transition from a 11 child to a 00 child
is not a problem because this is handled easily by the use of addition.
Basically, we add one to the bit string represented by the path array of the
input and the carry automatically updates the parent node. However,
moving from a 00 child to a 01 child doesn’t work so simply. We want a
carry but we don’t naturally get one. One way to obtain the carry is to
locate and replace all occurrences of 00s with 11s, so that either of the
following two situations is handled properly :

(1) A carry will be generated if necessary (i.e., the 00 is at the extreme
right of the path array of the input).

(2) A carry will be properly propagated (i.e., the 00 is the recipient of a
carry).

In both of these situations, we can use simple addition to find the neighbor.
Since we have replaced all 00s with 11 , once the addition has taken place,
any 00s that became 00 (i.e., were affected by the addition) must be set to
their proper value, which is 01 , while all 00s that remained 11 (i.e., were
unaffected by the addition) must be reset to their original value, which is
00 .

In order to specifically deal with the 00 case, we introduce the concept of
an idmask. From a general standpoint, the idmask has two roles:

00

01
10

11
00

00
01

01

10

10

11

11

Fig. 4. Examples of rightward transitions that generate a carry (denoted by a rightward
pointing arrow) as the neighboring triangles are not siblings.
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(1) to identify the bit positions that have particular values, and

(2) to aid in marking these bit positions with specific values, not necessar-
ily the same, while leaving the values of the remaining bit positions
unchanged.

We use the naming convention ABIDXY for the idmasks where AB denotes
the values of the bit pattern pair whose positions of occurrence we seek to
identify, and XY denotes the values of the bit pattern pair that we use to
mark these positions of occurrence. The idmasks are formed by invoking a
procedure MAKE_IDMASK(INPUT,AB,XY) that sets all pairs of bits in id-
mask for which the corresponding bit pairs in the path array component of
INPUT have value AB to XY, while the bits corresponding to the other bit
pairs are set to 00 . The actual idmasks are built by calls to specialized
routines of the form MAKE_IDMASK_ABIDXY.2

In our example of a rightward movement, we use the idmask 00ID11 . In
particular, the idmask is used to identify the bit positions where we need to
modify the path array value of the input before and after performing the
addition. Once these bit positions have been identified (i.e., the bit posi-
tions in the path array of the input that have the bit pattern pair value 00),
they are marked with the bit pattern pair 11 , while the remaining bit
positions are left alone. We use the marking pattern 11 because taking its
exclusive or with any input sequence ensures that all pairs of bits with
value 00 are changed to 11 , and all pairs of bits with other bit patterns are
left alone, since the exclusive or of any bit value i with 0 is i.

Note that virtually any pattern of bit pairs can be identified by forming
the appropriate idmask in constant time. For example, Table VI shows the
effect of some example idmasks on a bit string. The idmasks 00ID11 ,
01ID11 , ?0ID11 , and ?1ID11 use the marking pair 11 to identify the bit
pairs 00 , 01 , a don’t care followed by 0, and a don’t care followed by 1,
respectively. Of course, other marking pairs can be used as well. In
particular, we show 01ID01 which uses the pair 01 to mark the pair 01 ,

2Procedure MAKE_IDMASKcan be implemented using a table lookup method that uses the
values of the parameters AB and XY to invoke the appropriate routine MAKE_IDMASK_ABIDXY.
We do not give the code for MAKE_IDMASKhere.

Table VI. Result of Applying Idmask ABIDXY to an Example Input Value (so that all
occurrences of the two-bit pattern with value “AB”are replaced by the two-bit pattern with

value “XY”)

Idmask Input 500011011 Input 510000100 Input 511010100

00ID11 11000000 00110011 00000011
01ID11 00110000 00001100 00111100
?0ID11 11001100 11110011 00000011
?1ID11 00110011 00001100 11111100
01ID01 00010000 00000100 00010100
?0ID10 10001000 10100010 00000010
?1ID10 00100010 00001000 10101000
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?0ID10 which uses the pair 10 to mark the pair ?0 , and ?1ID10 which uses
the pair 10 to mark the pair ?1 . These idmasks are used in the remaining
sections for leftward and vertical transitions, as well as transitions be-
tween neighboring triangles that are in different base triangles of the
icosahedron.

In order to gain an understanding of how an idmask is generated, let us
examine the generation of 00ID11 . Identifying 00 within a given child bit
pair whose left and right bits are labeled leftbit and rightbit , respec-
tively, requires a Boolean expression such as NOT(leftbit OR rightbit ).
Notice that this expression returns TRUEonly when both bits are 0 (i.e.,
FALSE). The sequence of operations given in Table VII shows how this
idmask is generated for a given path array. The SHIFT_RIGHT operation
aligns every leftbit with every rightbit . Step 2 performs the ORpart of
our Boolean expression. The XOR in step 3 performs the NOT part of our
Boolean expression (EVENBITMASKis used because only the values of the
even bits starting at the leftmost position are relevant at this point). The
ANDremoves any “noise” left in the odd bits. This completes the Boolean
expression (i.e., step 4 in Table VII), but doesn’t give us the pair of 1s that
we wanted. In particular, at this point, our marking pattern is 01 , which
we wish to change to 11 . This is done by applying two more operations, as
follows: A SHIFT_LEFT moves all the right bits into the left bit position. A
final OR combines our unshifted bits (i.e., the result of step 4) with our
shifted bits to yield the marking pattern we want (i.e., 00ID11 ). This
process is implemented by procedure MAKE_IDMASK_00ID11.

