
ar
X

iv
:1

80
2.

05
84

4v
4 

 [
cs

.A
I]

  1
6 

D
ec

 2
01

8

A Unified View of Causal and Non-causal Feature Selection

Kui Yu ykui713@gmail.com

Lin Liu Lin.Liu@unisa.edu.au

Jiuyong Li Jiuyong.Li@unisa.edu.au

School of Information Technology and Mathematical Sciences

University of South Australia

Adelaide, 5095, SA, Australia

Editor:

Abstract

In this paper, we aim to develop a unified view of causal and non-causal feature selection
methods. The unified view will fill in the gap in the research of the relation between the two
types of methods. Based on the Bayesian network framework and information theory, we
first show that causal and non-causal feature selection methods share the same objective.
That is to find the Markov blanket of a class attribute, the theoretically optimal feature set
for classification. We then examine the assumptions made by causal and non-causal feature
selection methods when searching for the optimal feature set, and unify the assumptions
by mapping them to the restrictions on the structure of the Bayesian network model of
the studied problem. We further analyze in detail how the structural assumptions lead
to the different levels of approximations employed by the methods in their search, which
then result in the approximations in the feature sets found by the methods with respect
to the optimal feature set. With the unified view, we are able to interpret the output of
non-causal methods from a causal perspective and derive the error bounds of both types
of methods. Finally, we present practical understanding of the relation between causal and
non-causal methods using extensive experiments with synthetic data and various types of
real-word data.

Keywords: Causal feature selection, Non-causal feature selection, Mutual information,
Markov blanket, Bayesian network

1. Introduction

Feature selection is to identify a subset of features (predictor variables) from the original
features for model building or data understanding (Guyon and Elisseeff, 2003; Liu and Yu,
2005). In the big data era, feature selection is more pressing than ever, since high-
dimensional datasets have become ubiquitous in various applications (Zhai et al., 2014).
For example, in cancer genomics, a gene expression dataset can contain tens of thousands
of features (genes). For another example, the Webb Spam Corpus 2011 has a collection
of approximately 16 million features for web spam detection (Wang et al., 2012). The
high dimensionality not only incurs high computational cost and memory usage, but also
deteriorates the generalization ability of prediction models (Brown et al., 2012). There-
fore, many feature selection methods have been proposed, and they fall into three main
categories, filter, wrapper, and embedded methods (Li et al., 2016). While filter feature se-
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lection methods are classifier or prediction model agnostic, the other two types of methods
are classifier dependent. With the rapid increase of high dimensional data, filter feature
selection methods are attracting more attentions than ever, because of their fast processing
speed, independence of prediction models, and robustness against overfitting (i.e. no bias
on specific prediction models). In this paper, we focus on filter methods, and in the rest of
this paper, feature selection refers to filter feature selection, unless otherwise mentioned.

In the last two decades, feature selection has been well studied and has achieved great
successes in building high quality classification models. In classical feature selection, an
input feature is considered as a strongly relevant feature, a weakly relevant feature, or
an irrelevant feature with respect to a class attribute (Kohavi and John, 1997), and the
methods aim to find the strongly relevant features of the class attribute. To achieve this
goal, typically, a classical feature selection method will rank the features according to their
relevance to the class attribute, and then iteratively selects for inclusion the top ψ most
relevant features (Guyon and Elisseeff, 2003).

An emerging feature selection approach is to identify a Markov blanket (MB) of the
class attribute (Koller and Sahami, 1995; Guyon et al., 2007; Aliferis et al., 2010a,b). The
notion of MB was invented by Pearl (Pearl, 1988, 2014) under the framework of causal
Bayesian network (CBN). The MB of a variable in a CBN consists of its parents (direct
causes), children (direct effects), and spouses (other parents of this variable’s children) (For
an exemplar MB, please see Figure 1 in Section 3). By tying feature predictive power
and causality together, the MB discovery approach to feature selection can achieve more
parsimonious feature subset than classical feature selection methods, thus lead to more
interpretable and robust prediction models (Guyon et al., 2007). Since the MB discovery
approach explicitly induces local causal relations between a class attribute and the features
while classical feature selection methods do not, in this paper, we call the MB discovery
approach causal feature selection while the classical (filter) feature selection approach non-
causal feature selection (Guyon et al., 2007; Aliferis et al., 2010a).

A series of causal feature selection algorithms, such as IAMB (Tsamardinos and Aliferis,
2003), MMMB (Tsamardinos et al., 2003a), HITON-MB (Aliferis et al., 2003), PCMB (Peña et al.,
2007), and STMB (Gao and Ji, 2017) have been developed. Tsamardinos et al. (Tsamardinos and Aliferis,
2003) were the first to build the connection between local causal discovery and feature selec-
tion, which opened the way to study the relation of causal and non-causal feature selection
methods. Guyon et al. (Guyon et al., 2007) conducted a comparison of the motivations and
pros/cons of causal and non-causal feature selection approaches. However, the analysis was
at conceptual and general discussion level. Brown et al. (Brown et al., 2012) unified infor-
mation theoretic feature selection methods. These pioneer work provides a basis of studying
causal and non-causal feature selection methods. However, to the relations between the two
major approaches to feature selection, the following fundamental questions are yet to be
investigated:

• Firstly, what is the relation between the objectives of causal feature selection and
non-causal feature selection, i.e. what is the relation between the set of all features
strongly relevant to the class attribute and finding the MB of the class attribute?

• Secondly, driven by their respective objectives, how are the search strategies employed
by the two types of feature selection methods different?
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• Thirdly, what are the underlying assumptions leading to the different search strate-
gies?

To answer these questions, in this paper, we develop a unified view of causal and non-
causal feature selection by systematically studying the relation between the two approaches
from the perspectives of their objective functions, assumptions, search strategies, and the
error bounds by employing the Bayesian network framework and information theory. Specif-
ically, we have made the following contributions in this paper:

• We derive a mutual information based representation of the optimal feature set for
classification. Based on the representation, we develop a unified representation of the
objective function of causal and non-causal feature selection by showing that both
types of methods share the same objective.

• We analyze the assumptions made by the major causal and non-causal feature selection
methods in their search for the feature set specified by the objective function. Our
findings show that these assumptions can be unified under the Bayesian network
framework, and the assumptions can be represented as different levels of restrictions
on the structure of the Bayesian network model of the problem under consideration.

• We analyze the search strategies of the causal and non-causal feature selection meth-
ods, and discover that as a result of the different levels of assumptions, different
search strategies have been taken by the methods, which then result in different levels
of approximations of the optimal feature set.

• We analyze the output of non-causal feature selection methods from a causal perspec-
tive and derive the error bounds of the two major approaches to feature selection.

• We conduct extensive experiments using synthetic and real-world datasets to validate
the relationship between the assumptions and approximations made by causal and
non-causal feature selection methods, the causal interpretations of non-causal feature
selection, and the derived error bounds of both types of feature selection methods.

In summary, we propose a unified view to bridge the gap in current understanding of
the relation between causal and non-causal feature selection methods. With the unified
view, we are able to understand the mechanisms of two major feature selection approaches,
and thus to connect causality to predictive feature selection and interpret the output of
non-causal methods using a causal framework. Moreover, by filling in the gap, we hope to
leverage the cross-pollination between causal and non-causal feature selection to develop
new methodologies promising to deliver more robust data analysis than each field could
individually do.

The rest of the paper is organized as follows. Section 2 discusses the related work,
and Section 3 presents the key notations and definitions. Section 4 analyzes the objective
functions and the rationale of causal and non-causal feature selection methods. Section 5
identifies and examines the assumptions made by causal and non-causal feature selection
methods and their corresponding search strategies. Section 6 discusses the error bounds of
causal and non-causal feature selection methods. Section 7 presents the experiments and
demonstrates how the developed unified view provides practical understanding the relations
between causal and non-causal feature selection methods, and Section 8 concludes the paper.
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2. Related work

In this section, we will review causal and non-causal (filter) feature selection methods. Excel-
lent reviews of non-causal feature selection (i.e. filter, embedded, wrapper) algorithms can
be found in (Guyon and Elisseeff, 2003; Liu and Motoda, 2007; Brown et al., 2012; Li et al.,
2016) and the reference therein.

2.1 Non-causal feature selection

A general filter feature selection method consists of two elements: a search strategy for
feature subset generation and an evaluation criterion for measuring relevance of the fea-
tures. This evaluation criterion is to estimate how useful a feature or a feature subset
may be when used in a learning algorithm (e.g. a classifier). As the feature selection by
a filter method is carried out separately from the process of learning a model, an effec-
tive evaluation criterion plays a key role in filter methods. In the past decades, different
evaluation criteria have been proposed, such as those based on distance (Kira and Rendell,
1992; Robnik-Šikonja and Kononenko, 2003), mutual information (Bontempi and Meyer,
2010; Nguyen et al., 2014; Shishkin et al., 2016), dependency (Song et al., 2012), and con-
sistency (Dash and Liu, 2003). Since mutual information is a general measure of feature
relevance with several unique properties (Cover and Thomas, 2012), there has been a signif-
icant amount of work on mutual information-based feature selection methods developed in
the past two decades (see (Brown et al., 2012; Vergara and Estévez, 2014) for an exhaustive
list).

In this paper, we use mutual information as a basic tool to develop the unified view,
so in this section, we focus on non-causal feature selection methods which are based on
mutual information. Many advances in the field have been reported since the pioneer
work of Lewis (Lewis, 1992) and Battiti (Battiti, 1994). Lewis proposed the MIM (Mutual
Information Maximisation) criterion. MIM simply ranks the features in order of their MIM
scores (i.e. the value of mutual information between a feature and the class attribute) and
selects the top ψ most relevant features from the original feature set. However, MIM only
considers feature relevance. Then Battiti proposed the MIFS (Mutual information Feature
Selection) criterion which not only considers feature relevance, but also adds a penalty for
feature redundancy. MIFS uses a greedy search to select features sequentially (i.e. a single
feature at a time), and iteratively constructs the final feature subset, as an alternative to
the evaluation of the combinatorial explosion of all subsets of features.

Based on the MIFS criterion, many variants have been proposed. The representative al-
gorithms include mRMR (Peng et al., 2005), CIFE (Lin and Tang, 2006), FCBF (Yu and Liu,
2004), mIMR (Bontempi and Meyer, 2010), and MRI (Wang et al., 2017). Yang and Moody
proposed the JMI (Joint Mutual Information) criterion (Yang and Moody, 2000). Com-
pared to the MIFS criterion, the JMI criterion considers complementary information be-
tween features by evaluating class-conditional relevance, to see if a feature would provide
more predictive information when it is used jointly with other features in the prediction
compared with the case when the feature is used alone. The IF (Vidal-Naquet and Ullman,
2003), DISR (Meyer et al., 2008), CMIM (Fleuret, 2004), and RelaxMRMR (Vinh et al.,
2016) methods can be considered as the variants of the JMI criterion. Brown et al. (Brown et al.,
2012) unified almost two decades of research on commonly used heuristics of mutual infor-

4



mation based feature selection methods into the framework of conditional likelihood max-
imisation.

Owing to the difficulty of estimating mutual information with high dimensional data,
most existing mutual information-based methods use various low-order approximations for
estimating mutual information. While those approximations have been successful in certain
applications, they are heuristic in nature and lack theoretical guarantees. Thus, the main
problems with the majority of mutual information-based methods are that in most cases it
is unknown what consists an optimal feature selection solution independent of the type of
models fitted, and under which conditions a filter method will output an optimal feature
set for classification (Guyon et al., 2007; Aliferis et al., 2010a).

2.2 Causal feature selection

As an emerging type of filter methods, causal feature selection has attracted much atten-
tion in recent years. By bringing causality into play, causal feature selection naturally
provides causal interpretation about the relationships between features and the class at-
tribute, enabling a better understanding of the mechanisms behind data. Compared to
non-causal feature selection, causal feature selection has been shown to be theoretically
optimal (Tsamardinos and Aliferis, 2003), and thus answers the questions of what consists
an optimal feature selection solution and under which conditions a filter method will output
an optimal feature for classification.

Causal feature selection is to find the MB of the class attribute in a causal Bayesian
network (CBN), where an edge X → Y indicates that X is a direct cause (parent) of Y ,
and Y is a direct effect (child) of X. Then the MB of a variable of interest, such as the class
attribute, consists of direct causes, direct effects, and direct causes of the direct effects of
the class attribute. Therefore, the MB of the class attribute provides a complete picture of
the local causal structure around it and the MB is a minimal set of features which renders
the class attribute statistically independent from all the remaining features conditioned
on the MB (Pearl, 2014). Theoretically, the MB of the class attribute is the optimal
feature subset for classification (Koller and Sahami, 1995; Tsamardinos and Aliferis, 2003).
Accordingly, the discovery of the MB of a class attribute is actually a procedure of feature
selection (Aliferis et al., 2010a).

Koller and Sahami (Koller and Sahami, 1995) were the first to introduce MBs to feature
selection and proposed the Koller-Sahami (KS) algorithm. However, the KS algorithm is
not guaranteed to find the actual MB. Margaritis and Thrun (Margaritis and Thrun, 2000)
invented the first sound MB discovery algorithm, GS (Growing-Shrinking) for Bayesian
network structure learning.

Tsamardinos and Aliferis (Tsamardinos and Aliferis, 2003) improved the GS algorithm
and proposed a series of MB discovery algorithms for optimal feature selection, which led to
the IAMB (Incremental Association-based MB) family of algorithms, such as IAMB, inter-
IAMB, IAMBnPC (Tsamardinos et al., 2003b), and Fast-IAMB (Yaramakala and Margaritis,
2005).

However, given a variable of interest, the IAMB and its variants discover the parents and
children (PC) and spouses simultaneously and do not distinguish PC from spouse during
MB discovery. And these algorithms require a large number of data samples exponential to
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the size of the MB of the variable, thus they would not be effective for MB discovery when
a dataset has thousands of variables with a small-sized data samples.

Then a divide-and-conquer approach was proposed to mitigate the problem. The repre-
sentative algorithms include HITION-MB (Aliferis et al., 2003, 2010a), MMMB (Tsamardinos et al.,
2003a), PCMB (Peña et al., 2007), IPC-MB (Fu and Desmarais, 2008), and STMB (Gao and Ji,
2017). The ideas behind these algorithms are as follows. They firstly find the parents and
children (PC) of a variable of interest. Then, they discover the variable’s spouses. Thus,
these methods can return both the PC and MB sets of the variable. How to efficiently
and effectively find the PC set of a variable is the key to this type of approach. The PC-
simple (Bühlmann et al., 2010), MMPC (Tsamardinos et al., 2006), HITON-PC (Aliferis et al.,
2003), and semi-HITON-PC (Aliferis et al., 2010a) algorithms are for PC discovery.

3. Bayesian network, Markov blanket, and feature selection

Let C be the class attribute of interest, and C has ϕ distinct values (class labels), denoted
as c = {c1, c2, · · · , cϕ} and F = {F1, F2, · · · , Fn} be the set of all n distinct features.
Assuming that a training dataset D is defined by D = {(di, ci), 1 ≤ i ≤ m, ci ∈ c}, where
m is the number of data instances, di is the ith data instance which is a n-dimensional
vector defined on F , and ci is a class label associated with di. For the convenience of
presentation, we use V to represent the set of all variables under consideration, i.e. V =
F ∪ {C} = {V1, V2, · · · , Vn+1}, where Vi = Fi (1 ≤ i ≤ n), and Vn+1 = C. For ∀Vi ∈ V , let
V \ Vi indicate the set V \ {Vi}, that is, all features excluding Vi. We use Vi ⊥⊥ Vj|S, where
i 6= j and S ⊆ V \ {Vi, Vj}, to denote that Vi is conditionally independent of Vj given S,
and Vi⊥6⊥Vj|S to represent that Vi is conditionally dependent on Vj given S. The definition
of conditional independence (and dependence) is given as follows.

Definition 1 (Conditional independence) Given two distinct variables Vi, Vj ∈ V are
said to be conditionally independent given a subset of variables S ⊆ V \ {Vi, Vj} (i.e. Vi ⊥⊥
Vj |S), if and only if P (Vi, Vj |S) = P (Vi|S)P (Vj |S). Otherwise, Vi and Vj are conditionally
dependent given S, i.e. Vi ⊥6⊥ Vj |S.

3.1 Bayesian network and Markov blanket

In this section, we introduce the background knowledge related to causal feature selection,
including the basics of Bayesian network, Markov blanket, and the aim of causal feature
selection. Let P (V ) be the joint probability distribution over the set of all variables V , and
G = (V,E) represent a directed acyclic graph (DAG) with nodes V and edges E, where
an edge represents the direct dependence relationship between two variables. In a DAG,
Vi → Vj denotes that Vi is a parent of Vj and Vj is a child of Vi.

Definition 2 (Bayesian network) (Pearl, 2014) The triplet 〈V,G, P (V )〉 is called a
Bayesian network if the Markov condition as defined in Definition 3 holds.

Definition 3 (Markov condition) (Pearl, 2014) For a DAG G, the Markov condition
holds in G if and only if every node of G is independent of any subset of its non-descendants
conditioned on its parents.
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A Bayesian network encodes the joint probability over a set of variables V and decom-
poses P (V ) into the product of the conditional probability distributions of the variables
given their parents in G. Let Pa(Vi) be the set of parents of Vi in G. Then, P (V ) can be
written as

P (V1, V2, · · · , Vn+1) =

n+1
∏

i=1

P (Vi|Pa(Vi)) (1)

In this paper, we consider a causal Bayesian network, a Bayesian network in which an
edge Vi → Vj indicates that Vi is a direct cause of Vj (Pearl, 2014; Spirtes et al., 2000).
For simple presentation, however, we use the term Bayesian network instead of causal
Bayesian network. In the following, we introduce the key concepts and assumptions related
to Bayesian networks and Markov blankets.

Definition 4 (Faithfulness) (Pearl, 2014) Given a Bayesian network < V,G,P (V ) >,
G is faithful to P (V ) if and only if every conditional independence present in P is entailed
by G and the Markov condition. P (V ) is faithful if and only if G is faithful to P (V ).

Definition 5 (Causal sufficiency) (Pearl, 2014) Causal sufficiency assumes that any
common cause of two or more variables in V is also in V .

Definition 6 (d-separation) (Pearl, 2014) In a DAG G, a path π is said to be d-
separated by a set of nodes S ⊂ V if and only if (1) π contains a chain Vi → Vω → Vj
(Vi ← Vω ← Vj) or a fork Vi ← Vω → Vj such that the middle node Vω is in S, or (2) π
contains a v-structure Vi → Vω ← Vj such that Vω /∈ S holds and no descendants of Vω are
in S. A set S is said to d-separate Vi from Vj if and only if S blocks every path from Vi to
Vj .

Theorem 1 (Pearl, 2014; Spirtes et al., 2000) Given a Bayesian network < V,G,P (V ) >,
under the faithfulness assumption, d-separation captures all conditional independence rela-
tions that are encoded in G, which implies that Vi and Vj in G are d-separated by S ⊂
V \{Vi, Vj}, if and only if Vi and Vj are conditionally independent given S in P (V ).