Algorithm 8.
path_array procedure MAKE_IDMASK_00ID11(P);
/* Return the 00ID11 idmask corresponding to the path array
component of location code P. */
begin

value pointer location_code P;
path_array 00ID11;
/* Identify the location of all 00s */

00ID11 4 OR(SHIFT_RIGHT(CODE(P)),CODE(P));

00ID11 4 XOR(00ID11,EVENBITMASK);

00ID11 4 AND(00ID11,EVENBITMASK);
/* Duplicate bits in 00ID11 */

00ID11 4 OR(00ID11,SHIFT_LEFT(00ID11));
return(00ID11);

end;

Table VII. Example of Steps in Generation of Idmask 00ID11 for Input Values

Step Operation Results

0 Example Input 00011011 10000100 11010100
1 SHIFT_RIGHT 0 00001101 01000010 01101010
2 1 OR 0 (i.e., Input) 00011111 11000110 11111110
3 2 XOR EVENBITMASK 01001010 10010011 10101011
4 3 AND EVENBITMASK 01000000 00010001 00000001
5 SHIFT_LEFT 4 10000000 00100010 00000010
6 5 OR 4 11000000 00110011 00000011

Navigating through Triangle Meshes • 101

ACM Transactions on Graphics, Vol. 19, No. 2, April 2000.



Now let us return to our task of finding a right neighbor of equal size.
This is achieved using the following strategy, which is implemented by
procedure CONSTANT_RIGHTgiven below. We first compute idmask 00ID11
by invoking procedure MAKE_IDMASK_00ID11. Next, we prepare for the
addition step by taking the XOR of idmask 00ID11 with the input path
array. When the adjacent triangles are siblings, the neighbor is obtained by
simple addition, and there is no carry. When the adjacent triangles are not
siblings, the carry that is generated by the addition process is used to
obtain the correct path array values for the location code of the adjacent
triangle. This situation arises whenever the current child is either 00 or 11
(recall Figure 4). When the current child is 11 , the necessary carry is
generated or propagated by the addition process. However, when the
current child is 00 , no carry is generated or propagated by the addition
process, and thus we have to artificially create a situation where a carry is
generated or propagated.

This situation is created by using idmask 00ID11 to identify all 00s in
the path array of the input and to replace them with 11s before performing
the addition of 1, so that the carry will be generated or propagated if
necessary. After the addition, we must take care of the following two
special cases:

(1) 11s not affected by the addition (which were originally 00s) must be
changed back to 00 ; and

(2) 11s affected by the addition, and which thus became 00s (again, only
the ones that were originally 00s) must be changed to 01 (because 00
plus one is 01).

The handling of these special cases is also facilitated by use of the idmask
00ID11 . In particular, once the addition has taken place, CONSTANT_RIGHT
must perform the following two tasks in order to work correctly:

(1) identify the occurrences of 11 in the result that were not affected by the
addition or the propagation of a carry (they must be reset to 00); and

(2) identify the occurrences of 00 in the result that were generated by an
addition or a propagation of a carry (they are set to 01).

THEOREM 1. Tasks 1 and 2 are correctly performed by procedure CON-
STANT_RIGHT.

PROOF. The first task is performed by taking the XORof the idmask with
the result of the addition, thereby creating a bit pattern that we term t.
This has the effect of leaving all pairs of bits that were not originally 00
alone, since the exclusive or of any bit value i with 0 is i. This also has the
effect of resetting to 00 all 11s at positions in the path array of the input
that originally contained 00 (which is desired) and resetting to 11 all 00s at
positions in the path array of the input that originally contained 00 .
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Once the first task has been completed, perform the second task. In
particular, all 11s that were affected by the addition and thus became 00s
(again, only the ones that were originally 00s) must be changed to 01
(because 00 plus one is 01). This is achieved by constructing a mask that
has a 11 at every pair of positions in the path array of the input that did
not contain 00 (obtained by taking the complement of idmask 00ID11 ).
Next, we OR this mask with EVENBITMASK(an alternating bit pattern
starting with 0 at its left end; that is, 010101 . . . ), which results in
marking the even positions, starting at the leftmost position, in the path
array of the input that were part of the original 00 pair with a 01 . Taking
the ANDof the resulting mask with t yields the desired result. e

Algorithm 9.

procedure CONSTANT_RIGHT(P);
/* Determine the location code of the right neighbor of equal
size of the triangle quadtree node with location code P. This
involves setting the CODE field of P. */
begin

value pointer location_code P;
path_array 00ID11;

00ID11 4 MAKE_IDMASK(P,00,11);
/* Change 00s to 11s while leaving the rest alone */

CODE(P) 4 XOR(CODE(P),00ID11);
/* Add one (move right) */

CODE(P) 4 CODE(P)11;
/* Restore unchanged 00s */

CODE(P) 4 XOR(CODE(P),00ID11);
/* Fix-up 00s that got hit with a carry */

CODE(P) 4 AND(CODE(P),OR(COMPLEMENT(00ID11),EVENBITMASK));
end;

Table VIII shows the effects of procedure CONSTANT_RIGHTon various bit
pattern pairs. The four columns under the heading Without Carry show
what happens to each of the four possible child bit pattern pairs when these
bits are not involved in a carry. It is important that the final bit pattern
pair values match the initial bit pattern pair values for these four columns.
For example, suppose we want to know what happens to the bit pattern
pair 01 in the location code with path array value ??0110?? during the
execution of procedure CONSTANT_RIGHT. Since 01 is followed by 10 , it is
impossible for the addition of one to the path array value of the input to
have any effect on 01 . In other words, 01 cannot be the recipient of an
incoming carry (from the right). Therefore, the effect of procedure CON-
STANT_RIGHTon it and any other bit pattern pair values that are followed
by a bit pattern pair that does not generate a carry are found in the second
column of Table VIII (titled Without Carry ).

As another example, suppose we want to know what happens to the bit
pattern pair 10 in the location code with path array value ??101111 during
the execution of procedure CONSTANT_RIGHT. Since 10 is followed by all 1s,
adding one to the path array value will change the 10 to 11 . In other words,
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10 is the recipient of an incoming carry (from the right). Therefore, the
effect of procedure CONSTANT_RIGHTon it and any other bit pattern pair
values that are followed by a bit pattern pair that does generate a carry are
found in the third column of Table VIII (titled With Carry ). Notice that in
this case the final bit pattern pair values are one greater than the initial
bit pattern pair values (11 becomes 00).

As an example of the action of procedure CONSTANT_RIGHT, let us find
the right neighbor of the triangle whose location code has path array value
00011100 . Let RCODErefer to this path array value. 00ID11 is 11000011 ,
since both RCODE[1] and RCODE[4] have value 00 . The first XORchanges
RCODEto 11011111 . Adding one changes RCODEto 11100000 . The second
XOR changes RCODE to 00100011 . The operation OR(COMPLEMENT
(00ID11),EVENBITMASK) yields 01111101 . The final ANDchanges RCODE
to 00100001 . This example is illustrated in Figure 5(a).

5.3 Leftward Transitions

In this section we consider a transition from a triangle to its left neighbor.
This transition differs from a rightward transition in that instead of adding
1 to the path array value of the location code and propagating a carry when
moving between triangles that are not siblings, we subtract 1 from the path
array value of the location code and propagate a borrow when moving
between triangles that are not siblings.3

Below, we look at leftward transitions from the different children. The
cases corresponding to a transition from a 10 child to a 01 child or from a
11 to a 10 child are simple, as they are achieved by subtracting one when
the neighboring triangles are siblings. On the other hand, the leftward
movement analog of a carry for the rightward movement arises when we
make a transition from a 01 child to a 00 child or when we move from a 00
child to a 11 child (see Figure 6). This is the case when the neighboring
triangles are not siblings. Making a transition from a 00 child to a 11 child
is not a problem because this is handled easily by the use of subtraction.
Basically, we subtract one from the bit string represented by the path array
and the borrow automatically updates the parent node. However, moving

3We could also implement the subtraction by adding 2 1, using twos complement arithmetic,
in which case the discussion would be in terms of additions and carries rather than
subtractions and borrows. In the interest of clarity, we use the latter.

Table VIII. Effect of procedure CONSTANT_RIGHT on Different Bit Pattern Pair Values
(depending on whether there is an incoming carry from the right)

Action Without Carry With Carry

Initial Bits 00 01 10 11 00 01 10 11
XOR 00ID11 11 01 10 11 11 01 10 11

Add One 11 01 10 11 00 10 11 00
XOR 00ID11 00 01 10 11 11 10 11 00
Fixup 00s 00 01 10 11 01 10 11 00
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from a 01 child to a 00 child doesn’t work so simply. We want a borrow but
we don’t naturally get one. One way to obtain the borrow is to locate and
replace all occurrences of 01s with 00s, so that either of the following two
situations is handled properly :

(1) A borrow will be generated if necessary (i.e., the 01 is at the extreme
right of the path array of the input).

(2) A borrow will be properly propagated (i.e., the 01 is the recipient of a
borrow).

In both of these situations, we can use simple subtraction to find the
neighbor. Since we replaced all 01s with 00 , once the subtraction has taken
place, any 01s that became 11 (i.e., were affected by the subtraction) must
be set to their proper value, which is 00 , while all 01s that remained 00
(i.e., were unaffected by the subtraction) must be reset to their original
value, which is 01 .

In order to specifically deal with the 01 case, we once again make use of
the concept of an idmask. As in the case of the rightward movement, the
idmask identifies the bit positions where we need to modify the path array
value of the input before and after performing the subtraction. However,
unlike the rightward movement, we must identify the bit positions in the
path array of the input that have value 01 and change them to 00 prior to
the subtraction, while leaving all other bit pattern pairs alone. This is not
done easily if we use the marking pattern of 11 , as we did in the case of a
rightward movement, since now our goal is to change a bit pattern pair
whose two values are not the same. The task is more easily accomplished
by observing that the result of taking the exclusive or of bit pattern pair 01
with bit pattern pair 01 is 00 , while the result of taking the exclusive or of
all other bit pattern pairs with bit pattern pair 00 leaves them unchanged.
Thus, for leftward transitions we use an idmask called 01ID01 with a
marking pattern of 01 for all occurrences of 01 in the path array of the
input. It is formed by a call to MAKE_IDMASK_01ID01, given below.
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Fig. 5. Examples showing how to find neighbors of equal size: (a) right neighbor of 00011100;
(b) left neighbor of 01110001; (c) vertical neighbor of 10100111.
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Algorithm 10.
path_array procedure MAKE IDMASK 01ID01(P);
/* Return the 01ID01 idmask corresponding to the path array
component of location code P. */
begin

value pointer location code P;
path_array 01ID01;
/* Identify the location of all 01s */

01ID01 4 AND(COMPLEMENT(CODE(P)),ODDBITMASK);

01ID01 4 SHIFT_RIGHT(01ID01);

01ID01 4 AND(01ID01,CODE(P));
return(01ID01);

end;

Finding the left neighbor of equal size is achieved using procedure
CONSTANT_LEFT, given below. The difference from procedure CONSTANT_
RIGHT is the use of idmask 01ID01 instead of 00ID11 and subtraction
instead of addition. After subtraction, CONSTANT_LEFTmust perform the
following two tasks in order to work correctly:

(1) identify the occurrences of 00 in the result that were not affected by the
subtraction or the propagation of a borrow (they must be reset to 01);
and

(2) identify the occurrences of 11 in the result that were generated by a
subtraction or a propagation of a borrow (they are set to 00).

THEOREM 2. Tasks 1 and 2 are performed correctly by procedure CON-
STANT_LEFT.

PROOF. The first task is performed by taking the XORof the idmask with
the result of the subtraction, thereby creating a bit pattern that we term t.
This has the effect of leaving all pairs of bits that were not originally 01
alone, since the exclusive or of any bit value i with 0 is i. This also has the
effect of resetting to 01 all 00s at positions in the path array of the input
that originally contained 01 (which is desired) and resetting to 10 all 11s at
positions in the path array of the input that originally contained 01 .