Theorem 1 concludes that under the assumption of faithfulness, conditional indepen-
dence in a data distribution and d-separation in the corresponding DAG are equivalent.

Definition 7 (Markov blanket, MB) (Pearl, 2014) Under the faithfulness assumption,
the MB of a variable in a Bayesian network is unique and consists of its parents (direct
causes), children (direct effects), and spouses (other parents of the variable’s children).

Figure 1 gives an example of a MB in the Bayesian network of lung cancer (Guyon et al.,
2007). The MB of the variable lung cancer comprises: Smoking and Gentics (parents),
Coughing and Fatigue (children), and Allergy (spouse).

Given a dataset D defined on F ∪ C, causal feature selection aims to find the MB of
the class attribute C (denoted as MB(C)) from D (Aliferis et al., 2010a). In the following,
Proposition 1 illustrates the relations between parents and children in a Bayesian network,
and Proposition 2 presents the idea of how to discover spouses.
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Figure 1: An example of an MB in a lung-cancer Bayesian network

Proposition 1 (Spirtes et al., 2000) In a Bayesian network, there is an edge between the
pair of nodes Vi and Vj , if and only if Vi ⊥6⊥ Vj|S, for all S ⊆ V \ {Vi, Vj}.

Proposition 2 (Spirtes et al., 2000) In a Bayesian network, assuming that Vi is adjacent
to Vj, Vj is adjacent to Vω, and Vi is not adjacent to Vω (e.g. Vi → Vj ← Vω), if ∀S ⊆
V \ {Vi, Vj , Vω}, Vi ⊥⊥ Vω|S and Vi ⊥6⊥ Vω|S ∪ {Vj} hold, then Vi is a spouse of Vω.

3.2 Feature relevancy and non-causal feature selection

Non-causal feature selection categorizes a feature as strongly relevant, weakly relevant, or
irrelevant to C (Kohavi and John, 1997) based on the following definitions in terms of
conditional independence.

Definition 8 (Strongly relevant feature) (Kohavi and John, 1997) Fi ∈ F is strongly
relevant to C, if and only if there exists an assignment F = f = (f1, · · · , fi−1, fi, fi+1, · · · , fn)
and C = ci, ci ∈ c, such that P (F = f) > 0 and P (C = ci|F = f) 6= P (C = ci|F \ Fi =
(f1, · · · , fi−1, fi+1, · · · , fn)).

Definition 9 (Weakly relevant feature) (Kohavi and John, 1997) Fi ∈ F is weakly
relevant to C, if and only if Fi is not a strongly relevant feature and there exist S ⊂ F \Fi,
and an assignment Fi = fi, C = ci and S = s such that P (S = s, Fi = fi) > 0 and
P (C = ci|S = s, Fi = fi) 6= P (C = ci|S = s).

Definition 10 (Irrelevant feature) (Kohavi and John, 1997) Fi ∈ F is irrelevant to C,
if and only if for any S ⊆ F \ Fi, for any assignment of Fi, S and C, denoted as fi, s, and
ci, such that P (C = ci|S = s, Fi = fi) = P (C = ci|S = s).

A strongly relevant feature affects the conditional class distribution, and provides unique
information about C, i.e. it cannot be replaced by other features. A weakly relevant feature
is informative but redundant since it can be replaced by other features without losing infor-
mation about C. An irrelevant feature does not bring any information about C and should
be discarded. Thus, given a dataset D defined on F ∪C, non-causal (filter) feature selection
aims to select all features that are strongly relevant to C (Tsamardinos and Aliferis, 2003).

In addition to the above conditional probability based definitions, recently, an explana-
tion of feature relevance based on mutual information was proposed (Brown et al., 2012;
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Bell and Wang, 2000; Vergara and Estévez, 2014). Before discussing the explanation, we
first introduce the concepts of mutual information below. Given variable X, the entropy of
X is defined as (Cover and Thomas, 2012).

H(X) = −ΣxP (x) log P (x) (2)

The entropy of X after observing values of another variable Y is defined as

H(X|Y ) = −ΣyP (y)ΣxP (x|y) log P (x|y). (3)

In Eq.(2) and Eq.(3), P (x) is the prior probability of X = x (i.e. the value x that X
takes), and P (x|y) is the posterior probability of X = x given Y = y. According to Eq.(2)
and Eq.(3), the mutual information between X and Y , denoted as I(X,Y ), is defined as

I(X;Y ) = H(X)−H(X|Y )

= Σx,yP (x, y) log
P (x,y)
P (x)P (y) .

(4)

From Eq. (4), the conditional mutual information between X and Y give another feature
Z is defined as:

I(X;Y |Z) = H(X|Z)−H(X|Y Z)

= Σz∈ZP (z)Σx∈X,y∈Y P (x, y|z) log
P (x,y|z)

P (x|z)P (y|z)

(5)

Based on the above definitions mutual information, we have the following propositions.

Proposition 3 (Brown et al., 2012) Fi is strongly relevant to C if and only if I(Fi;C|F \
Fi) > 0.

Proposition 4 (Brown et al., 2012) Fi is weakly relevant to C if and only if I(Fi;C|F \
Fi) = 0 and ∃S ⊂ F \ Fi such that I(Fi;C|S) > 0.

Proposition 5 (Brown et al., 2012) Fi is irrelevant to C, if and only if ∀S ⊆ F \ Fi,
I(Fi;C|S) = 0.

4. Causal and non-causal feature selection have the same objective

To develop a unified view of causal feature selection and non-causal feature selection, in
this section, we will show that the two types of feature selection, although originating from
different fields, share the same objective. In order to derive this conclusion (in Section 4.2),
firstly in Section 4.1, inspired by the work in (Brown et al. 2012), we propose a mutual
information based description of the optimal feature set for classification (i.e. Eq.(12)), and
then link the description to Bayes error rate of classification.

4.1 A mutual information based representation of the objective function of
optimal feature selection

Given a dataset D containing C and F , (filter) feature selection can be formulated as the
problem of finding a subset S∗ ⊂ F such that

S∗ = argmax
S⊂F

P (C|S) (6)
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i.e. finding a subset S∗ given which the conditional probability of C is maximized (Guyon and Elisseeff,
2006; Brown et al., 2012).

Let F = {S ∪ S} where S denotes the selected feature set and S represents the remain-
ing features, i.e. F \ S. Given a dataset D of m instances, let p(C|S) denote the true
class distribution and q(C|S) represent the predicted class distribution given S, then the
conditional likelihood of C is L(C|S,D) =

∏m
i=1 q(ci|si), where ci ∈ c (c = {c1, c2, · · · , cϕ})

represents the value of C in the i-th data instance and si denotes the value of feature set S
in the i-th data instance. The (scaled) conditional log-likelihood of L(C|S,D) is calculated
by

ℓ(C|S,D) =
1

m

m
∑

i=1

log q(ci|si). (7)

Eq.(7) can be re-written as Eq.(8) below (Brown et al., 2012)1.

ℓ(C|S,D) =
1

m

m
∑

i=1

log
q(ci|si)

p(ci|si)
+

1

m

m
∑

i=1

log
p(ci|si)

p(ci|f)
+

1

m

m
∑

i=1

log p(ci|f) (8)

By negating Eq.(8) and using E to represent statistical expectation, we have:

− ℓ(C|S,D) = E

{

log
p(c|s)

q(c|s)

}

+ E

{

log
p(c|f)

p(c|s)

}

− E

{

log p(c|f)

}

(9)

On the right hand side of Eq.(9), the first term is the likelihood ratio between the true
and predicted class distributions given S, averaged over the input data space. The second
term equals to I(C;S|S), that is, the conditional mutual information between C and S
given S (Brown et al., 2012). The final term is H(C|F ) by Eq.(3), the conditional entropy
of C given all features, and is an irreducible constant.

Definition 11 (Kullback Leibler divergence) (Kullback and Leibler, 1951) The Kull-
back Leibler divergence between two probability distributions P (X) and Q(X) is defined as

KL(P (X)||Q(X)) = ΣxP (x) log
P (x)
Q(x) = Ex log {

P (X)
Q(X)}.

By Definition 11 and Eq.(9), we have

lim
m→∞

−ℓ(C|S,D) = KL(p(C|S)||q(C|S)) + I(C;S|S) +H(C|F ). (10)

Since in Eq.(10), KL(p(C|S)||q(C|S)) will approach zero with a large m. Based on
Eq.(10), we see that for large m minimizing I(C;S|S) maximizes L(C|S,D). By the chain
rule of mutual information, Eq.(11) below holds.

I(C;F ) = I(C; {S, S})
= I(C;S) + I(C;S|S)

(11)

Given the feature set F and the class attribute C, if I(C;F ) is fixed, then in Eq.(11),
minimizing I(C;S|S) is equivalent to maximizing I(C;S). If I(C;S|S) = 0 holds, I(C;S)
is maximized. Accordingly, by Eq.(10) and Eq.(11), maximizing I(S;C) is equivalent to

1. Please refer to Section 3.1 of Brown et al. (2012) for the details on how to obtain Eq.(7) and Eq.(8).
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maximizing the conditional likelihood of C (i.e. equivalent to maximizing P (C|S)). Thus,
using mutual information, the objective function of feature selection of Eq.(6) can be re-
formulated as Eq.(12) below.

S∗ = argmax
S⊂F

I(C;S) (12)

In the following, we will show that the feature set S∗ defined in Eq.(12) is the set
of features that leads to the minimal Bayes error rate. For a given classification prob-
lem, the minimum achievable classification error by any classifier is called its Bayes error
rate (Fukunaga, 2013). We choose the Bayes error rate for justifying Eq.(12) since it is the
tightest possible classifier-independent lower-bound by depending on predictor features and
the class attribute alone. Fano and Hellman et. al. (Fano, 1961; Tebbe and Dwyer, 1968;
Hellman and Raviv, 1970) proposed the lower and upper bounds on the Bayes error rate,
which connect the Shannon conditional entropy (Shannon, 2001) to the Bayes error rate.

Let Perr represent the Bayes error rate, and the entropy H(Perr) is defined as

H(Perr) = −Perr log Perr − (1− Perr) log (1− Perr). (13)

Then given C and S, Fano’s lower bound of the Bayes error rate (Fano, 1961) is defined
as Eq.(14) below.

H(C|S) ≤ H(Perr) + Perr log (K − 1) (14)

Let H(Perr)
−1 be the inverse of H(Perr), the upper bound of the Bayes error rate for

a binary classification problem (K=2) is given as Eq.(15) below (Tebbe and Dwyer, 1968;
Hellman and Raviv, 1970).

H(Perr)
−1 ≤ Perr ≤ 1/2H(C|S). (15)

Meanwhile, considering H(C|F ) = H(C)− I(C;F ) and I(C;S|S) = I(C;F )− I(C;S),
Eq.(10) is re-written as Eq.(16) below.

lim
m→∞

−ℓ(C|S,D) = KL(p(C|S)||q(C|S)) +H(C|S) (16)

In Eq.(16), with a large m, KL(p(C|S)||q(C|S)) will approach zero. Thus, we conclude
that minimizing H(C|S), that is, the conditional entropy of the class attribute C given the
predictor feature set S, is equivalent to maximizing the conditional likelihood of C or min-
imizing the Bayes error rate (from Eq.(15)). Since H(C|S) = H(C)− I(C;S), maximizing
I(C;S) in Eq.(12) equals to minimizing the upper bound of H(C|S), i.e. the upper bound
of Perr. This thus justifies that the feature set selected by Eq.(12) for classification will
best facilitate minimizing the Bayes error rate. Eq.(17) illustrates the relationships among
I(C;S), Perr, and L(C|S,D) where both “<=>” denote ”equivalent to”, respectively.

arg min
S⊂F

Perr(S) <=> argmax
S⊂F

I(C;S) <=> argmax
S⊂F

L(C|S,D) (17)
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4.2 The objectives of causal and non-causal feature selection are the same

In this section, we will demonstrate that the Markov blanket of C (MB(C)) is the feature
set that maximizes Eq.(12), and the set of strongly relevant features aimed by non-causal
feature selection.

Lemma 1 (Pearl, 2014) ∀S ⊂ F \MB(C), P (C|MB(C), S) = P (C|MB(C)).

Lemma 2 I(X;Y ) ≥ 0 with equality if and only if P (X,Y ) = P (X)P (Y ).

Lemma 3 I(X;Y |Z) ≥ 0 with equality if and only if P (X,Y |Z) = P (X|Z)P (Y |Z).

Clearly, by Eq.(4) and Eq.(5), Lemmas 2 and 3 hold. Then according to Lemmas 1 to 3,
Theorem 2 below illustrates that MB(C) is the solution to Eq.(12).

Theorem 2 ∀S ⊂ F , I(C;MB(C)) ≥ I(C;S) with equality if and only if MB(C) = S.

Proof: in the proof, we use MB to represent MB(C).

Case 1: ∀S ⊆ F \MB, by Eq.(5), we have:

I(C;S|MB) = E{C,S,MB} log
P (C,S|MB)

P (C|MB)P (S|MB) .

As P (C,S|MB) = P (C|MB)P (S|MB), I(C;S|MB) = 0. By the chain rule, I((S,MB);C) =
I(C;MB) + I(C;S|MB) = I(C;S) + I(C;MB|S). Since I(C;S|MB) = 0, I(C;MB) =
I(C;S)+I(C;MB|S). By Lemmas 2 and 3, we get that ∀S ⊆ F\MB, I(C;MB) > I(C;S).

Case 2: ∀S ⊆ MB and let S′ = MB \ S, by I(C;MB) − I(C;S) = I(C;S ∪ S′) −
I(C;S) = I(C;S)+ I(C;S′|S)− I(C;S) = I(C;S′|S), then I(C;MB) ≥ I(C;S) holds with
equality if S equals to MB.

Case 3: Let S′ ⊂ MB and S′′ ⊂ F \ MB, and S = S′ ∪ S′′, by Eq.(18) below,
I(C;S|MB) = 0. Then by I(C;MB) + I(C;S|MB) = I(C;S) + I(C;MB|S), in the
case, I(C;MB) > I(C;S).

P (C,S|MB)
P (C|MB)P (S|MB) = P (C,S′′,MB)

P (C|MB)P (S′′,MB) =
P (C|S′′,MB)P (S′′,MB)
P (C|MB)P (S′′,MB)) = 1. (18)

By Cases 1 to 3, I(C;MB) ≥ I(C;S) with equality holds if S equals to MB.

Corollary 1 Under the faithfulness assumption, ∀Fi ∈ F , Fi belongs to MB(C), if and
only if Fi is a strongly relevant feature.

Proof: In the proof, we use MB to represent MB(C). PC(C) denotes parents and
children of C and SP (C) represents spouses of C.

We firstly prove that if Fi ∈MB, Fi is a strongly relevant feature. SinceMB = PC(C)∪
SP (C) and PC(C)∩SP (C) = ∅, then (1) ∀Fi ∈ PC(C) and ∀S ⊆ F \Fi, by Proposition 1,
I(Fi;C|S) > 0, and thus, I(Fi;C|F \Fi) > 0 holds; (2) ∀Fi ∈ SP (C) via child Fω ∈ PC(C),
by Proposition 2, there exists a S ⊂ F\Fi such that I(Fi;C|S) = 0 but I(Fi;C|S∪{Fω}) > 0.
Then, ∀Fj ∈ F \ {Fω, Fi}, I(Fi;C|F \ Fj) = I(Fi;C|{S ∪ Fω, F \ {S ∪ Fω ∪ Fi}}). So if
Fi ∈ SP (C), I(Fi;C|F \ Fj) > 0 holds. By Proposition 3, Fi is a strongly relevant feature.

12



We now prove that a strongly relevant feature of C must be in MB. If Fi is a strongly
relevant feature, by Proposition 3, I(Fi;C|F \ Fi) > 0. Assume Fi /∈MB, S′ = F \ {Fi} ∪
MB, and S = F \ Fi =MB ∪ S′, we have:

I(Fi;C|F \ Fi) = I(Fi;C|S)

= E{C,S,Fi} log
P (C,Fi|S)

P (C|S)P (Fi|S)

= E{C,S,Fi} log
P (C,Fi,S)

P (C|S)P (Fi|S)P (S)

= E{C,S,Fi} log
P (C|Fi,S)P (Fi|S)
P (C|S)P (Fi|S)

= E{C,S,Fi} log
P (C|Fi,S)
P (C|S)

= E{C,S′,MB,Fi} log
P (C|Fi,S

′,MB)
P (C|S′,MB)

= 0.

(19)

This makes a contrary, and thus Fi ∈MB(C).

Accordingly, given a dataset D defined on F ∪ C, by the analysis above, we show that
MB(C) maximizes the objective function in Eq.(12) and it is the same as the set of strongly
relevant features.

5. Causal and non-causal feature selection: assumptions and

approximations

For both causal and non-causal feature selection methods, finding a subset S that maxi-
mizes I(S;C) (i.e. solving the objective function in Eq.(12)) is a challenging combinatorial
optimization problem. An exhaustive search will be of O(2n) time complexity. Although re-
stricting the maximum size of S to ς (ς < n) will reduce the time complexity to O(ςn) where
ςn is the number of all subsets of F containing ς or less features, the computational cost will
still be high. Therefore, both causal and non-causal feature selection methods have adopted
a greedy strategy by considering features one by one to optimize Eq.(12) (Aliferis et al.,
2010a; Balagani and Phoha, 2010; Brown et al., 2012). That is, at each iteration, given the
set S currently selected, choose X∗ ∈ F \ S such that

X∗ = argmaxX∈F\S I(S ∪X;C)

= argmaxX∈F\S{I(S;C) + I(X;C|S)}
(20)

As for all X ∈ F \ S, the first item in Eq.(20) is the same, finding X∗ becomes solving
the following optimization problem:

X∗ = argmax
X∈F\S

I(X;C|S) (21)

However, in Eq.(21), when the size of S increases, computing the multidimensional
mutual information becomes impractical because it demands a large number of training
samples, exponential in the number of features in S. To tackle this challenge, different
feature selection methods make different assumptions on the interactions (or dependency)
between features in the underlying data distributions for the calculation of I(X;C|S).

As described previously, a Bayesian network provides a representation of the proba-
bilistic dependence among a set of variables under consideration. This provides us the
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Figure 2: An illustration of the Bayesian network structures corresponding to the structural
assumptions made by the non-causal and causal feature selection methods

opportunity to unify the dependence assumptions made by the feature selection methods
under the Bayesian network framework. In this paper, we propose a structure assumption
approach to understanding the assumptions made by causal and non-causal feature selec-
tion methods and how these different levels of structural assumptions lead to the different
approximations in their search for the solutions to Eq.(21).

In the following, firstly Section 5.1 provides a summary of our findings on the structural
assumptions and how they are related to the approximations, then in Sections 5.2 and 5.3
we discuss the findings in detail by analyzing the assumptions and approximations made
by the commonly used non-causal and causal feature selection methods.

5.1 Summary of findings

5.1.1 Structural assumptions and search strategies

As illustrated in Figure 2, we have found that the dependence/independence relationships
among features assumed by both causal and non-causal feature selection methods can be
represented as different restrictions to the structure of the Bayesian network model of the
set of variables under study. Based on the assumed Bayesian network structures, causal and
non-causal methods select the subset of features, S ⊂ F , with the conditional likelihood of
the class attribute C given S, P (C|S) as close to P (C|F ) as possible.

Figure 3 summarizes the Bayesian network structure assumptions and search strategies
used by causal and non-causal feature selection methods for the calculation of I(X;C|S).
The number after each equation in Figure 3 are the same as the equation numbers given
in Sections 5.2 and 5.3. From Figure 3, we see that a non-causal feature selection method
firstly decomposes the multidimensional mutual information I(X;C|S) into three terms
{I(X;C) − I(S;X) + I(S;X|C)} (See Eq.(22)), then calculates the multidimensional mu-
tual information {−I(S;X) + I(S;X|C)} using linear combination of low-order mutual
information terms based on the respective naive Bayesian network assumption made on the
dependence/independence between features. We call the assumptions made by non-causal
feature selection methods the series of naive Bayesian network assumptions, because the
assumptions can be represented by the family of Bayesian networks with the restricted
structures as illustrated in Figures 2 (a), (b) and (c). For these naive Bayesian network
structures, the class attribute has no parents while all the features each can only have a fixed
number of parents, denoted as k-dependency (or k-DB) assumptions, where each feature
can have at most other k features as its parents (details in Section 5.2).
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Causal feature selection methods assume that one can learn from the given dataset a
(general) Bayesian network without structural restrictions (as the example in Figure 2 (d)),
and in the learnt Bayesian network, X∗ in Eq.(21) is a feature in the MB of the class
attribute. Therefore, as shown in Figure 3, causal feature selection does not decompose
I(X;C|S) for the use of any structural assumptions, and the assumptions made by causal
feature selection are only those for a general Bayesian network and its learning, i.e. the
Markov condition (Definition 3), the faithfulness (Definition 4), and causal sufficiency (Def-
inition 5) assumptions. Unlike the non-causal feature selection methods, these assumptions
do not pose any structural restrictions on a Bayesian network learnt from data (thus called
the general Bayesian network assumptions in this paper).

5.1.2 Linking the assumptions with approximations

We use the pyramid in Figure 4 (a) to visualize the difference in the strictness of the
structural assumptions made by the different feature selection methods. We see that causal
feature selection methods make the weakest assumptions (no restrictions on the structures
of the Bayesian network), while the non-causal feature selection methods make assumptions
with different levels of strictness in terms of the maximum number of parents that a feature
can have in addition to the class attribute (the value of k in Figure 4 (a)).

As a result of the differences in the strictness of the structural assumptions, the degree of
the corresponding approximations taken by the feature selection methods in their calculation
of the multidimensional mutual information (I(X;C|S)) are different, and they can be
visualized using an upside down pyramid (Figure 4 (b)). Causal feature selection methods,
since having had no structural restrictions, take less approximations by calculating higher
order mutual information between X and C conditioning on all or a subset of the already
selected features S (details of the conditioning sets are to be discussed in Section 5.3).
Referring back to Figure 3, the non-causal feature selection methods eventually only look
at the pairwise mutual information betweenX and C without conditioning on other features.

Therefore, in theory, the feature set obtained by a causal feature selection methods is
closer to the optimal feature set, i.e. the MB of the class attribute. However, as we will see
in later sections, in practice, causal feature selection does not always outperform non-causal
feature selection, because the number of samples required by causal feature selection can
be exponential in the number of features in S.

5.1.3 Causal interpretation and non-causal feature selection

By representing the dependency between features and the class attribute using Bayesian
network structures, we present a causal interpretation of the features selected by non-causal
methods.

We have found that the non-causal feature selection methods prefer features within
MB(C) to the features not in MB(C), which confirms that strongly relevant features be-
long to MB(C) (i.e. Corollary 1). This finding provides a causal interpretation of the
output of the non-causal feature selection methods and explains why non-causal feature
selection also can achieve excellent classification results. This also provides a novel perspec-
tive to understand the relations between the two types of feature selection methods, and
may motivate researchers to use the cross-pollination between causal and non-causal fea-
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Figure 4: Strictness of structural assumptions and the corresponding level of approximations
taken by causal and non-causal feature selection methods when calculating I(X;C|S) (a)
the strictness of structural assumptions in terms of maximum number of parents a feature
can have (excluding the class attribute). Names of typical methods are shown. (b) the level
of approximations in terms of the size of conditioning set used in the calculation.

ture selection methods to develop novel methodologies promising to scalable local-to-global
causal structure learning and feature selection with theoretical guarantees.

5.2 Non-causal feature selection: assumptions and approximations

In this section, we will explore in detail the assumptions made by non-causal feature selection
under the naive Bayesian network framework, and under the assumptions how the major
existing non-causal feature selection algorithms produce the same result as Eq.(21).

By I(X;S;C) = I(X;S)− I(X;S|C) = I(X;C)− I(X;C|S), we have:

I(X;C|S) = I(X;C)− I(X;S) + I(X;S|C). (22)

The three terms on the right side of Eq.(22) have the following interpretation:

• I(X;C) corresponds to the relevancy of X to C.

• I(X;S) represents the redundancy of X with respect to S.

• I(X;S|C) indicates the class-conditional relevance, which considers the situation
where a feature provides more predictive information by jointly with another fea-
ture than by itself with respect to C. Since I((S,X);C) = I(S;C) + I(X;C|S),
I(X;C|S) = I((S,X);C)−I(S;C). In Eq.(22), when I(X;S) > I(X;S|C), I(X;C|S) <
I(X;C) holds, and thus I((S,X);C) < I(S;C)+I(X;C). This means thatX contains
redundant information about C when we add X to S. When I(X;S) < I(X;S|C),
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I(X;C|S) > I(X;C) holds, and thus I((S,X);C) > I(S;C)+I(X;C). This indicates
that X and S have a positive interaction and I((S,X);C) provides more information
than I(S;C) + I(C;X).

By Eq.(22), Eq.(21) can be re-written as

X∗ = argmax
X∈F\S

{I(X;C) − I(X;S) + I(X;S|C)} (23)

To reduce computational costs in the search for X∗ in Eq.(23), different non-causal
feature selection methods make different assumptions, and thus adopt different level of
approximations when calculating I(X;S) and I(X;S|C) by using a linear combination of
low-order mutual information terms.

In the following, we will explore these assumptions and approximations of Eq.(23). Using
a general Bayesian all features and the class attribute, we have

P (C|F ) ∝ P (C|Pa(C))

n
∏

i=1

P (Fi|Pa(Fi)). (24)

A naive Bayesian network is a restricted Bayesian network, which considers the class
attribute C as a special variable that has no parents and each of the remaining variables
in the network only has the class attribute C and a fixed number of other features as its
parents. Let k represent the maximum number of parents (excluding the class attribute) a
feature can have, we call the naive Bayesian network a k-dependency (k-DB) naive Bayesian
network. A 0-DB network (as illustrated in Figure 2 (a)) is the commonly know naive Bayes
(NB) network (Maron and Kuhns, 1960; Minsky, 1961). A NB network assumes that each
variable only has one parent, i.e. C, and all features are conditionally independent given C.
A 1-DB network (as illustrated in Figure 2 (b)) is known as a Tree-Augmented Naive (TAN)
Bayes network, which allows each variable to have at most one other feature in addition
to C as its parent. A 2-DB network ((see an example in Figure 2 (c)) relaxes NB’s and
TAN’s independence assumptions by allowing each feature to have a maximum of two other
features as parents to generalize to higher degrees of variable interactions.

Let ncl pa(Fi) denote the set of parents of Fi excluding the class attribute C, in a k-DB
naive Bayesian network, Eq.(24) becomes

P (C|F ) ∝ P (C)
n
∏

i=1

P (Fi|C,ncl pa(Fi)), |ncl pa(Fi)| = k & |pa(C)| = 0. (25)

5.2.1 Approximations under 0-DB(NB) structural assumptions

The following NB network assumption (k = 0) is often made by non-causal feature selection
methods.

Assumption 1. In a NB network, ∀Fi, Fj ∈ F and i 6= j, Fi and Fj are assumed to be
conditionally independent given the class attribute C, that is, P (Fi, Fj |C) = P (Fi|C)P (Fj |C).

By Assumption 1, Eq.(25) is transformed into

P (C|F ) ∝ P (C)

n
∏

i=1

P (Fi|C), |ncl pa(Fi)| = 0 & |pa(C)| = 0 (26)
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By Assumption 1 and Eq.(26), in Eq.(23), the class-conditional relevancy I(X;S|C) is
calculated as Eq.(27) as follows.

I(X;S|C) = Ex,s,c log
P (X,S|C)

P (S|C)P (X|C)

= Ex,s,c log
P (S|C)P (X|C)
P (S|C)P (X|C)

= 0

(27)

Then under Assumption 1 and Eq.(27), Eq.(23) becomes

argmax
X∈F\S

{I(X;C) − I(X;S) + I(X;S|C)} = argmax
X∈F\S

{I(X;C) − I(X;S)}. (28)

Since the redundancy term I(X;S) = H(S)−H(S|X), and by the chain rule of entropy,
we have H(S|X) =

∑

Fi∈S
H(Fi|Fi−1, · · · , F1,X). If we further employ Assumption 2

below to restrict the interactions between a feature in S and a feature in F \ S, in Eq.(23),
I(X;S) = 0 holds.

Assumption 2. For ∀Fi ∈ S and ∀Fj ∈ F \ S, P (Fi, Fj) = P (Fi)P (Fj).
By Assumptions 1 and 2, the objective function in Eq.(23) is simplified to the following,

which is only based on the mutual information between a feature and the class attribute:

X∗ = argmax
X∈F\S

I(X;C). (29)

The objective in Eq.(29) is the mutual information maximization (MIM) criterion ini-
tially presented in (Lewis, 1992).

Assumption 2 is a strong assumption that the features in S and the features in F \
S are pairwise independent. To deal with the redundancy between features, we discuss
Assumption 3 below, which is a less restrictive than Assumption 2.

Assumption 3. The selected features in S are conditionally independent given an

unselected feature X ∈ F \ S , that is, P (S|X) =
∏|S|
i=1 P (Fi|X) (Fi ∈ S).

Since I(X;S) = H(S)−H(S|X), by the chain rule and Assumption 3, we have

I(X;S) = H(S)−
∑|S|

i=1H(Fi|X)

= H(S)−
∑|S|

i=1H(Fi) +
∑|S|

i=1 I(Fi;X).
(30)

Since at each time, ∀X ∈ F \ S, the first two terms in Eq.(30) are the same, then
I(X;S) is decomposed into a sum of pairwise mutual information terms. Further based on
Assumption 1, I(X;S|C) = 0, then the objective function in Eq.(23) becomes:

X∗ = argmax
X∈F\S

{I(X;C) −

|S|
∑

i=1

I(Fi;X)}. (31)

Eq.(31) is the criterion of “max-relevance and min-redundancy” (Peng et al., 2005).
Based on Eq.(31), Battiti (Battiti, 1994) presents the following Mutual Information Feature
Selection (MIFS) criterion:

X∗ = argmax
X∈F\S

{I(X;C) − β

|S|
∑

i=1

I(Fi;X)} (32)
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β ∈ [0, 1] in the MIFS criterion is a penalty for balancing the relevance and redundancy
terms. When β = 0, Eq.(32) becomes Eq.(29), that is, the MIM criterion. As β = 1,
Eq.(32) is reduced to Eq.(31). If β = 1/|S|, Eq.(32) becomes

X∗ = argmax
X∈F\S

{I(X;C) −
1

|S|

|S|
∑

i=1

I(Fi;X)} (33)

Eq.(33) is the mRMR (max-Relevance andMin-Redundancy) criterion presented in (Peng et al.,
2005). Meanwhile, from Eq.(33), we can see that as the size of S increases, Eq.(33) will
tend asymptotically towards Eq.(29).

There are other feature selection methods based on the idea of max-relevance and min-
redundancy shown in Eq.(31), such as a representative algorithm, Fast Correlation Based
Filter (FCBF) (Yu and Liu, 2004). FCBF divides the“max-relevance and min-redundancy”
criterion into two steps, that is, the forward step (max-relevance) and backward step (min-
redundancy).

• Forward step: FCBF selects a subset of features S that ∀X ∈ S, I(C;X) > 0, then
sorts the features in S by their mutual information with C in descending order.

• Backward step: beginning with the first feature X ∈ S, if ∃Y ∈ S \ X such that
I(X;Y ) > I(X;C), then it removes Y from S as a redundant feature to X. The
FCBF algorithm is terminated until the last feature in S is checked.

At the forward step, FCBF only selects features that are relevant to C, and this implies
Assumption 1. The backward step implies Assumption 3. At the backward step, for X,
Y ∈ S, if I(X;C) > I(Y ;C) and I(X;Y ) > I(X;C), then Y can be removed from S.
FCBF does not need to specify the number of selected features in advance. Instead, FCBF
uses a threshold δ (δ > 0) at the forward step and keeps features satisfying I(C;X) ≥ δ.

5.2.2 Approximations with 1-DB(TAN) structural assumptions

Under Assumption 1, in Eq.(23), I(X;S|C) = 0 holds. A TAN Bayesian network relaxes
Assumption 1 to allow each feature to be dependent on one other feature in addition to C
and makes the following assumption. Assumption 4 states that the features within S are
class-conditionally independent given an unselected feature X ∈ F \ S and C.

Assumption 4. ∀Fi, Fj ∈ S and i 6= j, Fi and Fj are assumed to be conditionally
independent given an unselected feature X ∈ F \ S and C, that is, P (Fi, Fj |X,C) =
P (Fi|C,X)P (Fj |C,X).

Thus for a TAN Bayesian network, Eq.(25) becomes:

P (C|F ) ∝ P (C)
∏

Fj∈F, Fi∈F\ Fj

P (Fi|C,Fj), |ncl pa(Fi)| = 1 & |pa(C)| = 0. (34)

Then by the chain rule, we getH(S|X,C) =
∑

Fi∈S
H(Fi|X,C). By Eq.(27), I(X;S|C) =

0 only and if only Assumption 1 holds, and thus by Assumption 4, I(X;S|C) can be de-
composed as follows.

I(X;S|C) = H(S|C)−H(S|X,C)
= H(S|C)−

∑

Fi∈S
H(Fi|X,C)

= H(S|C)−
∑

Fi∈S
{H(Fi|C)− I(Fi;X|C)}

(35)
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SinceH(S|C)−
∑

Fi∈S
H(Fi|C) in Eq.(35) is the same for ∀Fi ∈ S. Meanwhile, assuming

that Assumption 3 holds for feature interactions between the selected features in S and the
unselected feature in F \ S, then by Eq.(30) (under Assumption 3) and Eq.(35) (under
Assumption 4), Eq.(23) becomes:

X∗ = argmax
X∈F\S

{I(X;C) − ΣFi∈SI(X;Fi) + ΣFi∈SI(X;Fi|C)} (36)

Brown et al. (Brown et al., 2012) have proposed that many mutual information-based
non-causal feature selection methods can fit within the following parameterized criterion.
β and γ play the role of balancing factors (in general β ∈ [0, 1] and γ ∈ [0, 1]).

X∗ = argmax
X∈{F\S}

{I(X;C) − β
∑

Fi∈S

I(X;Fi) + γ
∑

Fi∈S

I(X;Fi|C)} (37)

If β = 1/|S| and γ = 1/|S|, then we have:

X∗ = argmax
X∈F\S

{I(X;C) −
1

|S|
ΣFi∈SI(X;Fi) +

1

|S|
ΣFi∈SI(X;Fi|C)} (38)

Using Eq.(38) for feature selection, the representative algorithm is the JMI algorithm (Yang and Moody,
2000). If β = 1 and γ = 1, Eq.(37) is reduced to Eq.(36) used by the CIFE algo-
rithm (Lin and Tang, 2006). The CMIM method (Fleuret, 2004) adopts an objective func-
tion as follows.

X∗ = argmax
X∈F\S

{I(X;C) −max
Fi∈S
{I(X;Fi)− I(X;Fi|C)}} (39)

5.2.3 Approximations with 2-DB structural assumptions

To deal with a higher-order dependency between features, the recent work in (Vinh et al.,
2016) calculates I(X;S) in Eq.(23) by exploring the 2-DB structure assumptions.

The 2-DB structure relaxes NB’s and TAN’s independence assumptions by allowing each
feature to have at most two features as parents, i.e., |ncl pa(Fi)| = 2, in addition to C, and
makes the following assumptions.

Assumption 5a. ∀Fi ∈ S and ∀Fj ∈ S (i 6= j) are assumed to be conditionally
independent given an unselected feature X ∈ F \S and any feature Y ∈ F \ {Fi ∪Fj}, that
is, P (Fi, Fj |X,Y ) = P (Fi|X,Y )P (Fj |X,Y ).

Assumption 5b. For ∃Fj ∈ S and ∀Fi ∈ F \ Fj are conditionally independent given
an unselected feature X ∈ F \ S, that is, P (Fj , Fi|X) = P (Fi|X)P (Fj |X).

Thus, with a 2-DB structure, Eq.(25) is transformed into Eq.(40).

P (C|F ) ∝ P (C)

n
∏

i=1(Fi∈F\{Fj∪Fω})

P (Fi|C,Fj , Fω)), |ncl pa(Fi)| = 2 & |pa(C)| = 0 (40)

With the structure assumptions, the redundancy term I(X;S) in Eq.(23) is computed
as follows. Since I(X;S) = H(S) − H(S|X) under Assumptions 5a and 5b, H(S|X) is
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calculated as follows.

H(S|X) = −
∑|S|

i=1

∑

F1,··· ,Fi,X
P (F1, · · · , Fi,X) log P (Fi|Fi−1, · · · , F1,X)

= P (F1, · · · , Fj ,X) log P (Fj |Fj−1, · · · , F1,X)

+
∑|S|−1

i=1(i 6=j) P (Fi−2, · · · , F1, Fj ,X) log P (Fi|Fi−2, · · · , F1, Fj ,X)

= H(Fj |X) +
∑|S|−1

i=1,i 6=jH(Fi|Fj ,X)

(41)

By Eq.(41), I(X;S) is decomposed as Eq.(42) as follows.

I(X;S) = H(S)−H(S|X)

= H(S)− {H(Fj |X) +
∑|S|−1

i=1,i 6=jH(Fi|Fj ,X)}

= H(S)−H(Fj) + I(Fj ;X)−
∑|S|−1

i=1,i 6=j{H(Fi|Fj)− I((Fi,X|Fj)}

(42)

In Eq.(42), at each iteration, for ∀X ∈ F \ S, H(S)−H(Fj)−
∑|S|−1

i=1,i 6=jH(Fi|Fj) is the
same. Meanwhile, to avoid the need of checking which feature in S satisfying Assumption
5b, by averaging over all features in S, we have

X∗ = argmaxX∈F\S{I(X;C) +H(S|C)−H(S|C,X)

− 1
|S|ΣFi∈S{I(X;Fi) + ΣFj∈S,i 6=jI(X;Fj |Fi)}

(43)

If we employ Assumption 4 for I(X;S|C) in Eq.(43), we get the following objective
function in Eq.(44) used by the RelaxMRMR algorithm proposed by (Vinh et al., 2016).