Once the first task has been completed, perform the second task. In
particular, all 00s that were affected by the subtraction and thus became
11s (again, only the ones that were originally 01s) must be changed to 00
(because 01 minus one is 00). This is achieved by constructing a mask that
has a 11 at every pair of positions in the path array of the input that did
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Fig. 6. Examples of leftward transitions that generate a borrow (denoted by a leftward
pointing arrow), as the neighboring triangles are not siblings.
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not contain 01 , and a 01 in the positions that did contain 01 (obtained by
taking the COMPLEMENTof the result of applying SHIFT_LEFT by one bit
position to idmask 01ID01 ). Taking the ANDof the resulting mask with t
yields the desired result. e

Algorithm 11.

procedure CONSTANT_LEFT(P);
/* Determine the location code of the left neighbor of equal
size of the triangle quadtree node with location code P. This
involves setting the CODE field of P. */
begin

value pointer location_code P;
path_array 01ID01;

01ID01 4 MAKE_IDMASK(P,01,01);
/* Change 01s to 00s while leaving the rest alone */

CODE(P) 4 XOR(CODE(P),01ID01);
/* Subtract one (move left) */

CODE(P) 4 CODE(P)–1;
/* Restore unchanged 01s */

CODE(P) 4 XOR(CODE(P),01ID01);
/* Fix-up 01s that got hit with a borrow */

CODE(P) 4 AND(CODE(P),COMPLEMENT(SHIFT_LEFT(01ID01)));
end;

As an example of the action of procedure CONSTANT_LEFT, let us find the
left neighbor of the triangle whose location code has path array value
01110001 . Let LCODErefer to this path array value. 01ID01 is 01000001 ,
since both both LCODE[1] and RCODE[4] have value 01 . The first XOR
changes LCODEto 00110000 . Subtracting one changes LCODEto 00101111 .
The second XOR changes LCODE to 01101110 . The operation
COMPLEMENT(SHIFT_LEFT(01ID01)) yields 01111101 . The final AND
changes LCODEto 01101100 . This example is illustrated in Figure 5(b).

5.4 Vertical Transitions

In this section we consider a transition from a triangle to its vertical
neighbor. This is a very simple transition because once we locate the
nearest common ancestor (i.e., the parent of the smallest containing sibling
triangles of the neighboring triangles), the reflection process for finding the
neighbor results in no change in any of the other elements of the path array
of the input. In particular, recall from Figures 2(a) and 2(b) that with
exception of the path array component corresponding to the sibling trian-
gles that contain the two neighbors, the path array value of the neighbor is
the same as the path array value of the triangle whose vertical neighbor is
being sought. We made use of this property when we calculated vertical
neighbors in Section 3.

The vertical transition differs from the rightward and leftward transi-
tions in that the path array values of the inputs do not change, except for
the transition between sibling triangles. In particular, we need to make
one, and only one, transition from the least significant 00 child (i.e.,
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rightmost in the path array of the input) to the least significant 10 child or
vice versa (i.e., from the least significant 10 child to the least significant 00
child). From an implementation standpoint, making a vertical transition is
quite simple. All we need to do is identify the rightmost ?0 child and
complement the left bit of its bit pattern pair value. All remaining bit
pattern pairs are left alone.

In order to facilitate the identification of the rightmost ?0 case, we once
again make use of the concept of an idmask. In this case, we use the
idmask ?0ID10 , which identifies the bit positions in the path array of the
input with value ?0 and marks them with 10 . We use the marking pattern
10 because we want to complement the left bit of a bit pattern pair value,
and this is easily done with the aid of an exclusive or operation as the
exclusive or of any bit value i with 1 the complement of i. Idmask ?0ID10
is formed by a call to MAKE_IDMASK_?0ID10, given below.

Algorithm 12.

path_array procedure MAKE_IDMASK_?0ID10(P);
/* Return the ?0ID10 idmask corresponding to the path array
component of location code P. */
begin

value pointer location_code P;
path_array ?0ID10;
/* Identify the location of all 00s and 10s */

?0ID10 4 AND(COMPLEMENT(CODE(P)),EVENBITMASK);

?0ID10 4 SHIFT_LEFT(?0ID10);
return(?0ID10);

end;

Finding the vertical neighbor of equal size is achieved using procedure
CONSTANT_VERTICAL, given below. It must complement the left bit of the
rightmost ?0 in the original input.

THEOREM 3. Procedure CONSTANT_VERTICALcomplements the left bit of
the rightmost ?0 in the original input.

PROOF. CONSTANT_VERTICALfirst computes idmask ?0ID10 by invoking
procedure MAKE_IDMASK_?0ID10. Next, it creates a new mask m from
?0ID10 that is zero at all bit positions with the exception of the rightmost
10 . This is achieved by taking the COMPLEMENTof ?0ID10 . The result is a
mask n that contains 11 in all bit-pair positions to the right of the
rightmost 10 of ?0ID10 , which itself has become 01 in n. Adding 1 to n,
thereby resulting in p, means that all 11s to the right of the rightmost 01
have become 00s, while the rightmost 01 has become a 10 . All other
bit-pair positions in n are unchanged by the addition. The desired mask m
is now obtained by taking the ANDof p and ?0ID10 . This works because all
items to the left of the rightmost 10 in p are the complements of the
corresponding items in ?0ID10 , while all items to the right of the rightmost
10 in p are 0. The final step is to take the XORof m with the original input
value. This has the correct effect of complementing the left bit of the
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rightmost ?0 in the original input value, since the exclusive or of any bit
value i with 1 is the complement of i. This process yields the same effect as
the column labeled “Vert” in Table II in Section 3.2. e

Algorithm 13.