X∗ = argmaxX∈F\S{I(X;C) + ΣFi∈SI(X;Fi|C)

− 1
|S|ΣFi∈S{I(X;Fi) + ΣFj∈S,i 6=jI(X;Fj |Fi)}}

(44)

5.2.4 Time complexity and sample requirement of non-causal feature
selection

In this section, we will analyze the time complexity and sample requirement of non-causal
feature selection methods. Under the k-DB structural assumption, the most common family
of non-causal feature selection methods decompose Eq.(21) into different objective functions,
such as Eq.(29), Eq.(31), Eq.(36), or Eq.(44), in a linear combination of low-order mutual in-
formation terms. By these objective functions, non-causal feature selection methods greed-
ily select the ψ features with the highest mutual information scores (Guyon and Elisseeff,
2003). The time complexity of non-causal feature selection methods depends on ψ. Solv-
ing Eq.(44) requires O(ψ3n) mutual information computations. Eq.(31) and Eq.(36) need
O(ψ2n) pairwise comparisons, while Eq.(29) (the MIM criterion) only requires O(n) pair-
wise comparisons. However, how to determine a good value of the user-defined parameter
ψ for optimal feature selection is not an easy problem.

The sample requirement of a non-causal feature selection method depends on the number
of samples needed to assure reliable computation of mutual information or independence
tests. With discrete data, χ2 (chi-square) test and G2 test (a variant of chi-square test) are
commonly used to determine the independence of two variables. For a reliable independence
test between X and C given the current conditioning set S, the minimum number of data
samples N is:

N ≥ ξ × rX × rC × rS (45)
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Figure 5: The three-way causal interactions and non-causal feature selection

where rX and rC represent the numbers of possibles values (i.e. levels) of X and C respec-

tively, and rS =
∏|S|
i=1 rFi

, Fi ∈ S, i.e. the multiplication of the numbers of possible values
of all features in S. ξ is often set to 5 as suggested by Agresti (Agresti and Kateri, 2011).
As ξ is a constant, the lower bound of the required data samples N is only determined by
rX , rC , and rS where rS plays the key role in (45).

In the paper, since we formulate feature selection using mutual information, Eq.(46)
below shows that the mutual information between two variables is proportional to the
value of association of the two variables calculated by G2 test (Yaramakala, 2004), which
guarantees the correctness of using Eq.(45) above to discuss the sample requirement of
non-causal feature selection methods.

1

2N
G2(X;C) = I(X;C) &

1

2N
G2(X;C|S) = I(X;C|S) (46)

To obtain the lower bounds of required samples of the non-causal feature selection
methods, assume Xmax, Ymax, and Wmax are the three features with the largest discrete
values, then the minimum number of data samples required by Eq.(29) (MIM), Eq.(31)
(MIFS, mRMR, and FCBF), Eq.(36) (JMI and CMIM), and Eq.(44) (RelaxMRMR) is
bounded by rXmax

×rC , rXmax
×rYmax

, rXmax
×rYmax

×rC , rXmax
×rYmax

×rWmax
, respectively.

Since the existing major non-causal feature selection methods calculate I(X;C|S) using
linear combination of low-order mutual information terms (i.e. the size of S in rS in (45) is
never bigger than 1), the sample requirement of non-causal feature selection is not high.

5.2.5 Discussion

Let X be the candidate feature under consideration, and Y a previously selected feature.
In Eq.(29), Eq.(31), Eq.(36), and Eq.(44), we can see that those methods only consider
at most one of the selected features when evaluating X. Therefore, in the following, by
representing the interactions among the three variables X, Y , and C (class attribute) using
Bayesian network structures from Figures 5 (a) to 5 (g), firstly, we discuss some properties
between X, Y , and C, i.e. Properties 1 to 4 below. Secondly, with those properties, we will
investigate the causal interpretations of Eq.(29), Eq.(31), Eq.(36), and Eq.(44). Through
the discussion, we will show that the major non-causal feature selection methods driven by
the simplified objective functions shown in Eq.(29), Eq.(31), Eq.(36), and Eq.(44) prefer
direct causes, direct effects, and spouses of C to the features which are not in MB(C).

23



When X and Y are parents or children of C as shown in Figures 5 (a) to (d), we have
the following properties.

Property 1 If X and Y are both direct causes (parents) of C, i.e. the class attribute C is
a common-effect of the two features, as shown in Figure 5 (a), then (1) I(X;C) > I(X;Y ),
(2) I(X;Y |C) ≥ I(X;Y ), and (3) I(X;C)− I(X;Y ) + I(X;Y |C) > 0.

Proof: According to Proposition 2, in the case shown in Figure 5 (a), I(X;Y ) = 0 holds.
Clearly, I(X;C) > I(X;Y ) if I(X;Y ) = 0. By I(X;Y ;C) = I(X;Y ) − I(X;Y |C) =
I(X;C) − I(X;C|Y ), if I(X;Y ) = 0, I(X;Y |C) ≥ I(X;Y ) and I(X;C) − I(X;Y ) +
I(X;Y |C) > 0 hold.

Property 2 In the causal chain interaction cases in Figures 5 (b) to (c) or the common
cause interaction case in Figure 5 (d), where X or Y is a direct cause of C, i.e. X, Y and
C form a causal chain or a direct effect of C (i.e. X and Y are the common effect of C),
(1) I(X;C) > I(X;Y ) and (2) I(X;C)− I(X;Y ) + I(X;Y |C) > 0.

Proof: From Figures 5 (b) to (d), according to the Markov condition in Definition 3,
I(X;Y |C) = 0. By I(X;Y |C) − I(X;Y ) = I(X;C|Y ) − I(X;C), I(X;C) > I(X;Y ) and
I(X;C)− I(X;Y ) + I(X;Y |C) > 0 hold.

Since I((Y,X);C) = I(Y ;C) + I(X;C|Y ) and I(X;Y ;C) = I(X;Y ) − I(X;Y |C) =
I(X;C)−I(X;C|Y ), i.e. I(X;C|Y ) = I(X;C)−I(X;Y )+I(X;Y |C), we have I((X,Y );C) =
I(Y ;C)+ I(X;C)− I(X;Y )+ I(X;Y |C), or I((X,Y );C)− I(Y ;C) = I(X;C)− I(X;Y )+
I(X;Y |C). From Properties 1 and 2 above, we know that if X a direct cause or a direct
effect of C, I(X;C) − I(X;Y ) + I(X;Y |C) > 0, therefore I((X,Y );C) − I(Y ;C) > 0,
indicating that in the case when X is a direct cause or direct effect of C, X and Y together
provide more information about C than Y alone does. When X is a spouse of C as shown
in Figure 5 (e), we have the following property.

Property 3 If X is a spouse of C through Y i.e. Y is a child of both X and C, as shown
in Figure 5 (e), I(X;Y |C) > I(X;Y ) and I(X;C) − I(X;Y ) + I(X;Y |C) > 0.

Proof: By Proposition 2, I(X;C) = 0 holds in Figure 1(e). Since I(X;Y |C) =
I(X;Y )+I(X;C|Y )−I(X;C), I(X;Y |C) > I(X;Y ) and I(X;C)−I(X;Y )+I(X;Y |C) >
0 holds.

Property 3 provides a causal interpretation for the class-conditional relevancy in Eq.(36).
If X is a spouse of C and Y is the common child of X and C, I(X;Y |C) − I(Y ;X) > 0.
Since I((X,Y );C) = I(Y ;C) + I(X;C) − I(X;Y ) + I(X;Y |C), then even if I(X;C) = 0,
I((X,Y );C) provides more information than I(Y ;C). This shows that although a spouse
of C is not a direct cause or a direct effect of C, from the viewpoint of class-conditional
relevancy view, Property 3 confirms that the spouses of C are strongly relevant features.

Property 4 If Y is a direct cause or a direct effect of C, and X is an indirect cause or
an indirect effect of Y , as shown in Figures 5 (f) to (g), then (1) I(X;Y ) > I(X;C), (2)
I(X;C) + I(X;Y |C)− I(X;Y ) = 0, and (3) I(Y ;C) > I(X;C).

Proof: By the Markov condition, in Figures 5 (f) to (g), I(X;C|Y ) = 0 holds. By
I(X;Y |C)−I(X;Y ) = I(X;C|Y )−I(X;C), I(X;Y ) ≥ I(X;C) and I(X;C)+I(X;Y |C)−
I(X;Y ) = 0. Then by I(Y ;C|X) − I(Y ;C) = I(X;C|Y ) − I(X;C), I(Y ;C) − I(X;C) =
I(Y ;C|X). Since I(Y ;C|X) > 0, I(Y ;C) > I(X;C) holds.
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Table 1: Non-causal feature selection: objective functions and causal interpretations

Objective function Representative algorithm Causal interpretation
Eq.(29):
X∗ = argmaxX∈F\S I(X ;C)

MIM
prefer X∗ which is a direct
cause or direct effect of C

Eq.(31):
X∗ = argmaxX∈F\S{I(X ;C)

−
∑|S|

i=1 I(Fi;X)}

MIFS, mRMR, FCBF
prefer X∗ which is a direct
cause or direct effect of C

Eq.(36):
X∗ = argmaxX∈F\S{I(X ;C)

−ΣFi∈S{I(X ;Fi)− I(X ;Fi|C)}
JMI, CIFE, CMIM

prefer X∗ which is
a direct cause, direct effect,
or spouse of C

Eq.(44):
X∗ = argmaxX∈F\S{I(X ;C)

+ΣFi∈SI(X ;Fi|C)
− 1

|S|ΣFi∈S{I(X ;Fi)

+ΣFj∈S,i6=jI(X ;Fj |Fi)}}

RelaxMRMR
prefer X∗ which is
a direct cause, direct effect,
or spouse of C

With Properties 1 to 4, we analyze the causal interpretations of Eq.(29), Eq.(31),
Eq.(36), and Eq.(44), and our observations are summarized in Table 1. These observa-
tions illustrate that the major non-causal feature selection methods prefer direct causes,
direct effects, or spouses of C to the features which are not in MB(C) and further confirm
that the strongly relevant features belong to MB(C). Specifically, we get the following
observations, and these observations will be validated by the experiments in Section 7.1.

• If S is empty, ∀X ∈ PC(C), i.e. X is a direct cause or effect of C, for any of its
ancestors or descendants Fi ∈ F \ PC(C), I(X;C) > I(Fi;C) holds by Property 4.
Thus, Eq.(29), Eq.(31), Eq.(36), and Eq.(44) will will add C’s direct causes and effects
first to S.

• With Properties 1 to 4, the term I(X;C) − I(X;Fi) in Eq.(29), Eq.(31), Eq.(36),
and Eq.(44) prefers direct causes and direct effects of C (i.e. PC(C)), while the term
I(X;Fi|C) in Eq.(36) and Eq.(44) prefers spouses of C. Specifically, MIFS, mRMR,
FCBF that are based on or that employ Eq.(31) prefer the features PC(C) to be
added to S and do not attempt to identify spouses of C, since Properties 1 to 2 state
that only when both X and Fi belong to PC(C), I(X;C) > I(X;Fi) holds. Eq.(36)
and Eq.(44) attempt to discover not only PC(C), but also spouses of C, since if X is
a spouse of C, there exists a feature Fi, i.e. the common child of C and X, to make
I(X;C) − I(X;Fi) + I(X;Fi|C) > 0.

• Assuming that currently S = {Fi}. If Fi ∈ ch(C), i.e. Fi is a direct effect or a child
of C. For two candidate features, X ∈ PC(C) and W which is a descendant of C
and W /∈ ch(C), by Property 4, Eq.(29), Eq.(31), Eq.(36), and Eq.(44) would prefer
X to W . For example, assume that X → C → Fi → W , then I(X;C) − I(X;Fi) +
I(X;Fi|C) > 0 by Property 1 and I(W ;C) − I(W ;Fi) + I(W ;Fi|C) = 0. For MIFS
and mRMR, I(X;C) − I(X;Fi) > 0 while I(W ;C) − I(W ;Fi) < 0, and for FCBF,
I(X;C) > I(X;Fi) while I(Fi;C) > I(W ;C) and I(W ;Fi) > I(W ;C). Thus, MIFS,
mRMR, FCBF prefer X to W . If Fi ∈ pa(C), X ∈ PC(C), W is a ancestor of C and
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W /∈ pa(C) (for example, W → X → C → Fi), for X and W , with a similar analysis
above, Eq.(29), Eq.(31), Eq.(36), and Eq.(44) would add X to S.

5.3 Causal feature selection: assumptions and approximations

As discussed at the beginning of Section 5 and in the previous sections, non-causal feature
selection methods make assumptions on the dependency among features and the class at-
tribute under the naive Bayesian network assumptions. Causal feature selection methods
do not have such restrictions on the structure of the (causal) Bayesian network representing
the dependence relationships of all the variables, including the class attribute and all fea-
tures. However, in order to learn a (causal) Bayesian network or the local network structure
around the class variable, causal feature selection methods employ the Markov condition
(assumption) (Definition 3 in Section 3.1), faithfulness assumption (Definition 4 in Sec-
tion 3.1) and causal sufficiency (Definition 5 in Section 3.1) for the correctness and causal
meaning of the features selected.

Assuming S is the feature set currently selected, ch(C) is the children of C, Des(C) is
the descendants of C, and ND(C) is the ancestors of C, by the Markov condition, we can
get the following properties.

Property 5 For an unselected feature X ∈ F \S, if X ∈ {ND(C)\pa(C)}) and pa(C) ⊆ S,
X is conditionally independent of C given S, that is, I(X;C|S) = 0.

Property 6 For an unselected feature X ∈ F\S, if X ∈ {Des(C)\ch(C)}) and pa(X) ⊆ S,
X is conditionally independent of C given S, that is, I(X;C|S) = 0.

With the properties, most existing causal feature selection are designed to solve Eq.(21)
(i.e. maximizing I(X;C|S)) with a forward-backward strategy based on the below lemmas.

Lemma 4 ∀Fi ∈ PC(C) and ∀S ⊆ F \ Fi, I(C;Fi|S) > 0.
Proof: By Proposition 1, ∀Fi ∈ PC(C) and ∀S ⊆ F \Fi, Fi⊥6⊥C|S holds. By Lemma 3,

the lemma holds.

Lemma 5 If Fi is a spouse of C via Fj ∈ ch(C) (i.e. Fj is a common child of Fi and C),
∃S ⊆ F \ {Fi, Fj} such that I(C;Fi|S) = 0 and I(C;Fi|Fj ∪ S) > 0.

Proof: Since C and Fi are not directly connected by an edge, by Proposition 1, there
must exist a subset S such that C and Fi are independent given S, that is, I(C;Fi|S) = 0.
By Proposition 2, C and Fi are conditionally dependent given any subset containing Fj , i.e.
the common child of Fi and C, thus, the lemma is proven.

In this section, we will analyze the search strategies taken by the existing causal feature
selection methods for solving Eq.(21). All theorems and lemmas are discussed with the
assumption that all independence tests (mutual information calculation) are reliable.

5.3.1 A simultaneous MB discovery strategy by conditioning on the entire
S for calculating I(X;C|S) in Eq.(21)

The simultaneous MB discovery strategy aims to find PC (parents and children) and spouses
of C simultaneously without distinguishing PC from spouses during the MB discovery.
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This approach adopts the forward and backward steps to greedily discover MB(C) for
maximizing Eq.(21), i.e. sequentially maximizing I(X;C|S)(X ∈ F \ S) at the forward
step (max-relevance) and minimizing I(C;Y |S \ Y )(Y ∈ S) at the backward step (min-
redundancy) by conditioning on the entire S currently selected. This simultaneous dis-
covery strategy has been employed by two representative algorithms, IAMB and Inter-
IAMB (Tsamardinos et al., 2003b). The assumptions and search strategies of IAMB and
inter-IAMB are discussed are follows.

IAMB. The forward and backward steps of IAMB for the sequential optimization of
Eq.(21) are as follows.

• Forward step. At each iteration, S is the set of features currently selected, and
for each candidate feature within F \ S, the one satisfying argmaxX∈F\S I(X;C|S)
and I(X;C|S) > 0 is added to S. The forward step is terminated until ∀X ∈ F \ S,
I(C;X|S) = 0.

• Backward step. IAMB sequentially removes from S the false positive Y ∈ S satis-
fying I(C;Y |S \ Y ) = 0 until ∀Y ∈ S, I(C;Y |S \ Y ) > 0.

The forward step will add all features in the true MB(C) to S. Due to the greedily
strategy, some false positives may enter S at the forward step. For example, assuming
X /∈ MB(C) and ∃Y ∈ MB(C) such that I(X;C|S ∪ Y ) = 0. However, when checking
I(X;C|S) and at this time Y /∈ S, I(C,X|S) > 0 holds and X will be added to S. Thus,
the backward step will remove all the false positives in S by Properties 5 and 6.

Theorem 3 The output of IAMB is the optimal set S∗ in Eq.(12).
Proof: Assuming S denotes the set F\S. At the forward step, at each iteration, X ∈ F\S

is selected that satisfies Eq.(47) below.

X∗ = arg max
X∈F\S

{I(S;C) + I(C;X|S)} (47)

At each iteration, for all X ∈ F \ S, I(S;C) in Eq.(47) is the same. For the IAMB
algorithm, by Eq.(47), at each iteration, maximizing I(C;X|S) is equivalent to maximizing
I((S,X);C). By I(C;F ) = I(C;S) + I(C;S|S), when I(C;S|S) = 0, then I(C;S) is
maximized. At the forward step, IAMB greedily maximizes I(C;X|S) until for ∀X ∈ F \S,
I(C;X|S) = 0. Then by Lemma 4, all parents and children of C (PC(C)) will be gradually
added to S, while by Properties 5 and 6, the ancestors and descendants of C may not be
added to S. Let the set SP (C) include all spouses of C, when all parents and children of C
are added to S, by Lemma 5, ∀X ∈ SP (C), I(X;C|S) > 0, and thus all spouses of C will
be added to S initially during the forward step. In any case, at the end of the forward step,
all features in the true MB(C) will have been added to S.

At the backward step, ∃Y ∗ ∈ S to be removed from S satisfies

Y ∗ = argmin
Y ∈S

I(Y ;C|S \ Y ) (48)

By Eq.(48), at each iteration, if I(C;Y |S \ Y ) = 0, IAMB will remove Y from S until
given any feature Y ∈ F \ S, I(Y ;C|S \ Y ) > 0. Then all false positives in S are removed,
and thus S =MB(C). By Theorem 2, the theorem is proved.
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Inter-IAMB. IAMB surfers from the problem of the addition of false positives to S at
the forward step, then makes the size of S possibly become high-dimensional. The Inter-
IAMB strategy mitigates the problem by interleaving the forward and backward steps of
IAMB to keep S as small as possible, then maximizes I(C;X|S) forX ∈ F \S and minimizes
I(C;Y |S \ Y ) for Y ∈ S simultaneously.

Theorem 4 The output of Inter-IAMB is the optimal set S∗ in Eq.(12).
Proof: At each iteration, by Eq.(47), the forward step adds a new feature X ∈ F \ S

that maximizes I(C;X|S) to S. Once the new feature X is added to S, the backward step
is triggered immediately and removes features in S (false positives) that minimize Eq.(48).
By maximizing I(C;X|S) and minimizing I(Y ;C|S \ Y ) simultaneously, the strategy will
convergence that for ∀X ∈ F \ S, I(X;C|S) = 0 and ∀Y ∈ S, I(Y ;C|{S \ Y }) > 0. After
the backward step, S =MB(C). Then by Theorem 2, the theorem is proved.

The time complexity of IAMB and Inter-IAMB above is measured in the number of
conditional independence tests (association computations) executed. For IAMB and Inter-
IAMB, the average time complexity is O(n|S|) and the worst time complexity is O(n2)
where n is the total number of features and in the worst case with |S| = n.

Compare to non-causal feature selection, IAMB and Inter-IAMB both use the entire set
of S as the conditioning set for the calculation of I(X;C|S) at each iteration. By Eq.(45)
in Section 5.2.4, assuming Smax is the largest conditioning set during MB search, thus the
minimum number of data samples N required by IAMB and Inter-IAMB is rXmax

× rC ×
rSmax

. Then the number of data instances required by IAMB and Inter-IAMB will increase
exponentially in the size of S. To mitigate this drawback, in the next section, we will discuss
a divide-and-conquer strategy.

5.3.2 A divide-and-conquer strategy by conditioning on all subsets of S for
calculating I(X;C|S) in Eq.(21)

The main idea behind a divide-and-conquer strategy is that: (1) finding PC(C) and SP (C)
separately, and (2) using a feature-subset enumeration strategy to explore subsets of S for
discovering PC(C) instead of conditioning on the entire set of S. That is, to calculate
I(C;X|S), the divide-and-conquer strategy performs a search for a subset, S′ ⊆ S such
that if X and C are conditional independent given S′, i.e. I(C;X|S′) = 0, X will not be
added to S and will never be considered as a candidate feature again. Then, the minimum
number of data samples N required by the divide-and-conquer strategy is rXmax

× rC × rS′

where 0 ≤ |S′| ≤ |Smax|. Accordingly, on average, the divide-and-conquer strategy requires
much smaller number of data samples than IAMB and Inter-IAMB. Specifically, the divide-
and-conquer strategy mainly consists of the following two steps for solving Eq.(21).

• Discovering PC(C). At each iteration, assuming S is the set of features currently
selected, for each candidate feature X ∈ F \ S, if ∃S′ ⊆ S such that X and C
conditional independent given S′, i.e. I(X;C|S′) = 0, X is discarded and will never
be considered as a candidate parent or child of C again, otherwise X is added to S.
By Lemma 4, after this step, all parents and children will be added to S.

• Discovering SP (C). By Lemmas 4 and 5, ∀X ∈ SP (C), there must exist a subset in
F \{X} such that X and C are conditional independent given this subset. Therefore,
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all spouses of C cannot be added to S at the PC discovery step. To find SP (C),
by Lemma 5, ∀X ∈ S, the step employs the PC discovery step to find PC(X), then
for each feature Y ∈ PC(X), if ∃S′ ⊆ F \ {Y,X} such that I(C;Y |S′) = 0 and
I(C;Y |S′ ∪X) > 0, Y ∈ SP (C).

There are four representative approaches to instantiate the divide-and-conquer strategy,
i.e. max-min heuristic, simple max-heuristic, backward heuristic, and k-greedy heuris-
tic. The representative algorithms include MMMB (Tsamardinos et al., 2003a), HITON-
MB (Aliferis et al., 2003), IPC-MB (Fu and Desmarais, 2008), and STMB (Gao and Ji,
2017).

1. The max-min heuristic. The representative algorithm using the strategy is the
MMMB algorithm, which includes the following two steps.

(1) Discovering PC(C) step. This step includes a forward step and a backward step
to find PC(C). To select the feature X∗ ∈ F \ S to maximize I(C;X|S), the forward and
backward steps are implemented as follows.

• Forward step. The max-min heuristic selects the feature that maximizes the minimum
correlation with C conditioned on the subsets of S. Specifically, initially S is an empty
set, ∀X ∈ F \ S, the minimum correlation, denoted as corr(C;X|S), between C and
X conditioned on all possible subsets of S, is calculated as Eq.(49) below.

corr(C;X|S) = min
S′⊆S

I(C;X|S′) (49)

X∗ ∈ F \ S will be added to S if corr(C;X∗|S) > 0 and Eq.(50) below hold.

X∗ = argmaxX∈{F\S} corr(C;X|S) (50)

The forward step stops until ∀X ∈ F \ S, corr(C;X|S) = 0.

• Backward step. Each feature in S selected at the forward step will be checked. If
∃Y ∈ S satisfies Eq.(51) below, it will be removed from S and never considered again.

∃S′ ⊆ S \ Y, I(C;Y |S′) = 0 (51)

(2) Discovering SP (C) step. At the step, the max-min heuristic firstly finds the set of
parents and children for each feature in S found at the forward step. Assuming X ∈ PC(C)
and Y ∈ PC(X), if Y /∈ PC(C) and ∃S′ ⊂ F \ {X,Y } to make Eq.(52) below hold, then Y
is a spouse of C.

I(C;Y |S′) = 0 and I(C;Y |S′ ∪X) > 0 (52)

2. Interleaving max-heuristic. The main difference between the max-heuristic and
the interleaving max-heuristic is that in the discovering PC(C) step, the interleaving max-
heuristic interleaves the forward and backward steps to keep the size of S as small as
possible. The representative algorithm using the strategy is the HITON-MB algorithm.

(1) Discovering PC(C) step. In the step, the interleaving max-heuristic uses a simpler
forward strategy than the max-min heuristic. Before interleaving forward and backward
steps, ∀X ∈ F , the interleaving max-heuristic computes I(C;X) and adds the features
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Figure 6: An example of the false positive D being added to S in the discovering PC(C)
step using the max-min heuristic or its interleaving version

that satisfy I(C;X) > 0 to the candidate PC(C) set, called SPC(C), in descending order
according to the value of I(C;X). If I(C;X) = 0, X will be discarded and never considered
as a candidate parent or child again. Then, initially S is an empty set, and for each feature
in SPC(C), this strategy interleaves Eq.(53) and Eq.(54) as follows, until SPC(C) is empty.

• Forward step. ∀X ∈ SPC(C), if X satisfies Eq.(53) below, it will be added to S.

X∗ = arg max
X∈SPC(C)

I(C;X) (53)

• Backward step. Once X is added to S at the forward step, the backward step is
triggered. Specifically, SPC(C) = SPC(C) \X, and ∀Y ∈ S, if ∃S′ ⊆ S \ Y satisfies
Eq.(54) below, Y will be removed from S and never considered again.

I(C;Y |S′) = 0 (54)

(2) Finding spouses. The step is the same as the max-min heuristic in Eq.(52).
Comparing to the simultaneous discovery strategy to discover MBs in Section 5.2.1, the

strategies in this section perform an subset search within S instead of conditioning on the
entire S. Thus, for the max-min heuristic and its interleaving version, the time complexity
is O(M |S|22|S|) where |S| denotes the largest size of S during forward and backward steps.

Theorem 5 Using the max-min heuristic or its interleaving version, in the discovering
PC(C) step, PC(C) ⊆ S (Tsamardinos et al., 2006; Aliferis et al., 2010a).

Theorem 5 states that in addition to PC(C), the output of the discovering PC(C) step,
i.e. S, may include some false positives. For example, in Figure 6, assuming C is the target
feature, B, A, and D is a child, spouse, and descendant of C, respectively, D will enter and
remain in S in the discovering PC(C) step (Aliferis et al., 2010a). The explanation is as
follows. C and D are dependent conditioning on the empty set, since the path C → B → D
d-connects C and D. By conditioning on {B}, the path C → B ← A → D d-connects C
and D by Definition 6.

To remove false positives from S, such as D, the two max-min heuristics employ a sym-
metry correction. The idea behind the symmetry correction is that in a Bayesian network,
if X ∈ PC(C), then C ∈ PC(X). With the symmetry correction, in the discovering PC(C)
step, the work (Tsamardinos et al., 2006; Peña et al., 2007) proved that S = PC(C). And
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with symmetry corrections, the work (Aliferis et al., 2010a) proved that the output of the
two max-min heuristics is MB(C), that is, S =MB(C), and thus Theorem 6 below holds.

Theorem 6 The output of the max-min heuristic (and its interleaving version) employed
by MMMB (and HITON-MB) is the optimal set S∗ in Eq.(12) with symmetry correction.

3. The backward strategy. The IPC-MB (Fu and Desmarais, 2008) and STMB (Gao and Ji,
2017) algorithms only employ a backward step to discover PC(C) instead of using a forward-
backward strategy. Initially, by setting S = F , the backward step removes features from
S one by one, instead of greedily adding features to S one by one for maximizing I(C;S).
Specifically, in the discovering PC(C) step, for ∀Y ∈ S, if ∃S′ ⊆ S \ Y and |S′| = 0 (i.e.,
the size of S′ equals to 0) such that I(Y ;C|S′) = 0, Y is removed from S. Otherwise, if
∃S′ ⊆ S \ Y and |S′| = 1 such that I(Y ;C|S′) = 0, Y is removed from S. The backward
step continues in this way by performing level by level of the size of S′, until the size of the
current S′ is larger than the size of the current S.

This backward strategy employed by IPC-MB also finds a superset of PC(C), that is,
PC(C) ⊆ S. Thus, IPC-MB embeds a symmetry correction in the spouse discovery stage
to remove false positives in S. To find spouses, IPC-MB adopts the same idea with MMMB
and HITON-MB.

STMB also employs the backward step to discover PC(C). But STMB has two main
differences against IPC-MB. Firstly, STMB finds SP (C) in F \ S, instead of parents and
children of each feature in S. Secondly, STMB uses the found spouses to remove false
positives in S found in the discovering PC(C) step instead of using a symmetry correction
during the SP (C) discovery step. Specially, assuming S found in the discovering PC(C)
step and SP (C) = ∅, the idea of discovering spouses are summarized below.

• Finding spouses and removing false parents and children from S: for each feature
X ∈ F\S, if ∃Y ∈ S and ∃S′ ⊂ F\{X∪Y } s.t. I(C;X|S′) = 0 and I(C;X|S′∪Y ) > 0,
then X is added to SP (C). Once X is added to SP (C), for each feature Y ∈ S, if
∃S′ ⊆ {S∪X}\Y s.t. I(C;Y |S′) = 0, then Y and X are removed from S and SP (C),
respectively. The process terminates until all features in F \ S are checked.

• Removing false positives from SP (C) and S: (1) ∀X ∈ SP (C), if I(X;C|S ∪SP (C)\
X) = 0, X is removed from SP (C); then (2) ∀Y ∈ S, if I(Y ;C|S ∪ SP (C) \ Y ) = 0,
Y is removed from S.

IPC-MB and STMB have been proved that {S ∪SP (C)} =MB(C) (Gao and Ji, 2017;
Fu and Desmarais, 2008). Thus, IPC-MB and STMB greedily find the optimal set S∗

in Eq.(12). The time complexity of IPC-MB includes finding both PC(C) and SP (C),
then the complexity is O(n2|S| + |S|n2|S|) = O(|S|n2|S|) where |S| is the largest size of
conditional set during search. The worst time complexity of IPC-MB is O(n2n + n22|S|) =
O(n22|S|) when all features are parents and children of C. For STMB, and the average time
complexity is O(n2|S| + |S||F \ S|2|S|) = O(|S||F \ S|2|S|), and the worst time complexity
is O(n2n + n22|S|) = O(n22|S|).

4. γ-greedy heuristic. In the discovering PC(C) step, as the size of S becomes
large, it will be computationally expensive or prohibitive when we perform an exhaustive
enumeration over all subsets of S. For example, to check whether X is able to be added
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to S, in the worst case, the total number of subsets checked is up to 2|S|. Accordingly, in
the discovering PC(C) step, MMMB, HITON-MB, IPC-MB and STMB employ a γ-greedy
search method to mitigate this problem. The γ-greedy search checks all subsets of size
less than or equal to a user-defined parameter γ (0 ≤ γ < |S|), that is, the maximum
size of subsets needed to be checked. In the case of using the γ-greedy heuristic, MMMB,
HITON-MB, IPC-MB and STMB return an approximate MB(C) (Aliferis et al., 2010a).

5.4 Practical implication

In Section 5.2 and Section 5.3, we discussed the Bayesian network structural assumptions
and analyzed in detail how the assumptions led to the different levels of approximations em-
ployed by causal and non-causal feature selection methods for the calculation of I(X;C|S).
With the structural assumptions, we are able to fill in the gap in our understanding of the
relation between the two types of feature selection methods.

Firstly, the feature sets obtained by causal feature selection methods are closer to
MB(C) than non-causal feature selection methods. However, our analysis in Sections 5.2
and 5.3 shows that non-causal feature selection methods are much more computationally
efficient and have lower sample requirement than causal feature selection methods. The
choice of causal or non-causal feature selection methods depends on the size of the dataset
under study.

Secondly, the strongly relevant features are the same as the MB of C. This may motivate
us to leverage the advantages of both causal and non-causal feature selection methods to
develop more efficient and robust new feature selection methods.

Thirdly, causal and non-causal feature selection methods implicitly reduce a full Bayesian
network classifier to a selective Bayesian network classifier by selecting a subset of features
S to make the conditional likelihood P (C|S) as close to P (C|F ) as possible, as shown in
Figure 7.
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6. Error Bounds

In the section, we will discuss the error bounds of non-causal and causal feature selection
for understanding the impact of assumptions and approximations made by the two types
of methods on classification performance. Since both types of methods are independent of
any classifiers, we will analyze the bounds of difference in the information gains between an
approximate MB and an exact MB. In Section 3, Eq.(17) has presented that if a subset S
in D maximizing I(C;S), then S also maximizes L(C|S,D) and minimizes Perr. Based on
Eq.(17), using information gain, in the following, we will discuss the bounds of the difference
between an approximate MB and an exact MB.

6.0.1 Conditioning on the full S and its all subsets (exact MB discovery)

According to our analysis in Section 5.3, under certain assumptions, causal feature selection
algorithms designed with conditioning on both the full S and all of its subsets can find the
exact MB(C) from data. Moreover, the algorithms by conditioning on all subsets of S
are also able to find the exact PC(C). As I(C;F \ MB(C)|MB(C)) = 0, I(C;F ) =
I(C;MB(C)). Since H(Perr)

−1 ≤ Pber ≤ 1/2H(C|F ) (see Eq.(14)), Theorem 7 gives the
minimum upper bound of Perr.

Theorem 7 Perr ≤ 1/2H(C|MB(C)).

Proof: By Theorem 2, ∀S ⊆ F , I(C;MB(C)) ≥ I(C;S) holds. Since H(C|MB(C)) =
H(C)−I(C;MB(C)) and H(C|S) = H(C)−I(C;S), we get that ∀S ⊆ F , H(C|MB(C)) ≤
H(C|S). By Eq.(15), the theorem is proven.

By Eq.(16), limm→∞−ℓ(C|S,D) = KL(p(C|S)||q(C|S)) + H(C|S). As m → ∞,
KL(p(C|S)||q(C|S)) will approach zero, and thus Eq.(55) presents that H(C|MB(C)) min-
imizes −ℓ(C|MB(C),D).

lim
m→∞

−ℓ(C|MB(C),D) ≈ H(C|MB(C)) (55)

If S = PC(C) holds, by Theorem 2, I(MB(C);C) ≥ I(PC(C);C) holds. Thus,
H(C|MB(C)) ≤ H(C|PC(C)) holds, and Eq.(56) below gives the Bayes error rates of
PC(C), that is, Perr(PC(C)). Since H(C|MB(C)) ≤ H(C|PC(C)), the upper bound in
Eq.(56) is looser than that in Eq.(55).

Perr(PC(C)) ≤ 1/2H(C|PC(C)) (56)

Since limm→∞−ℓ(C|PC(C),D) ≈ H(C|PC(C)), Eq.(57) below gives the upper bound
of the conditional log-likelihood of PC(C) in D, that is, −H(C|MB(C)).

lim
m→∞

ℓ(C|PC(C),D) ≤ −H(C|MB(C)) (57)

6.0.2 Conditioning on the subsets of S up to size γ (causal feature
selection).

As we discussed in Section 5.3, the γ-greedy search employed by causal feature selection
methods may return an approximate MB(C). Let AMB(C) ⊆ F be an approximate MB
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of C, by Theorem 2, H(C|MB(C)) ≤ H(C|AMB(C)) holds. Since Theorem 7 illustrates
that 1/2H(C|MB(C)) is the minimum upper bound of Perr, thus, we get

Perr(AMB(C)) ≤ 1/2H(C|MB(C)). (58)

Since limm→∞−ℓ(C|AMB(C),D) ≈ H(C|AMB(C)) holds, the upper bound of the
conditional log-likelihood of any approximate MB of C is

lim
m→∞

ℓ(C|AMB(C),D) ≤ −H(C|MB(C)). (59)

6.0.3 Conditioning on the subset of size 0 or 1 (non-causal feature
selection).

As discussed in Section 5.2, non-causal feature selection algorithms attempt to find PC(C)
and some spouses of C. With different values of ψ (i.e. the number of selected features),
those strategies may return an approximate MB(C), that is, a superset or a subset of
PC(C). In the following, we will focus on discussing the bounds of the superset or subset
of PC(C) found by non-causal feature selection methods.

Corollary 2 If S1 ⊆ F \ PC(C) and S = PC(C) ∪ S1,
(1) −H(C|PC(C)) ≤ limm→∞ ℓ(C|S,D) ≤ −H(C|MB(C));
(2) 1/2H(C|MB(C)) ≤ Perr(S) ≤ 1/2H(C|PC(C)).
Proof: Assuming PC(C) = F \ PC(C) and S = F \ S. Firstly, we prove that

I(C;PC(C)|PC(C)) ≥ I(C;S|S) holds. By I(C;F ) = I(PC(C);C)+I(C;PC(C)|PC(C)),
we get

I(C;F ) = I((S, S);C)

= I(S;C) + I(C;S|S)
= I((PC(C), S1);C) + I(C;S|S)
= I(PC(C);C) + I(S1;C|PC(C)) + I(C;S|S)

(60)

By the chain rule of mutual information, we can get

I(S1;C|PC(C)) =

|S1|
∑

j=1

I(Fj ;C|Fj−1, · · · , F1, PC(C)). (61)

Since S1 only includes spouses, non-descendants and descendants of C. By Eq.(60) and
Eq.(61), we get the following.