procedure CONSTANT_VERTICAL(P);
/* Determine the location code of the vertical neighbor of equal
size of the triangle quadtree node with location code P. This
involves setting the CODE field of P. */
begin

value pointer location_code P;
path_array ?0ID10,MASK;

?0ID10 4 MAKE IDMASK(P,?0,10);

MASK4 COMPLEMENT(?0ID10);
/* Use carry to find what to update */

MASK4 MASK11;
/* Clear out everything but carry */

MASK4 AND(MASK,?0ID10);
/* Update the path array */

CODE(P) 4 XOR(CODE(P),MASK);
end;

As an example of the action of procedure CONSTANT_VERTICAL, find the
vertical neighbor of the triangle whose location code has path array value
10100111 . Let VCODErefer to this path array value. ?0ID10 is 10100000 ,
since both VCODE[1] and VCODE[2] have value ?0 . The operation
COMPLEMENT(?0ID10) yields 01011111 stored in variable MASK. Adding
one to MASKyields 01100000 . Applying AND(MASK,?0ID10) changes MASK
to 00100000 . The final XOR of MASK with VCODE changes VCODE to
10000111 . This example is illustrated in Figure 5(c).

5.5 Transitions Across Different Faces of the Icosahedron

Transitions between different base triangles of the icosahedron are rela-
tively simple. This situation arises if the addition steps in procedures
CONSTANT_RIGHTand CONSTANT_VERTICALgenerated a carry past the
leftmost end of the path array of the input or if the subtraction step in
procedure CONSTANT_LEFTgenerated a borrow past the leftmost end of the
path array of the input. In this case, some sort of carry (borrow) or overflow
indicator will be set. Testing this flag is achieved by a simple one-cycle
machine instruction on most computer architectures. Alternatively, we
could allocate one additional bit at the extreme left of the path array of the
input to indicate when an ‘overflow’ condition has occurred. For example,
consider the location code 0011110011 . If we reserve an overflow bit, the
code becomes 00011110011 . The result of applying CONSTANT_RIGHTto
00011110011 yields 10100000100 . Since the overflow bit is 1, we need to
update the identity of the base triangle for this example. This is achieved in
constant time by making use of Table IV, which is described in Section 4.

Vertical transitions between different faces of the icosahedron as well as
left and right transitions between nodes corresponding to the faces of the
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icosahedron labeled 05 to 14 as shown in Figure 1 are straightforward, in
the sense that there is no change in the algorithms. However, special care
must be taken when making left and right transitions between nodes
corresponding to the faces of the icosahedron labeled 00 to 04 and 15 to 19 .
In Section 4, we solved this problem by making use of Table V. We now
want to obtain the same result in worst-case constant time. The issue here
is that the left and right neighbors are “mirror reflections.” In particular,
recall that in the case of a right neighbor, 00 stays 00 , while 11 reflects to
01 , 10 and 01 cannot occur along the right edge of a node. Similarly, in the
case of a left neighbor, 00 stays 00 , while 01 reflects to 11 , 10 and 11
cannot occur along the left edge of a node.

These situations are handled in a similar manner to vertical transition,
in the sense that we make use of reflection. The difference is that we must
perform the reflection for all occurrences of 11 in the case of right
neighbors and all occurrences of 01 in the case of left neighbors. These
situations are identified by complementing the left bit of the bit pattern
value of each ?1 child. All remaining bit pattern pairs are left alone.

In order to facilitate the identification of all occurrences of ?1 , we once
again make use of the concept of an idmask. In this case, we use the
idmask ?1ID10 that identifies the bit positions in the path array of the
input with value ?1 and marks them with 10 . Idmask ?1ID10 is formed by
a call to MAKE_IDMASK_?1ID10, given below. Note the similarity to idmask
?0ID10 used in finding vertical neighbors (procedure CONSTANT_VERTI-
CAL).

Algorithm 14.

path_array procedure MAKE IDMASK ?1ID10(P);
/* Return the ?1ID10 idmask corresponding to the path array
component of location code P. */
begin

value pointer location_code P;
path_array ?1ID10;
/* Identify the location of all 01s and 11s */

?1ID10 4 AND(CODE(P),EVENBITMASK);

?1ID10 4 SHIFT_LEFT(?1ID10);
return(?1ID10);

end;

The reflection is implemented by procedure CONSTANT_REFLECTION,
given below. It is important to note that we only use procedure CON-
STANT_REFLECTIONwhen the overflow bit is 1, which indicates that the
nearest common ancestor is actually the entire sphere. The correctness of
CONSTANT_REFLECTIONdepends on its proper handling of both left and
right neighbors.

THEOREM 4. Procedure CONSTANT_REFLECTIONworks correctly for both
left and right neighbors.

PROOF. In the left neighbor case, since we are on the extreme left edge of
one of the triangles of the faces of the icosahedron, the path array value can
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only contain bit pattern pairs with values 00 and 01 . Thus all 01s are
“marked” by ?1ID10 (with the pattern 10). Therefore, one application of
XORto the input with ?1ID10 changes all 01s to 11s, as desired. Similarly,
in the right neighbor case, since we are on the extreme right edge of one of
the triangles of the faces of the icosahedron, the path array value can only
contain bit pattern pairs with values 00 and 11 . Thus all 11s are “marked”
by ?1ID10 (with the pattern 10). Therefore, one application of XORto the
input with ?1ID10 changes all 11s to 01s, as desired. e

Algorithm 15.

procedure CONSTANT_REFLECTION(P);
/* Determine the location code of the right or left neighbor of
equal size of the triangle quadtree node corresponding to a face
of the icosahedron labeled 00 to 04 and 15 to 19 with location
code P. This involves setting the CODE field of P. */
begin

value pointer location_code P;
path_array ?1ID10;

?1ID10 4 MAKE IDMASK(P,?1,10);
/* Update the path array */

CODE(P) 4 XOR(CODE(P),?1ID10);
end;