Case 1: if ∃Fj ∈ S1 is a descendant of C and I(Fj ;C|Fj−1, · · · , F1, PC(C)) > 0, then

I(C;PC(C)|PC(C)) > I(C;S|S) holds.
Case 2: if ∃Fj ∈ S1 and Fj is a spouse of C, then I(Fj ;C|Fj−1, · · · , F1, PC(C)) > 0.

Thus, I(C;PC(C)|PC(C)) > I(C;S|S) holds.
Case 3: if Fj ∈ S1 is a non-descendant of C, by the Markov condition,

I(Fj ;C|Fj−1, · · · , F1, PC(C)) = 0, then I(C;PC(C)|PC(C)) = I(C;S|S).

By I(C;S) ≤ I(C;MB(C)), I(C;S|S) ≥ I(C;MB(C)|MB(C)) holds. Then we get

I(C;PC|PC(C)) ≥ I(C;S|S) ≥ I(C;MB(C)|MB(C)).

Then I(C;PC(C)) ≤ I(C;S) ≤ I(C;MB(C)) holds. Thus, we get H(C|PC(C)) ≥
H(C|S) ≥ H(C|MB(C)). Thus, (1) and (2) hold.
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For a subset of PC(C), assuming S ⊂ PC(C), S = F \ S. If PC(C) = {S ∪ S′},

I(C;PC(C)) = I(C;S) + I(C,S′|S). Since I(C;S′|S) =
∑|S′|

i=1 I(Fi;C|Fi−1, · · · , F1, S)
holds and S′ ⊂ PC(C)), then I(C;S′|S) > 0. Thus, I(C;PC(C)) > I(C;S) holds.
By I(C;F ) = I(C;PC(C)) + I(C;PC|PC(C)) and I(C;F ) = I(C;S) + I(C;S|S), then
I(C;PC|PC(C)) < I(C;S|S). Accordingly, we can get the bounds between S ⊂ PC(C)
and PC(C) in the following:

lim
m→∞

ℓ(C|S,D) < −H(C|PC(C)) and Perr(S) < 1/2H(C|PC(C)) (62)

By the analysis above, we can see that the errors of causal and non-causal feature
selection methods are bounded by 1/2H(C|MB(C)) and 1/2H(C|PC(C)), respectively.
This indicates that the error bound of non-causal feature selection is looser than that of
causal feature selection. Therefore, referring back to Figure 4, our analysis in this section
validates that as causal feature selection methods make no assumption on the structure
of the Bayesian network representing dependency of variables, their search strategies are
able to find the exact MB(C), while the strong assumptions made by non-causal feature
selection methods lead to an approximate MB(C) (referring back to Figure 3).

7. Experiments

In this section, we will conduct extensive experiments to validate our findings of causal and
non-causal feature selection, with the following focuses:

• In Section 7.1, we validate Theorem 2 in Section 4.2 (i.e. the MB of C is the optimal
set for feature selection), the discussion in Section 5.2.5 (causal interpretations of non-
causal feature selection), and the proposed error bounds in Section 6 using a set of
synthetic data sampled from a benchmark Bayesian network.

• In Section 7.2, as seen in the experiment results, we investigate the impact of different
levels of approximations made by causal and non-causal feature selection methods
on classification performance, the computational and accuracy performance of causal
and non-causal feature selection methods, and the impact of data sample sizes on
both methods using 25 various types of real-world datasets, including six datasets
with large data samples, six datasets with extreme small samples, seven datasets with
multiple classes, and six class-imbalanced datasets.

To carry out these validations, we have selected the following eight representative feature
selection methods:

• Five representative causal feature selection methods, including three MB discovery
algorithms, IAMB, HITON-MB, MMMB and two PC discovery algorithms, HITON-
PC and MMPC and we use the implementations of these algorithms obtained from
http://www.dsl-lab.org/causal explorer;

• Three representative non-causal feature selection algorithms: mRMR, JMI, and CMIM
since these three algorithms provides better tradeoff in terms of accuracy and scalabil-
ity than the other non-causal feature selection algorithms (especially with small-sized
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Figure 8: The ALARM Bayesian network

data samples) (Brown et al., 2012). We use the implementations of mRMR, JMI, and
CMIM obtained from https://github.com/Craigacp/FEAST.

To evaluate the selected features by each algorithm for classification, in all experiments,
we use Naive Bayes classifier (NBC) and k-Nearest Neighbor (KNN) classifier since SVMs,
Random Forests, and Decision trees implicitly embed a feature selection process into them-
selves while NB and KNN do not. All experiments were performed on a Window 7 Dell
workstation with an Intel(R) Core(TM) i5-4570, 3.20GHz processor and 8.0GB RAM, and
all eight feature selection methods under comparison are implemented in MATLAB, and
NBC and KNN are implemented in MATLAB2014 Statistics Toolbox. In the tables in Sec-
tion 7, the notation “A±B” denotes that “A” is the average performance of an algorithm
on a dataset, such as prediction accuracy, while “B” represents the corresponding standard
deviations of the average performance.

7.1 Experiments using synthetic datasets

In this section, we will validate MB(C) is the optimal set for feature selection (Theorem 2
in Section 4.2) and the proposed error bounds in Section 6 using a set of synthetic data
sampled from the ALARM (A Logical Alarm Reduction Mechanism) network, a benchmark
and well-known Bayesian network modelling an alarm message system for patient monitor-
ing (Beinlich et al., 1989). This network includes 37 variables and the complete structure
of the network is shown in Figure 8. Since the MB of each variable can be read from the
network, we are able to evaluate the performance of the feature selection methods against
the true MBs.

In the ALARM network, we choose the “HR” (Heart Rate) variable as the class attribute
for classification. The variable takes three class labels, “low”, “normal”, and “high”, and
has the largest MB among all variables, including one parent, four children, and three
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Table 2: Prediction accuracy of true MB against causal and non-causal algorithms

Algorithm
5000 cases 50 cases

KNN NBC KNN NBC
TrueMB 98.99±0.3542 98.52±0.3765 98.99±0.3542 97.27±0.3889

IAMB 98.65±0.3719 98.34±0.5420 94.67±3.8500 95.06±3.8200
MMMB 98.99±0.3542 98.52±0.3765 95.02±1.3456 95.13±1.3516
HITON-MB 98.99±0.3542 98.52±0.3765 95.02±1.3456 95.13±1.3516
mRMR (ψ= nMB) 98.38±0.2898 98.42±0.3360 95.40±1.7321 95.94±1.4152
CMIM (ψ= nMB) 98.17±0.3653 98.38±0.4367 93.25±2.5238 93.49±1.8064
JMI (ψ= nMB) 98.67±0.4523 98.33±0.3889 94.83±1.3259 95.50±1.3968

Table 3: Precision and Recall of each algorithm for MB discovery

Algorithm
5000 cases 50 cases

precision recall precision recall
IAMB 1±0 0.6875±0.0659 1±0 0.1250±0
MMMB 1±0 1±0 0.6885±0.1282 0.9000±0.0791
HITON-MB 1±0 1±0 0.6500±0.0791 0.6500±0.0791
MRMR (ψ= nMB) 0.6250±0 0.6250±0 0.6500±0.0527 0.6500±0.0527
CMIM (ψ= nMB) 0.6250±0 0.6250±0 0.4875±0.1905 0.4875±0.1905
JMI (ψ= nMB) 0.7500±0 0.7500±0 0.6500±0.0791 0.6500±0.0791

spouses. We randomly sampled 10 training datasets with 5,000 training cases (large-sized
data samples) and 50 training cases (small-sized data samples) respectively. For each train-
ing dataset, we randomly sampled a testing dataset with 1,000 testing cases. The reported
prediction accuracy is the average accuracy of a classifier using the feature sets selected
over the 10 runs of a feature selection method on these 10 training datasets.

In all tables in Section 7.1, “TruePC” and “TrueMB” denote the ground-truths of PC
and MB of “HR” in the network, respectively. For validating the discussion of causal
interpretations of non-causal feature selection methods in Section 5.2.5, we use the following
settings and evaluation metrics.

• We set the parameter ψ, i.e. the numbers of features selected by mRMR, JMI, and
CMIM to the size of the true MB (or the true PC) of “HR” in the network, which is
denoted as “ψ=nMB” (or “ψ=nPC”).

• We use the average precision and recall metrics using the feature sets selected over
the 10 runs of a feature selection method on the 10 training datasets to observe the
percentage of the MB (or the direct causes and direct effects) of “HR” included in the
selected features (the output) of each algorithm. The precision metric is the number
of true positives in the output (i.e. the variables in the output belonging to the true
MB (or PC) of “HR” in the ALARM network) divided by the number of variables in
the output of an algorithm. The recall metric is the number of true positives in the
output divided by the number of true positives (the number of the true MB (or PC)
of “HR” in the alarm network).

• We use the prediction accuracy, the ratio between the number of correct predictions
and the total number of testing data samples to validate Theorem 2 presented in
Section 4.2 and the error bounds proposed in Section 6.
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Table 4: Number of parents and children (PC), spouses (SP), and false positives (FP)

Algorithm
5000 cases 50 cases

PC SP FP PC SP FP
IAMB 4.3±0.4830 1.2±0.4216 0 1±0 0 0
MMMB 5±0 3±0 0 4.9±0.3162 2.3±0.6749 3.5±1.7159
HITON-MB 5±0 3±0 0 4.9±0.3162 0.3±0.4830 2.8±0.6325
mRMR (ψ= nMB) 5±0 0 3±0 4.9±0.3162 0.3±0.4830 2.8±0.4216
CMIM (ψ= nMB) 5±0 0 3±0 3.9±1.5239 0 3.1±1.1972
JMI (ψ= nMB) 5±0 1±0 2±0 4.9±0.3162 0.3±0.4830 2.8±0.6325

Table 5: Prediction accuracy of true PC against causal and non-causal algorithms

Algorithm
5000 cases 50 cases

KNN NBC KNN NBC
TruePC 98.44±0.3596 98.57±0.3199 98.44±0.3596 97.36±0.3718

MMPC 98.44±0.3596 98.57±0.3199 96.66±0.7382 97.01±1.2360
HITON-PC 98.44±0.3596 98.57±0.3199 96.66±0.7382 97.01±1.2360
mRMR (ψ= nPC) 98.44±0.3596 98.57±0.3199 96.28±1.2017 96.44±1.0710
CMIM (ψ= nPC) 98.44±0.3596 98.57±0.3199 95.77±1.7601 96.31±0.8850
JMI (ψ= nPC) 98.44±0.3596 98.57±0.3199 94.08±3.1435 94.59±1.5975

7.1.1 Validation of Theorem 2 and the discussion in Section 5.2.5

In this section, we will validate Theorem 2 (i.e. the MB of C is the optimal set for feature
selection), and the discussion of causal interpretations of non-causal feature selection in
Section 5.2.5.

Validating Theorem 2. Table 2 reports the average prediction accuracies and stan-
dard deviations using the datasets containing 5,000 and 50 training cases, respectively.
Table 2 states that using both KNN and NBC, the true MB of “HR” achieves the high-
est prediction accuracy than the feature subsets selected by IAMB, HITON-MB, MMMB,
mRMR, CMIM, and JMI. Table 4 shows the number of parents and children (PC), spouses
(SP), and false positives (FP) in the found feature set of each algorithm. These results indi-
cate that classifiers using MB(C) as the feature set achieve the best classifications results,
which validates Theorem 2 in Section 4.2.

From Tables 3 and 4, we can see that using 5000 cases, both MMMB and HITON-MB
find the exact MB of “HR”, and thus get the same prediction accuracy as the true MB of
“HR”, while the other four algorithms do not find the exact MB of “HR”. In addition, from
Table 4, we can see that except for IAMB, all feature sets found by the other five algorithms
include all variables within the PC set of “HR”. This explains why the IAMB, mRMR, JMI,
and CMIM are very competitive on the prediction accuracy. CMIM and mRMR cannot
find any spouses using 5000 cases.

Using 50 cases, in Table 2, mRMR gets the highest prediction accuracy among IAMB,
MMMB, HITON-MB, CMIM, and JMI using both KNN and NBC, since it finds almost the
same PC set as the other rivals, but achieves fewest false positives among all algorithms, as
shown in Table 4. This shows that non-causal feature selection algorithms deal with small-
sized data samples better than causal feature selection algorithms, which is consistent with
our discussions of sample requirement in Section 5.

Validating the discussion presented in Section 5.2.5. Table 5 reports the pre-
diction accuracies using MMPC, HITON-PC, mRMR, JMI, and CMIM, while Table 6
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Table 6: Precision and Recall of each algorithm for PC discovery

Algorithm
5000 cases 50 cases

precision recall precision recall
MMPC 1±0 1±0 0.9714±0.0904 0.9200±0.1033
HITON-PC 1±0 1±0 0.9714±0.0904 0.9200± 0.1033
MRMR (ψ= nPC) 1±0 1±0 0.8600±0.0966 0.8600±0.0966
CMIM (ψ= nPC) 1±0 1±0 0.5800±0.1989 0.5800±0.1989
JMI (ψ= nPC) 1±0 1±0 0.8000±0.0943 0.8000±0.0943
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Figure 9: mRMR and TurePC

illustrates the precision and recall of each algorithm for PC discovery. From Tables 4 to 6,
we can see that the PC set of a target feature plays a key role in predicting the target.
From Tables 5 to 6, we can see that using 5000 cases (large-sized data samples), the three
non-causal feature selection methods find the exact PC set of “HR”, and thus they get
the same prediction accuracy as the true PC set. Even using 50 cases (a small-sized data
samples), Table 6 states that the three non-causal feature selection methods still prefer the
features in the PC set of “HR”. Therefore, Tables 4 to 6 provide strong evidence to support
the discussion of causal interpretations of non-causal feature selection in Section 5.2.5.

7.1.2 validation of error bounds identified in Section 6

In the section, we will examine the proposed error bounds in Section 6. To achieve the goal,
we consider the prediction accuracy of the true PC set of “HR” as a baseline, since using
the PC set of “HR”, the prediction accuracy is almost the same as that using the MB set.
Then we check the different prediction accuracies of different feature sets by varying the
sizes of the selected feature sets by mMRM, CMIM, and JMI.

5 10 15 20 25 30 35
90

92

94

96

98

100

Number of selected features

P
re

di
ct

io
n 

ac
cu

ra
cy

 (
K

N
N

)

 

 

TurePC
CMIM

5 10 15 20 25 30 35
90

92

94

96

98

100

Number of selected features

P
re

di
ct

io
n 

ac
cu

ra
cy

 (
N

B
)

 

 

TurePC
CMIM

Figure 10: CMIM and TurePC
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Figure 11: JMI and TurePC

From Figures 9 to 11, we can see that the prediction accuracies of mRMR, CMIM, and
JMI are bounded by the prediction accuracy of the true PC set. The highest accuracy of
the three algorithms was achieved with 5 to 8 selected features, where the PC set of “HR”
includes 5 features and the true MB set has 8 features. Thus, those results further confirm
the bounds proposed in Section 6.

7.2 Evaluation on real-world data

In this section, we will conduct extensive experiments with 25 real-world datasets to examine
the impact of different levels of approximations made by causal and non-causal methods on
their performance, the time complexity of both methods, and the impacts of data sample
sizes and different types of datasets on causal and non-causal feature selection algorithms,
respectively. The 25 datasets are divided into four groups: (1) six datasets with large sample
sizes and a small feature-to-sample ratio, i.e. “m≫n”; (2) six datasets with a small sample-
to-feature ratio, i.e. “m≪n”; (3) seven datasets with multiple classes; (4) six datasets with
extremely imbalanced class distributions.

In addition to prediction accuracy used in the previous section, we employ the following
metrics to validate all the eight methods:

• Number of selected features;

• Computational efficiency (running time in seconds);

• AUC: Area Under the ROC (used for imbalanced datasets in Section 7.2.4);

• Kappa statistics.

The existing stability measures for feature selection always require that the two feature
sets under comparison should contain the same number of features, but the eight feature
selection methods used in the evaluation return different feature sets of different sizes. Thus,
instead of comparing the stabilities of the features selected by the feature selection methods,
in Section 7.2, we will use the Kappa statistics to measure the stability of a classifier built
using the features selected by a feature selection method as an indication of the method’s
stability. The Kappa statistic is a measure of consistency amongst different raters, taking
into account the agreement occurring by chance (Cohen, 1960). The statistic is standardized
to lie on a -1 to 1 scale, where 1 is perfect agreement, 0 is exactly what would be expected
by chance, and negative values indicate agreement less than chance. The detailed value
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Table 7: Kappa statistic and its corresponding Kappa agreement

Kappa statistic < 0 0.01-0.20 0.21-0.40 0.61-0.80 0.81-0.99

Kappa Agreement less than chance
agreement

slight
agreement

moderate
agreement

substantial
agreement

almost perfect
agreement

Table 8: Datasets with large sample sizes and a small feature-to-sample ratio

Dataset Number of features Number of instances Number of classes
mushroom 22 5,644 2
kr-vs-kp 36 3,196 2
madelon 500 2,000 2
gisstee 5000 7,000 2
spambase 57 4,601 2
bankrupty 148 7,063 2

ranges of the Kappa statistics and their corresponding Kappa agreements are shown in
Table 7 (Landis and Koch, 1977).

7.2.1 Datasets with large sample sizes and a small feature-to-sample ratio

We select six datasets with of large numbers of samples and relatively small numbers of
features from the UCI Machine Learning Repository (Bache and Lichman, 2013), as shown
in Table 8. In the experiment, for mRMR, CMIM, and JMI, since it is hard to decide
in advance a suitable parameter ψ, i.e., the number of selected features, for each of these
algorithms, we set the user-defined values for ψ to 5, 10, 15, 20, and 25 respectively for the
algorithm and choose the feature subset with the highest prediction accuracy as the final
feature set selected by the algorithm.

Tables 9 and 10 report the prediction accuracy of each algorithm using NBC and KNN,
respectively. Table 9 illustrates that with NBC, the non-causal feature selection methods
almost have the same performance as the causal feature selection algorithms. IAMB is a bit
better than mRMR, CMIM, and JMI. Meanwhile, MMPC and HITON-PC achieve good
performance. From Table 10, we can see that with KNN, MMMB and HITON-MB get
better accuracy than mRMR, CMIM, and JMI.

Tables 11 and 12 report the Kappa statistic of each algorithm using KNN and NBC,
respectively. From Table 11, we can see that MMPC and HITON-PC achieve better Kappa
statistics than the other algorithms except for the madelon dataset. In Table 12, HITON-
MB and MMMB are better than the other algorithms, except for the madelon dataset.
These results are consistent with those indicated by Tables 9 and 10.