We now present the complete algorithms for finding right, left, and
vertical neighbors. They work regardless of whether the neighbors are in
the same or different faces of the icosahedron. The algorithms are encoded
by procedures EXT_CONSTANT_LEFT, EXT_CONSTANT_RIGHT, and EXT_CON-
STANT_VERTICAL. Procedure EXT_CONSTANT_RIGHTfirst invokes proce-
dure CONSTANT_RIGHT. If the overflow bit is 1, we need to update the child
type of the root; otherwise we are done. We can update the root value using
Table IV. If the current child of the root corresponds to a face of the
icosahedron labeled 00 to 04 or 15 to 19 , we discard the result of
CONSTANT_RIGHT(only the overflow condition is significant) and invoke
procedure CONSTANT_REFLECTIONwith our original input location code. At
this point we are done, as we have found the right neighbor of the input
location code. Procedure EXT_CONSTANT_LEFT, not given here (see Lee and
Samet [1998]), is equivalent to procedure EXT_CONSTANT_RIGHTonce we
replace the call to CONSTANT_RIGHTby a call to CONSTANT_LEFT, as well as
the constant RIGHT by LEFT. Procedure EXT_CONSTANT_VERTICALjust
needs to call procedure CONSTANT_VERTICAL, and then update the root
value using Table IV if overflow occurs.

Algorithm 16.

procedure EXT_CONSTANT_RIGHT(P);
/* Determine the location code of the right neighbor of equal
size of the triangle quadtree node with location code P. The
routine works regardless of whether or not the neighbor is on
the same face of the icosahedron. This involves setting the CODE
field of P. */
begin
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value pointer location_code P;
pointer location_code NEWP;
preload integer array NEXTTOP[0:2][0:19] with Table IV;

NEWP4 create(location code);

CODE(NEWP)4 CODE(P);

LEV(NEWP)4 LEV(P);
/* Use top of CODE(NEWP) as overflow space */

CODE(NEWP)[0] 4 0;
/* Find standard right neighbor */
CONSTANT_RIGHT(NEWP);
/* Check for overflow */
if CODE(NEWP)[0] 50 then

/* Restore root position to original value */

CODE(NEWP)[0] 4 CODE(P)[0]
else
begin

/* Check for nodes 0 to 4 and 15 to 19 */
if not(4 ,CODE(P)[0] and CODE(P)[0] ,15) then
begin

/* Get a new copy of the original path array value */

CODE(NEWP)4 CODE(P);
/* Use reflection to get the neighbor */
CONSTANT_REFLECTION(NEWP);

end;
/* Set root position to appropriate neighbor */

CODE(NEWP)[0] 4 NEXTTOP[ ‘RIGHT’][CODE(P)[0]];
end;
/* Set CODE(P) to the new path array value */

CODE(P) 4 CODE(NEWP);
end;

Algorithm 17.

procedure EXT_CONSTANT_VERTICAL(P);
/* Determine the location code of the vertical neighbor of equal
size of the triangle quadtree node with location code P. The
routine works regardless of whether or not the neighbor is on
the same face of the icosahedron. This involves setting the CODE
field of P. */
begin

value pointer location_code P;
pointer location_code NEWP;
preload integer array NEXTTOP[0:2][0:19] with Table IV;

NEWP4 create(location_code);

CODE(NEWP)4 CODE(P);

LEV(NEWP)4 LEV(P);
/* Use top of CODE(NEWP) as overflow space */

CODE(NEWP)[0] 4 0;
/* Find standard vertical neighbor */
CONSTANT_VERTICAL(NEWP);
/* Check for overflow */
if CODE(NEWP)[0] 50 then

/* Restore root position to original value */

CODE(NEWP)[0] 4 CODE(P)[0]
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else
/* Set root position to appropriate neighbor */

CODE(NEWP)[0] 4 NEXTTOP[ ‘VERTICAL’][CODE(P)[0]];
/* Set CODE(P) to the new path array value */

CODE(P) 4 CODE(NEWP);
end;

6. NEIGHBOR FINDING USING OCTAHEDRA AND TETRAHEDRA

In this section we briefly describe how to perform neighbor finding when
the sphere is approximated by other Platonic solids with triangular faces.
Section 6.1 describes the modifications to the algorithms for the icosahe-
dron needed for the octahedron while Section 6.2 deals with the tetrahe-
dron.

6.1 Octahedron

Approximating a sphere by an octahedron requires eight of our triangle
quadtrees. We label the eight nodes corresponding to the roots of the
quadtrees of the faces of the octahedron using a 4-bit code ranging from
0000 (decimal 0) to 0111 (decimal 7). We could have fit the eight values
into just 3 bits, but we decided to use an even number of bits because the
machine word length is always an even number of bits. The order in which
the faces of the octahedron are numbered isn’t important since tables will
be used. Thus we have numbered the faces using a simple left-to-right and
top-to-bottom order (see Figure 7). Our numbering scheme has the property
that triangles 0 to 3 are tip-up and 4 to 7 are tip-down.

The only modification with respect to step two of the algorithm in Section
3 is the use of a different relation NEXTOCT(Table IX) to indicate how to
update CODE[0] . It summarizes the actions for all possible neighbors from
Figure 7 and replaces relation NEXTTABin the algorithm for this case. This
relation is used only when the nearest common ancestor from step one is
the entire sphere.

We now present the complete constant time algorithms for finding right,
left, and vertical neighbors, analogous to those in Section 5.5 for the
icosahedron, in the sense that they work regardless of whether the neigh-
bors are on the same or different faces of the octahedron. The algorithms
are encoded by procedure OCT_CONSTANT_LEFT, OCT_CONSTANT_RIGHT,
and OCT_CONSTANT_VERTICAL. Procedure OCT_CONSTANT_RIGHTfirst in-
vokes procedure CONSTANT_RIGHT. If the overflow bit is 1, we need to
update the child type of the root; otherwise we are done. We update the root

0 1 2 3

4 5 6 7

Fig. 7. Example showing the top-level triangle faces of an octahedron.
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value using Table IX. Also, we throw away the result of CONSTANT_RIGHT
(only the overflow condition is significant) and invoke procedure CON-
STANT_REFLECTIONwith our original input location code. We are now
done, as we have found the right neighbor of the input location code.
Procedure OCT_CONSTANT_LEFT, not given here (see Lee and Samet
[1998]), is equivalent to procedure OCT_CONSTANT_RIGHTonce we replace
the call to CONSTANT_RIGHTby a call to CONSTANT_LEFT, as well as the
constant RIGHT by LEFT. Procedure OCT_CONSTANT_VERTICAL, not given
here (see Lee and Samet [1998]), just needs to call procedure CONSTANT_
VERTICAL and then update the root value using Table IX if overflow occurs.
It is identical to procedure EXT_CONSTANT_VERTICALonce we replace table
NEXTTOP(Table IV) by NEXTOCT(Table IX).

Algorithm 18.
procedure OCT_CONSTANT_RIGHT(P);
/* Determine the location code of the right neighbor of equal
size of the triangle quadtree node with location code P. The
routine works regardless of whether or not the neighbor is on
the same face of the octahedron. This involves setting the CODE
field of P. */
begin

value pointer location_code P;
pointer location_code NEWP;
preload integer array NEXTOCT[0:2][0:7] with Table IX;

NEWP4 create(location code);

CODE(NEWP)4 CODE(P);

LEV(NEWP)4 LEV(P);
/* Use top of CODE(NEWP) as overflow space */

CODE(NEWP)[0] 4 0;
/* Find standard right neighbor */
CONSTANT_RIGHT(NEWP);
/* Check for overflow */
if CODE(NEWP)[0] 50 then

/* Restore root position to original value */

CODE(NEWP)[0] 4 CODE(P)[0]
else
begin

Table IX. NEXTOCT(Neighbor_Direction,Child_Type) indicating neighbors of triangles
corresponding to faces of the octahedron

Child Type

Neighbor Direction

Left Right Vert

0 3 1 4
1 0 2 5
2 1 3 6
3 2 0 7
4 7 5 0
5 4 6 1
6 5 7 2
7 6 4 3
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/* Get a new copy of the original path array value */

CODE(NEWP)4 CODE(P);
/* Use reflection to get the neighbor */
CONSTANT_REFLECTION(NEWP);
/* Set root position to appropriate neighbor */

CODE(NEWP)[0] 4 NEXTOCT[ ‘RIGHT’][CODE(P)[0]];
end;
/* Set CODE(P) to the new path array value */

CODE(P) 4 CODE(NEWP);
end;

6.2 Tetrahedron

Approximating a sphere by a tetrahedron requires four of our triangle
quadtrees. We label the four nodes corresponding to the roots of the
quadtrees of the faces of the tetrahedron using a 2-bit code ranging from 00
(decimal 0) to 11 (decimal 3). The order in which the triangle faces of the
tetrahedron are numbered isn’t important, since tables will be used. Thus
we have numbered the faces using the numbering scheme of Figure 2 (see
Figure 8).

The only modification with respect to step two of the algorithm in Section
3 is the use of a different relation NEXTTET(Table X) to indicate how to
update CODE[0] . It summarizes the actions for all possible neighbors from
Figure 8 and replaces relation NEXTTABin the algorithm for this case. This
relation is used only when the nearest common ancestor from step one is
the entire sphere.

If we examine the triangle adjacencies for the tetrahedron (see Figure 9),
we notice that some of the transitions result in a “flipped” result. Compen-
sating for this “flipped” result isn’t a significant problem because procedure
CONSTANT_REFLECTIONalready does the required work. We just need to
make sure that we call CONSTANT_REFLECTIONwhenever we make a
transition between faces 0 and 1, 0 and 3, or 1 and 3.

We now present the complete constant time algorithms for finding right,
left, and vertical neighbors, analogous to those in Section 5.5 for the
icosahedron, in the sense that they work regardless of whether the neigh-
bors are on the same or different faces of the tetrahedron. The algorithms
are encoded by procedure TET_CONSTANT_LEFT, TET_CONSTANT_RIGHT,
and TET_CONSTANT_VERTICAL. Procedure TET_CONSTANT_RIGHTfirst in-
vokes procedure CONSTANT_RIGHT. If the overflow bit is 1, we need to
update the child type of the root; otherwise we are done. We can update the
root value using Table X. If the current child of the root corresponds to the

0

1
2

3

Fig. 8. Example showing the top-level triangle faces of a tetrahedron.
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faces of the tetrahedron labeled 0 or 3,we invoke procedure CONSTANT_RE-
FLECTION with the current location code. We are now done, as we have
found the right neighbor of the input location code. Procedure TET_CON-
STANT_LEFT, not given here (see Lee and Samet [1998]), is equivalent to
procedure TET_CONSTANT_RIGHTonce we replace the call to CONSTANT-
_RIGHT by a call to CONSTANT_LEFT, as well as the constant RIGHT by
LEFT. We also check for children 0 and 1 instead of 0 and 3. Procedure
TET_CONSTANT_VERTICAL, not given here (see Lee and Samet [1998]), is
also equivalent to procedure TET_CONSTANT_RIGHTonce we replace the call
to CONSTANT_RIGHTby a call to CONSTANT_VERTICAL, as well as the
constant RIGHT by VERTICAL. We also check for children 1 and 3 instead of
0 and 3.