Tables 14 shows the running time of each algorithm. Clearly, among all causal feature
selection algorithms, IAMB is the fastest. However, MMPC, HITON-PC, HITON-MB, and
MMMB need to check the subsets of the feature subset currently selected, therefore they
show higher time complexity than IAMB. Moreover, by combining the running time in
Tables 14 and the number of features selected in Table 13, we can see that more features
are selected, more expensive the computations of MMPC, HITON-PC, HITON-MB, and
MMMB are. Regarding the time complexity of the non-causal feature selection methods,
as we discussed at the beginning of Section 5 and in Figure 4, mRMR, CMIM, and JMI use
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Figure 12: Prediction accuracy with different values of ψ using NBC
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Figure 13: Prediction accuracy with different values of ψ using KNN
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Table 9: Prediction accuracy using NBC

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI

mushroom
0.9940
±0.00

0.9940
±0.00

0.9736
±0.01

0.9736
±0.01

0.9995

±0.00
0.9971
±0.00

0.9957
±0.00

0.9904
±0.00

kr-vs-kp
0.9277
±0.02

0.9277
±0.02

0.9315
±0.02

0.9286
±0.02

0.9408

±0.02
0.9074
±0.02

0.9289
±0.02

0.9289
±0.02

madelon
0.5880
±0.03

0.6000
±0.03

0.5880
±0.02

0.5790
±0.02

0.6070
±0.02

0.6195

±0.03
0.6085
±0.03

0.6000
±0.03

gisstee
0.8856
±0.01

0.8883
±0.01

0.8600
±0.01

0.8533
±0.01

0.8703
±0.02

0.8878
±0.01

0.8923

±0.01
0.8735
±0.02

spambase
0.9081
± 0.01

0.9083

±0.01
0.8859
±0.01

0.8828
±0.01

0.8942
±0.01

0.8994
±0.01

0.8869
±0.01

0.8911
±0.01

bankrupty
0.8739
±0.02

0.8775
±0.02

0.8390
±0.02

0.8413
±0.02

0.8935

±0.00
0.8863
±0.07

0.8856
±0.01

0.8856
±0.01

Table 10: Prediction accuracy using KNN

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI

mushroom
1.0000

±0.00
1.0000

±0.00
1.0000

±0.00
1.0000

±0.00
1.000

±0.00
0.9996
±0.00

1.0000

±0.00
1.0000

±0.00

kr-vs-kp
0.8883
±0.02

0.8883
±0.02

0.9684

±0.01
0.9662
±0.01

0.9108
± 0.03

0.9565
±0.01

0.9603
±0.01

0.9603
±0.02

madelon
0.5450
±0.05

0.5355
±0.03

0.5750
±0.05

0.5655
±0.05

0.5775
±0.03

0.5690
±0.03

0.5670
±0.03

0.6235

±0.03

gisstee
0.9667
±0.01

0.9733

±0.01
0.9617
±0.01

0.9617
±0.01

0.8637
±0.01

0.9347
±0.01

0.9360
±0.01

0.9360
±0.01

spambase
0.9183
±0.01

0.9181
±0.01

0.9233
±0.01

0.9242

±0.01
0.9042
±0.01

0.9189
±0.01

0.9145
±0.01

0.9104
±0.01

bankrupty
0.8697
±0.01

0.8722
±0.01

0.8806
±0.01

0.8792
±0.01

0.8840

±0.02
0.8736
±0.02

0.8622
± 0.01

0.8709
±0.01

pairwise comparisons, and thus are faster than all causal feature selection algorithms, and
this is validated by the result in Table 14.

From Table 13, we can see that MMPC and HITON-PC select fewer features than
MMMB and HITON-MB, while IAMB selects the fewest features among the eight algo-
rithms. For the gisstee dataset, MMPC, HITON-PC, MMMB, and HITON-MB select
significantly more features than the other algorithms, since the features in the dataset are
highly correlated. IAMB only selects two features, because the conditioning set is large and
requires large number of data samples, and thus may lead to unreliable many conditional
tests. This also explains why the prediction accuracy of IAMB in Table 10 is significantly
low than the other algorithms.

Finally, Figures 12 and 13 report the predication accuracy of the causal feature selection
methods (with the highest prediction accuracy) in comparison with the three non-causal
feature selection methods, mRMR, CMIM and JMI when the number of features selected
by the three methods are varied. From Figures 12 and 13, we can see that, either with
KNN or NBC, for all datasets except for madelon, causal feature selection method always
outperforms all the three non-causal feature selection methods regardless the number of
selected features specified for these non-causal methods. This result has demonstrated
that causal feature selection methods, when the dataset contains sufficient large number of
samples, the features selected by them would be closer to the optimal feature set, i.e. the
MB of the class attribute.
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Table 11: Kappa statistic using NBC

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMIM JMI

mushroom
0.9873
±0.01

0.9873
±0.01

0.9434
±0.02

0.9434
±0.02

0.9989

±0.00
0.9940
±0.01

0.9910
±0.01

0.9797
±0.01

kr-vs-kp
0.8546
±0.04

0.8546
±0.04

0.8625
±0.03

0.8567
±0.04

0.8814

±0.04
0.8140
±0.04

0.8570
±0.05

0.8570
±0.05

madelon
0.1760
±0.05

0.2000
±0.07

0.1760
±0.04

0.1580
±0.04

0.2140
±0.04

0.2290

±0.06
0.2170
±0.07

0.2000
±0.06

gisstee
0.8042
±0.01

0.8056

±0.01
0.7762
±0.02

0.7723
±0.03

0.7407
±0.03

0.7760
±0.02

0.7850
±0.02

0.7373
±0.03

spambase
0.8055
±0.02

0.8059

±0.02
0.7581
±0.02

0.7515
±0.02

0.7769
±0.02

0.7865
±0.01

0.7590
±0.02

0.7683
±0.03

bankrupty
0.4505

±0.04
0.4502
±0.05

0.4167
±0.05

0.4161
±0.06

0.1551
±0.05

0.3000
±0.05

0.1423
±0.04

0.1398
±0.05

Table 12: Kappa statistic using KNN

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMIM JMI

mushroom
1.00

±0.00
1.00

±0.00
1.00

±0.00
1.00

±0.00
1.00

±0.00
0.9992
±0.00

1.00

±0.00
1.00

±0.00

kr-vs-kp
0.7742
±0.04

0.7742
±0.04

0.9366

±0.02
0.9322
±0.03

0.8205
±0.06

0.9129
±0.02

0.9204
±0.02

0.9204
±0.03

madelon
0.0900
±0.10

0.0710
±0.06

0.1500
±0.07

0.1310
±0.09

0.1550
±0.05

0.1380
±0.06

0.1340
±0.06

0.2470

±0.07

gisstee
0.9333
±0.02

0.9467

±0.02
0.9341
±0.03

0.9356
±0.02

0.7273
±0.03

0.8693
±0.02

0.8720
±0.02

0.8720
±0.02

spambase
0.8281
±0.02

0.8277
±0.02

0.8393
±0.02

0.8410

±0.02
0.7965
±0.02

0.8206
±0.02

0.8172
±0.02

0.8101
±0.02

bankrupty
0.3311
±0.03

0.3344
±0.05

0.3445
±0.05

0.3409
±0.06

0.3883

±0.05
0.3820
±0.04

0.3615
±0.04

0.3138
±0.04

7.2.2 Dataset with high dimensionality and small number of data samples

In this section, we will evaluate the eight feature selection methods using the six datasets
with high dimensionality and relatively small numbers of samples. Table 15 provides a
summary of the datasets. In the following tables reporting the results, “-” denotes that
an algorithm fails to obtain any result with a dataset because of excessive running time.
We will do the same for the experiments in Sections 7.2.3, 7.2.4, and ??. Since mRMR,
CMIM, and JMI use a user-defined parameter ψ to control the size of features selected and
the datasets in Table 15 are high dimensionality, we set ψ to the top 5, 10, 15, · · · , 35, and
40 respectively, then report the results about the feature subset with the highest prediction
accuracy.

In Tables 16 and 17, we can see that using KNN and NBC, the non-causal feature
selection methods, mRMR, CMIM, and JMI, all outperform the causal feature selection
methods, MMPC, HITON-PC, MMMB, HITON-MB, and IAMB. This illustrates that with
datasets of high dimensionality and small sample size, as the number of data instances is not
enough to support causal feature selection algorithms for reliable conditional independence
tests, whereas mRMR, CMIM, and JMI can cope with such datasets. This validates our
analysis of sample requirement in Section 5.

In addition with mRMR, CMIM, and JMI, we can tune the parameter ψ to control
the size of the selected feature set for the trade-off between search efficiency and predic-
tion accuracy. Accordingly, from Tables 18 and 19, mRMR, CMIM, and JMI can get
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Table 13: Number of selected features (“A/B” denotes that “A” represents the number of
features with the highest accuracy corresponding to an algorithm using NBC and “B” is the
number of features with the highest accuracy corresponding to an algorithm using KNN)

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI
mushroom 10 10 20 20 3 5/15 5/5 10/5
kr-vs-kp 8 8 19 19 7 10/25 5/15 5/15
madelon 5 5 6 5 6 25/20 5/15 20/20
gisstee 295 294 1384 1402 2 15/20 25/25 25/20
spambase 24 24 45 45 8 20/25 15/20 10/15
bankrupty 29 28 60 56 9 15/20 5/15 5/25

Table 14: Running time (in seconds)

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI
mushroom 0.89 1.19 42.98 44.12 0.16 0.03 0.01 0.03
kr-vs-kp 0.31 0.33 6.87 6.21 0.43 0.04 0.03 0.07
madelon 0.18 0.21 0.87 0.9448 3.07 0.4 0.03 1.53
gisstee 32,684 65,308 50,929 107,870 12.90 8.38 1.32 52
spambase 35 37 200 203 0.7648 0.09 0.06 0.24
bankrupty 112 95 296 239 2.06 0.31 0.11 1.27

more stable features, as indicated by the better Kappa statistic than MMPC, HITON-
PC, MMMB, HITON-MB, and IAMB. Meanwhile, Table 20 shows that the computational
costs of HITON-PC, MMMB, HITON-MB are very expensive and even prohibitive on some
datasets, such as prostate, dorothea, and leukemia. The explanation is that the class at-
tribute in each of the datasets may have a large PC set or MB set, as shown in Table 21,
then this leads to that MMPC, HITON-PC, MMMB, and HITON-MB needs to check an
exponential number of subsets.

Figures 14 and 15 report the predication accuracy of the causal feature selection methods
(with the highest prediction accuracy) in comparison with the three non-causal feature
selection methods, mRMR, CMIM and JMI when the number of features selected by the
three methods are varied.

From Figures 14 and 15, we can see that, either with KNN or NBC, for all datasets,
the three non-causal feature selection methods always outperforms most of causal feature
selection methods. This result has demonstrated that causal feature selection methods,
when the dataset contains high dimensionality and relatively small number of data samples,
the causal feature selection methods is worse than non-causal feature selection methods.

The results in Figures 12, 13, 14, and 15 validate that on the one hand, with a large
dataset with sufficient number of samples, causal feature selection methods tend to find an
exact MB; on the other hand, non-causal feature selection methods can deal with datasets
with a small number of data samples and high-dimensionality better.

7.2.3 Dataset with multiple classes

In this section, we will evaluate the eight feature selection methods using the seven datasets
with multiple classes. Table 15 provides a summary of the datasets. As for mRMR, CMIM,
and JMI, we set ψ to the top 5, 10, 15, 20, and 25, respectively, then report the results
about the feature subset with the highest prediction accuracy.
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Table 15: Dataset with high dimensionality and small data sample sizes

Dataset Number of features Number of instances Number of classes
prostate 6,033 102 2
dexter 20,000 300 2
arcene 10,000 100 2
dorothea 100,000 800 2
leukemia 7,070 72 2
breast-cancer 17817 286 2

Table 16: Prediction accuracy using NBC

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI

prostate
0.9100
±0.10

0.9300
±0.10

0.9013
±0.10

0.8667
±0.10

0.9100
±0.12

0.9500

±0.09
0.9400
±0.08

0.9500

±0.09

dexter
0.8567
±0.06

0.8567
±0.06

0.8533
±0.06

0.8667
±0.06

0.7900
±0.04

0.9167
±0.04

0.9200

±0.05
0.8933
±0.06

arcene
0.7136
±0.17

0.7527
±0.16

0.7036
±0.16

0.7005
±0.11

0.7305
±0.16

0.7627
±0.12

0.7718

±0.13
0.6896
± 0.10

dorothea
0.9287
±0.02

0.9325
±0.02

- -
0.9352
±0.03

0.9426
±0.02

0.9463

±0.02
0.9376
±0.02

leukemia
0.9304
±0.07

- - -
0.9446
±0.10

0.9714
±0.09

0.9714
±0.06

0.9857

±0.05

breast-cancer
0.8360
±0.05

0.7969
±0.10

0.8395
±0.05

0.7900
±0.10

0.8209
±0.07

0.8778

±0.03
0.8778

±0.04
0.8740
±0.04

Table 17: Prediction accuracy using KNN

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI

prostate
0.8909
±0.10

0.9000
±0.10

0.8710
±0.10

0.9030
±0.10

0.9400
±0.11

0.9500

±0.09
0.9500

±0.07
0.9500

±0.09

dexter
0.7900
±0.06

0.7733
±0.08

0.7900
±0.06

0.7767
±0.08

0.7367
±0.08

0.8833
±0.06

0.8833
±0.06

0.8900

±0.05

arcene
0.6623
±0.17

0.6410
±0.15

0.6523
±0.18

0.6410
±0.15

0.7094
±0.16

0.7616
±0.09

0.8017

±0.09
0.7796
±0.08

dorothea
0.9099
±0.03

0.9212
±0.03

- -
0.9176
±0.04

0.9313
±0.02

0.9263
±0.01

0.9363

±0.02

leukemia
0.9714

±0.06
- - -

0.9446
±0.10

0.9714

±0.06
0.9714

±0.06
0.9714

±0.06

breast-cancer
0.8217
±0.09

0.8005
±0.06

0.8184
±0.06

0.7901
±0.07

0.8070
±0.09

0.8739
±0.05

0.8671
±0.04

0.8776

±0.05

Table 18: Kappa statistic using NBC

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMIM JMI

prostate
0.8200
±0.20

0.8600
±0.19

0.7920
±0.25

0.7805
±0.26

0.8200
±0.24

0.9000
±0.17

0.8800
±0.17

0.9000
±0.17

dexter
0.7133
±0.11

0.7133
±0.11

0.7122
±0.12

0.7333
±0.13

0.5800
±0.09

0.8333
±0.07

0.8400
±0.10

0.7867
±0.13

arcene
0.4128
±0.36

0.4880
±0.34

0.4104
±0.31

0.3929
±0.24

0.4562
±0.36

0.5204
±0.23

0.5356
±0.29

0.3806
±0.20

dorothea
0.4809
±0.21

0.5094
±0.22

- -
0.6092
±0.16

0.6466
±0.15

0.6721
±0.13

0.6279
±0.14

leukemia
0.9696
±0.10

- - -
0.8907
±0.19

0.9417
±0.18

0.9416
±0.12

0.9720
±0.09

breast-cancer
0.5754
±0.12

0.4854
±0.28

0.5869
±0.12

0.4649
±0.28

0.5440
±0.18

0.6985
±0.07

0.6993
±0.09

0.6832
±0.12
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Figure 14: Prediction accuracy with different values ofψ using NBC

Table 19: Kappa statistic using KNN

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMIM JMI

prostate
0.7814
±0.20

0.8000
±0.19

0.7814
±0.28

0.8045
±0.27

0.8800
±0.22

0.9000
±0.17

0.9000
±0.14

0.9000
±0.17

dexter
0.5800
±0.13

0.5467
±0.16

0.5800
±0.13

0.5533
±0.15

0.4733
±0.16

0.7667
±0.13

0.7667
±0.13

0.7800
±0.10

arcene
0.2986
±0.36

0.2392
±0.32

0.2814
±0.40

0.2392
±0.32

0.4102
±0.36

0.5061
±0.20

0.6026
±0.18

0.5473
±0.19

dorothea
0.4104
±0.25

0.5149
±0.20

- -
0.4761
±0.26

0.6466
±0.15

0.5070
±0.14

0.5775
±0.14

leukemia
0.9284
±0.15

- - -
0.8907
±0.19

0.9416
±0.12

0.9416
±0.12

0.9416
±0.12

breast-cancer
0.5125
±0.22

0.4853
±0.15

0.5176
±0.16

0.4512
±0.21

0.5151
±0.20

0.6718
±0.14

0.6603
±0.10

0.6770
±0.15

Table 20: Running time (in seconds)

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI
prostate 2 2 41,568 54,315 6.37 2.4 0.09 4
dexter 4 3 31 19 54 16 1 29
arcene 3 3 16 15 20 1 0.3 19
dorothea 59 705 - - 594 4 4 59
leukemia 10,033 - - - 5 2 0.3 3
breast-cancer 9 11 45 43 43.23 17 0.7 31

47



5 10 15 20 25 30 35 40
0.86

0.88

0.9

0.92

0.94

0.96

Number of selected features (k)

Pr
ed

ic
tio

n 
ac

cu
ra

cy

 

 

IAMB

mRMR

CMIM

JMI

5 10 15 20 25 30 35 40
0.7

0.75

0.8

0.85

Number of selected features (k)

Pr
ed

ic
tio

n 
ac

cu
ra

cy

 

 

MMMB

mRMR

CMIM

JMI

5 10 15 20 25 30 35 40
0.65

0.7

0.75

0.8

0.85

Number of selected features (k)

Pr
ed

ic
tio

n 
ac

cu
ra

cy

 

 

IAMB

mRMR

CMIM

JMI

dexterprostate arcene

5 10 15 20 25 30 35 40
0.9

0.91

0.92

0.93

0.94

0.95

0.96

Number of selected features (k)

Pr
ed

ic
tio

n 
ac

cu
ra

cy

 

 

HITON−PC

mRMR

CMIM

JMI

5 10 15 20 25 30 35 40
0.9

0.92

0.94

0.96

0.98

1

Number of selected features (k)

Pr
ed

ic
tio

n 
ac

cu
ra

cy

 

 

MMPC

mRMR

CMIM

JMI

5 10 15 20 25 30 35 40

0.75

0.8

0.85

0.9

Number of selected features (k)

Pr
ed

ic
tio

n 
ac

cu
ra

cy

 

 

MMPC

mRMR

CMIM

JMI

dorothea
leukemia breast−cancer

Figure 15: Prediction accuracy with different values of ψ using KNN

Table 21: Number of selected features

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI
prostate 9 8 175 98 2 5/20 15/5 20/20
dexter 8 8 11 10 4 25/20 25/20 25/25
arcene 4 4 5 6 3 5/10 15/20 35/35
dorothea 24 28 - - 6 15/15 40/15 10/10
leukemia 1014 - - - 1 10/20 20/10 10/10
breast-cancer 8 6 10 7 4 40/35 40/25 35/40

From Tables 23 and 24, we can see that given a dataset with a small number of features
and a large number of data instances, even if the dataset with a large number of classes,
MMPC, HITON-PC, MMMB, and HITOM-MB have almost the same prediction accuracy
as three non-causal feature selection, and even better than them on some datasets, such
as the landsat dataset with six classes. Meanwhile, Tables 25 and 26 shows that MMPC,
HITON-PC, MMMB, HITOM-MB, and IAMB achieve better Kappa statitic on the connect-
4, splice, waveform, and landsat datasets, using both KNN and NBC.

However, given a dataset with a very small number of data instances and a larger
number of classes, MMPC, HITON-PC, MMMB, HITOM-MB, and IAMB fail to select
any features due to data inefficiency, while mRMR, CMIM, and JMI seem to work well,
especially CMIM. Tables 27 and 28 report the number of selected features and running
time of each algorithm. We can see that as expected, mRMR, CMIM, and JMI are faster
than MMPC, HITON-PC, MMMB, HITOM-MB, and IAMB.

Figures 16 and 17 report the predication accuracy of the causal feature selection methods
(with the highest prediction accuracy) in comparison with the three non-causal feature
selection methods, mRMR, CMIM and JMI when the number of features selected by the
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Table 22: Dataset with multiple classes

Dataset Number of features Number of instances Number of classes
connect- 4 42 67,557 3
splice 60 3,175 3
waveform 40 5,000 3
landsat 36 6,435 6
lung 325 73 7
lymph 4,026 96 9
NCI9 9,712 60 9

Table 23: Prediction accuracy using NBC

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI

connect-4
0.7225
±0.00

0.7225
±0.00

0.7116
± 0.00

0.7116
±0.00

0.6829
±0.01

0.7059
±0.00

0.7233

±0.00
0.7208
±0.00

splice
0.9619
±0.01

0.9619
±0.01

0.9597
±0.01

0.9594
±0.01

0.8003
±0.02

0.9628

±0.01
0.9613
±0.01

0.9631
±0.01

waveform
0.7910
±0.02

0.7910
±0.02

0.7910
±0.02

0.7910
±0.02

0.7170
±0.02

0.8008

±0.02
0.8004
±0.02

0.7934
±0.02

landsat
0.7953

±0.01
0.7953

±0.01
0.7953

±0.01
0.7953

±0.01
0.7829
±0.01

0.7841
±0.01

0.7885
±0.02

0.7918
±0.02

lung - - - - -
0.8363
±0.17

0.8488

±0.15
0.8488

±0.11

lymph - - - - -
0.8466
±0.12

0.9094

±0.12
0.8488
±0.12

NCI9 - - - - -
0.6708

±0.20
0.6494
±0.30

0.5940
±0.19

three methods are varied. From 16 and 17, we can see that, either with KNN or NBC, given
a dataset with multiple classes, if the dataset has a large number of data samples, causal
feature selection can work well, and they perform better than non-causal feature selection
on most of the datasets. However, if the dataset has not enough data samples, causal feature
selection fails, while non-causal feature selection can work well on the dataset.

7.2.4 Dataset with imbalanced classes

In this section, we use six class-imbalanced datasets in Table 29 to examine the performance
of causal and non-causal feature selection methods. For mRMR, CMIM, and JMI, we set
ψ to the top 5, 10, 15, · · · , 25, and 30, then select the feature subset with the highest
prediction accuracy as the reporting result.
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Figure 16: AUC with different values of ψ using NBC
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Table 24: Prediction accuracy using KNN

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI

connect-4
0.6673
±0.01

0.6673
±0.01

0.6620
±0.01

0.6592
±0.01

0.6397
±0.01

0.6601
±0.01

0.7217

±0.00
0.7139
±0.00

splice
0.7338
±0.02

0.7338
±0.02

0.7181
±0.02

0.7190
±0.02

0.7770
±0.01

0.8771

±0.02
0.8771

±0.02
0.8771
±0.02

waveform
0.8022
±0.02

0.8022
±0.02

0.8022
±0.02

0.8022
±0.02

0.7028
±0.02

0.8032

±0.02
0.8032

±0.02
0.8032

±0.02

landsat
0.8696

±0.01
0.8696

±0.01
0.8696

±0.01
0.8696

±0.01
0.7433
±0.01

0.8605
±0.01

0.8589
±0.01

0.8614
±0.01

lung - - - - -
0.8524
±0.12

0.8649

±0.08
0.8464
±0.11

lymph - - - - -
0.9269

±0.07
0.9176
±0.07

0.9053
±0.06

NCI9 - - - - -
0.5875

±0.22
0.5494
±0.18

0.5684
±0.15
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Figure 17: AUC with different values of ψ using KNN

From Tables 30 and 31, we can see that all the eight algorithms get good prediction
accuracy, but each of them achieves a very low AUC, as seen from Tables 32 and 33. In
addition, on both prediction accuracy and AUC, the five causal feature selection methods
and the three non-causal feature selection algorithms achieve almost the same performance.

Table 25: Kappa statistic using NBC

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMIM JMI

connect-4
0.3299

±0.01
0.3299

±0.01
0.3125
±0.02

0.3125
±0.02

0.1804
±0.02

0.2701
±0.01

0.3176
±0.00

0.3082
±0.01

splice
0.9382
±0.01

0.9382
±0.01

0.9346
±0.02

0.9341
±0.02

0.6841
±0.03

0.9398
±0.01

0.9372
±0.01

0.9403

±0.01

waveform
0.6870
±0.02

0.6870
±0.02

0.6870
±0.02

0.6870
±0.02

0.5758
±0.03

0.7015
±0.02

0.7009

±0.02
0.6906
±0.02

landsat
0.7494

±0.01
0.7494

±0.01
0.7494

±0.01
0.7494

±0.01
0.7298
±0.02

0.7349
±0.02

0.7402
±0.02

0.7444
±0.02

lung - - - - -
0.7950
±0.21

0.8082
±0.19

0.8086

±0.14

lymph - - - - -
0.7885
±0.16

0.8790

±0.15
0.7969
±0.16

NCI9 - - - - -
0.6223

±0.20
0.6058
±0.28

0.5337
±0.22
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Table 26: Kappa statistic uisng KNN

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMIM JMI

connect-4
0.3058
±0.01

0.3058
±0.01

0.2863
±0.01

0.2863
±0.01

0.2751
±0.04

0.2560
±0.01

0.4052

±0.01
0.3943
±0.01

splice
0.5954
±0.02

0.5954
±0.02

0.5674
±0.04

0.5703
±0.04

0.6456
±0.02

0.8027

±0.03
0.8027

±0.03
0.8027

±0.03

waveform
0.7033
±0.03

0.7033
±0.03

0.7033
±0.03

0.7033
±0.03

0.5541
±0.03

0.7048

±0.02
0.7048

±0.02
0.7048

±0.02

landsat
0.8387

±0.01
0.8387

±0.01
0.8387

±0.01
0.8387

±0.01
0.6772
±0.03

0.8270
±0.01

0.8250
±0.01

0.8282
±0.02

lung - - - - -
0.8123
±0.15

0.8273

±0.11
0.8017
±0.14

lymph - - - - -
0.8972

±0.10
0.8853
±0.10

0.8662
±0.09

NCI9 - - - - -
0.5190
±0.25

0.4856
±0.18

0.5087

±0.14

Table 27: Number of selected features

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI
connect-4 37 37 42 42 7 25/25 25/20 20/15
splice 28 28 50 49 3 25/5 25/5 20/5
waveform 17 17 17 17 3 10/15 10/15 15/15
landsat 36 36 36 36 3 25/25 25/25 25/25
lung - - - - - 40/35 40/30 40/35
lymph - - - - - 35/40 25/35 20/40
NCI9 - - - - - 20/30 10/25 40/40

Table 28: Running time (in seconds)

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI
connect-4 2679 2949 23564 23795 7.85 0.76 1.4 2.33
splice 12 14 34 34 0.30 0.08 0.08 0.25
waveform 4 4 16 16 0.2917 0.05 0.03 0.17
landsat 32 43 798 1019 0.2727 0.08 0.14 0.26
lung - - - - - 0.5 0.06 0.7
lymph - - - - - 6 00.3 10
NCI9 - - - - - 10 0.4 22
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Table 29: Class-imbalanced datasets

Dataset Number of features Number of instances Number of classes ratio
hiva 1,617 4,229 2 3.52%
ohsumed 14,373 5,000 2 5.56%
acpj 28,228 15,779 2 1.3%
sido0 4,932 12,678 2 3.54%
thrombin 13,9351 2,543 2 7.55%
infant 86 5,339 2 6.31%

Table 30: Prediction accuracy using NBC

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI

hiva
0.9660
±0.01

0.9674

±0.01
0.9660
±0.01

0.9674

±0.01
0.9657
±0.01

0.9565
±0.01

0.9409
±0.01

0.9470
±0.01

ohsumed
0.9506
±0.01

0.9514
±0.01

0.9486
±0.01

0.9486
±0.01

0.9480
±0.00

0.9510

±0.01
0.9490
±0.01

0.9490
±0.01

acpj
0.9527
±0.01

0.9528
±0.01

- -
0.9612
±0.00

0.9625

±0.00
0.9364
±0.00

0.9271
±0.00

sido0
0.9535
±0.01

0.9257
±0.02

0.9391
±0.01

0.9076
±0.01

0.9584

±0.01
0.9144
±0.01

0.9106
±0.01

0.9018
±0.01

thrombin
0.9218
±0.02

0.9029
±0.03

0.8746
±0.02

0.8482
±0.02

0.9265
±0.02

0.9426

±0.01
0.8883
±0.02

0.9080
±0.02

infant
0.9522
±0.01

0.9518
±0.01

0.9507
±0.01

0.9518
±0.01

0.9530

±0.01
0.9417
±0.01

0.9427
±0.01

0.9378
±0.01

At the same time, as see from Tables 34 and 35, all the eight algorithms do not achieve
better Kappa statistic regardless of using both KNN and NBC.

Tables 36 and 37 report the number of selected features and running time of each algo-
rithm. We can see that MMMB and HITON-MB are the slowest algorithm among the nine
algorithms under comparison. Thus, we can conclude that both the causal feature selec-
tion methods and non-causal feature selection algorithms cannot deal with class-imbalanced
datasets well.

From Figures 18 and 19, when the number of selected features by mRMR, CMIM and
JMI are varied, we can see that, either with KNN or NBC, given a class-imbalanced dataset,
both non-causal feature selection and causal feature selection are not able to deal with the
dataset well.

8. Conclusion

In this paper, we have proposed a unified view to fill in the gap in the research of the
relation between causal and non-causal feature selection methods. With this view, we have
analyzed the mechanisms of both types of feature selection methods and have shown that
both major approaches to feature selection use different strategies to discover the MB of
a class attribute under different Bayesian network structural assumptions. In theory, the
feature sets obtained by causal feature selection methods are closer to the MB of the class
attribute than non-causal feature selection methods, while non-causal methods are more
computationally efficient and need fewer data samples than causal methods. With this
view, we have provided causal interpretations to the output of non-causal feature selection
methods and analyzed the error bounds of causal and non-causal methods. In addition, we
have conducted extensive experiments to validate our findings in the paper.
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Table 31: Prediction accuracy using KNN

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI

hiva
0.9650
±0.01

0.9655
±0.01

0.9652
±0.01

0.9655
±0.01

0.9664

±0.00
0.9643
±0.01

0.9631
±0.01

0.9650
±0.00

ohsumed
0.9450
±0.01

0.9442
±0.01

0.9456

±0.00
0.9452
±0.00

0.9450
±0.00

0.9400
±0.01

0.9388
±0.01

0.9388
±0.01

acpj
0.9845
±0.00

0.9850
±0.00

- -
0.9839
±0.00

0.9867

±0.02
0.9860
±0.02

0.9856
±0.00

sido0
0.9683
±0.00

0.9643
±0.01

0.9696

±0.00
0.9682
±0.00

0.9653
±0.00

0.9669
±0.00

0.9677
±0.00

0.9549
±0.02

thrombin
0.9481
±0.01

0.9465
±0.01

0.9459
±0.02

0.9465
±0.01

0.9406
±0.01

0.9505

±0.01
0.9481
±0.01

0.9489
±0.01

infant
0.9533
±0.01

0.9548

±0.01
0.9548

±0.01
0.9530
±0.01

0.9509
±0.01

0.9545
±0.00

0.9532
±0.01

0.9526
±0.00

From the theoretical and experimental analysis in the paper, we can find that both
types of feature selection still face many changes as listed below and we hope this paper can
stimulate the interest of researchers in machine learning to develop new methods to address
these challenges.

• Small sample size. Causal feature selection cannot deal with a dataset with high
dimensionality and small sample size. Then how can we leverage non-causal feature
selection to help causal feature selection to improve the computational performance
and accuracy of causal feature selection methods for large dimensional problems and
small sample sizes?

• Imbalanced classes. The majority of existing causal and non-causal feature selection
methods cannot deal with datasets with imbalanced classes, which exist in many
real-world applications. It is important to develop new feature selection methods to
address this problem.

• Large-sized MBs. A large MB makes causal feature selection methods suffer from the
data-inefficient or time-inefficient problem, Thus, it is essential for big data analysts to
develop efficient causal feature selection methods for dealing with large MB containing
hundreds of features.

• Selection of proper parameter values. It is a hard problem for non-causal feature
selection to determine a suitable value of ψ. How do both types of feature selection
methods benefit each other to solve the problem?

• Efficiency. Most local-to-global Bayesian network learning methods employ causal
feature selection methods to learn MBs for constructing a causal structure skeleton.
Can we leverage non-casual feature selection methods to improve the computational
performance of local-to-global learning methods with theoretical guarantees?
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Table 32: AUC using NBC

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI

hiva
0.5779
±0.05

0.5754
±0.05

0.5843
±0.07

0.5754
±0.05

0.5617
±0.03

0.6797

±0.05
0.6523
±0.05

0.6587
±0.07

ohsumed
0.6522
±0.04

0.6560
±0.05

0.6629
±0.05

0.6613
±0.05

0.5830
±0.03

0.7032
±0.05

0.6904
±0.05

0.7105

±0.04

acpj
0.7407
±0.06

0.7432
±0.05

- -
0.7428
±0.06

0.7480
±0.05

0.8098
±0.07

0.8238

±0.05

sido0
0.7417
±0.03

0.8198
±0.04

0.7797
±0.04

0.8796
±0.04

0.7046
±0.03

0.8607
±0.02

0.8672
±0.03

0.8958

±0.02

thrombin
0.8067
±0.06

0.8063
±0.07

0.8087
±0.06

0.7983
±0.06

0.7758
±0.08

0.8102
±0.09

0.8319

±0.07
0.8160
±0.08

infant
0.7336
±0.05

0.7334
±0.05

0.7383
±0.05

0.7334
±0.05

0.7299
±0.05

0.7474
±0.04

0.7464
±0.04

0.7480

±0.04

Table 33: AUC using KNN

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI

hiva
0.5387
±0.04

0.5453
±0.06

0.5420
±0.04

0.5453
±0.06

0.5651
±0.03

0.5768
±0.04

0.5895

±0.04
0.5582
±0.04

ohsumed
0.6055
±0.05

0.6101
±0.05

0.5754
±0.03

0.5750
±0.03

0.5932
±0.05

0.6218
±0.06

0.6225

±0.05
0.6225

±0.05

acpj
0.5298
±0.02

0.5301
±0.02

- -
0.5490
±0.02

0.5648

±0.06
0.5596
±0.03

0.5622
±0.04

sido0
0.6618
±0.03

0.6534
±0.04

0.6879

±0.03
0.6873
±0.02

0.6443
±0.03

0.6483
±0.03

0.6563
±0.04

0.6648
±0.12

thrombin
0.7316
±0.08

0.7289
±0.06

0.7129
±0.08

0.7481
±0.08

0.7018
±0.08

0.7576

±0.05
0.7465
±0.09

0.7471
±0.07

infant
0.6595
±0.04

0.6797

±0.04
0.6797

±0.04
0.6551
±0.04

0.6360
±0.05

0.6739
±0.03

0.6734
±0.04

0.6729
±0.03
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Figure 18: Prediction accuracy with different values of ψ using NBC
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Figure 19: Prediction accuracy with different values of ψ using KNN

Table 34: Kappa statistic using NBC

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMIM JMI

hiva
0.2311
±0.12

0.2295
±0.12

0.2397
±0.15

0.2295
±0.12

0.1948
±0.09

0.3602

±0.10
0.2601
±0.08

0.2941
±0.14

ohsumed
0.3905
±0.10

0.3992
±0.11

0.3974
±0.10

0.3936
±0.11

0.2464
±0.08

0.4626
±0.09

0.4370
±0.11

0.4642

±0.09

acpj
0.2082
±0.04

0.2105
±0.04

- -
0.2427
±0.06

0.2517

±0.04
0.1995
±0.04

0.1853
±0.02

sido0
0.4176

±0.05
0.3763
±0.05

0.3906
±0.05

0.3630
±0.03

0.4125
±0.05

0.3684
±0.02

0.3636
±0.04

0.3584
±0.03

thrombin
0.5256
±0.10

0.4762
±0.12

0.4862
±0.09

0.3543
±0.07

0.5114
±0.12

0.5935

±0.12
0.4533
±0.08

0.4870
±0.09

infant
0.5329

±0.09
0.5303
±0.08

0.5311
±0.0.09

0.5306
±0.08

0.5329

±0.08
0.5027
±0.07

0.5055
±0.09

0.4867
±0.08

Table 35: Kappa statistic using KNN

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMIM JMI

hiva
0.1234
±0.12

0.1373
±0.16

0.1308
±0.13

0.1447
±0.16

0.2022
±0.10

0.2236
±0.11

0.2448

±0.10
0.1823
±0.13

ohsumed
0.2852
±0.13

0.2922
±0.12

0.2227
±0.07

0.2210
±0.06

0.2553
±0.10

0.2881
±0.10

0.2892

±0.10
0.2892

±0.10

acpj
0.0907
±0.05

0.0928
±0.05

- -
0.1378
±0.07

0.1889

±0.14
0.1770
±0.08

0.1744
±0.09

sido0
0.4119
±0.06

0.3703
±0.10

0.4582

±0.07
0.4481
±0.06

0.3628
±0.06

0.3807
±0.08

0.3970
±0.08

0.3215
±0.07

thrombin
0.5459
±0.14

0.5395
±0.12

0.5436
±0.13

0.5551
±0.12

0.4721
±0.15

0.5896

±0.09
0.5584
±0.15

0.5674
±0.14

infant
0.4433
±0.08

0.4344
±0.09

0.4824

±0.09
0.4385
±0.11

0.3889
±0.11

0.4726
±0.07

0.4650
±0.09

0.4621
±0.05
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Table 36: Number of selected features

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI
hiva 7 6 9 7 8 30/30 30/25 20/15
ohsumed 26 26 38 37 8 30/10 20/5 30/5
acpj 16 16 - - 10 30/15 30/5 20/5
sido0 16 17 62 68 10 30/30 30/30 5/25
thrombin 15 11 38 42 7 30 /30 25/30 30/25
infant 5 5 7 6 3 20/25 10/30 25/10

Table 37: Running time (in seconds)

Dataset MMPC HITON-PC MMMB HITON-MB IAMB mRMR CMI JMI
hiva 2 2 40 15 13 1 1 4
ohsumed 61 54 563 577 89 32 2 50
acpj 29 3 - - 905 136 9 175
sido0 33 77 8,928 8,669 206 5 2 13
thrombin 544 133 23,456 17,615 1429 241 11 291
infant 1 1 1 1 0.5 0.1 0.01 0.1
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