Algorithm 19.
procedure TET_CONSTANT_RIGHT(P);
/* Determine the location code of the right neighbor of equal
size of the triangle quadtree node with location code P. The
routine works regardless of whether or not the neighbor is on
the same face of the tetrahedron. This involves setting the CODE
field of P. */

Table X. NEXTTET(Neighbor_Direction,Child_Type) indicating neighbors for triangles
corresponding to faces of the tetrahedron

Child Type

Neighbor Direction

Left Right Vert

0 1 3 2
1 0 2 3
2 1 3 0
3 2 0 1

01 11

00 00

01 11

00

01 11

01
10

11

10 00 10

10

00

01
10

11

00

01
10

11

00

01
10

11

00

01
10

11

00

01
10

11

00

01
10

11
1

13

3

0 0

Fig. 9. Example showing triangle adjacencies of the tetrahedron.
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begin
value pointer location_code P;
pointer location_code NEWP;
preload integer array NEXTTET[0:2][0:3] with Table X;

NEWP4 create(location code);

CODE(NEWP)4 CODE(P);

LEV(NEWP)4 LEV(P);
/* Use top of CODE(NEWP) as overflow space */

CODE(NEWP)[0] 4 0;
/* Find standard right neighbor */
CONSTANT_RIGHT(NEWP);
/* Check for overflow */
if CODE(NEWP)[0] 50 then

/* Restore root position to original value */

CODE(NEWP)[0] 4 CODE(P)[0]
else
begin

/* Check for nodes 0 or 3 */
if CODE(P)[0] 50 or CODE(P)[0] 53 then

/* Use reflection to get the neighbor */
CONSTANT_REFLECTION(NEWP);

/* Set root position to appropriate neighbor */

CODE(NEWP)[0] 4 NEXTTET[ ‘RIGHT’][CODE(P)[0]];
end;
/* Set CODE(P) to the new path array value */

CODE(P) 4 CODE(NEWP);
end;

7. FINDING NEIGHBORS OF GREATER OR EQUAL SIZE

The algorithms in Sections 3–6 assume that the neighbors are of equal
size. When the neighbors are not of equal size, we need to do a bit more
work. In essence, given node P, our algorithms calculate the address of a
neighbor Q in direction D of equal size. This is not a problem if all of the
nodes of the quadtrees are of equal size. In general, however, there is no
guarantee that such a neighbor Q actually exists if nodes can be of differing
sizes. As mentioned in Section 1, the nodes are usually kept in a list L that
is sorted by numbers formed by concatenating the base triangle number
with the path array value and the depth from left to right.

If Q is not a member of L, there are two possibilities. The first is that the
actual neighboring node of P in direction D is greater in size than P. In this
case, we find it by returning the node associated with the largest value in L
that is less than or equal to the value associated with Q. The second
possibility arises when there are many nodes adjacent to P in direction D.
In this case, there is no single neighboring node, and we return the analog
of a nonleaf node in a conventional quadtree at the same depth as P with
the same path array value as Q.

It is important to note that the calculation of the neighbor of equal size is
achieved in worst-case constant time. The calculation of the neighboring
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node when all sizes are permitted requires a search through the list L. This
search is speeded up by maintaining L using an index such as a B-tree
[Comer 1979]. In fact, this is how the list is usually implemented (e.g., Abel
[1984]). In this case, the search takes time logarithmic in the size of L,
which is the total number of nodes in the triangle hierarchy.

8. CONCLUSIONS AND FUTURE WORK

We have described a triangle coding scheme that provides a new and
worst-case constant time in which to navigate between adjacent triangles
in a hierarchical triangle mesh, where the triangles are obtained by a
recursive quadtree-like subdivision of the underlying space into four equi-
lateral triangles. We did not address other operations such as determining
whether two triangles are adjacent, but this can be accomplished in
constant time using our coding scheme. Also, our method is well suited to
operations such as finding all triangles that connect any two points of the
sphere [Goodchild and Yang 1992].

Our navigation algorithms are given in the context of a sphere approxi-
mated by an icosahedron, octahedron, or tetrahedron represented by a
collection of quadtree triangle meshes. The only difference is the mecha-
nism to handle the case where the neighboring triangles are in the meshes
of different faces of the polyhedron. The algorithms are very efficient, as
they only require a few bit manipulation operations, which can be imple-
mented in hardware using just a few machine language instructions.

It is interesting to observe that Schrack’s method could also be used to
reduce the execution time of the algorithm presented by Otoo and Zhu
[1993], as they treat triangle quadtrees as two special subcases of a square
quadtree. However, the implementation would require quite a few special
cases, thereby complicating the process. Transitions between different faces
of the polyhedron would also be more complex.

Our neighbor-finding technique has a natural application [Junkins 1999]
in performing subdivision surface computations over triangular meshes.
Subdivision surface algorithms are popular computer graphics algorithms
for generating visually rich and smooth surfaces from a coarse base mesh of
control polygons. They provide a powerful alternative to more traditional
polygon or NURBS modeling, and enable developers to create scalable 3D
applications that boast multiresolution surface capability [Dyn et al. 1990;
Hoppe et al. 1994]. Our triangle encoding method alleviates the need to
maintain an explicit, pointer-based triangle quadtree while enabling worst-
case constant time neighbor-finding. Furthermore, our neighbor-finding
methods are extremely cache and register friendly, thereby lending them-
selves well to highly optimized implementations on widely available con-
sumer hardware [Junkins 1999].

Besides being useful in finite element analysis, as well as applications
involving the modeling of spherical data, our algorithms could also be used
in a ray tracer where a surface is represented by a quadtree hierarchy
composed of triangle meshes instead of square meshes. The algorithms are
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also useful in the implementation of an interpolation process between
neighboring triangles to give a smoother appearance [Fekete 1990]. This
would remove the “cracks” that sometimes arise when storing elevation
data in the current system. A direction for future research is the extension
of our methods to three-dimensional data, where the basic shapes are now
tetrahedra instead of triangles (e.g., Perucchio et al. [1989]; Saxena and
Perucchio [1989]). Our current methods are applicable to the surface of the
three-dimensional data only.
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