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In this paper, we test machine learning methods for results merging in patent document retrieval. Specifically, we examine random 

forest, decision tree, support vector machine (SVR), linear regression, polynomial regression, and deep neural networks (DNNs). We use 

two different methods for results merging, the multiple models (MM) method and the global model method (GM). Furthermore, we 

examine whether the ranking of the document's scores is linearly explainable. The CLEF-IP 2011 standard test collection was used in our 

experiments. The random forest produces the best results in comparison to all other models, and it fits the data better than linear and 

polynomial approaches. 
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1 INTRODUCTION 

Patent documents are distributed in different controlled datasets, patent offices, and other resources that typically must 

be accessed using different patent search systems and online services e.g. google patents, espacenet, and many more. In 

some patent search tasks, and for several legal and other reasons, it is crucially important to search in many if possible all 

relevant resources to increase coverage. To that end, Distributed Information Retrieval (DIR) methods and the Federated 

Search (FS) approach aim to provide a solution to this problem. DIR as a process can be divided into three different sub-

processes. Source representation, source selection, and results merging. The focus of this paper is on the last part. 

Research has shown that results merging is a very important phase in the DIR process [2] [3] [4] [5], and even if the other 

sub-processes work satisfactorily if the results merging phase does not operate effectively, the effectiveness of the final 

results will deteriorate.  

    Results merging problems were studied by IR research many years ago. Many methods have been developed for results 

merging but not specifically for the patent industry. The important difference is that patent search many times is recall-

oriented since a single missed prior-art for example can cause important economic loss. In terms of Machine Learning 

(ML), usually linear regression has been used to solve the results merging problem [4]. It is important to examine other 

ML models than linear regression to assess if they can solve the results merging problem better, especially in the patent 

industry. Our work presented in this paper addresses this need therefore we propose and test new ML methods for 

results merging. We used machine learning models to fit the data for results merging and compare the results with other 

traditional approaches. Second, we test our models in different environments and we investigate the relation of document 

scores in a ranked list of documents.   

2 RELATED WORK 

Patent retrieval is a subfield of information retrieval. Whilst information retrieval has progressed a lot in terms of 

research and development, patent retrieval is a more traditional and complex, therefore more challenging area [6]. The 

results merging problem was studied as a general DIR problem and not in the specific context of the patent domain. The 

work that has been done by Voorhes, Gupta, and Johnson-laird in [7] was one of the first to conduct experiments in results 

merging. After that many algorithms appeared in research. Taylor, Radlinski, and Shokouhi in [8] published a patent for 

results merging using a machine learning process. Another patent published about merging results lists according to 

scores assigned to the lists and the documents by Mao et al. in [9]. 

    The collection inference retrieval network CORI [3] uses weighted score merging and it is considered as a very stable 

method performing very good or state-of-the-art results in many experiments. CORI is a linear combination of the source 

selection score and the score of the document returned by the collection and uses a simple heuristic formula to normalize 
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the collection-specific scores and transform them into global comparable scores able to be used to produce a single 

merged list. 

    Another effective method is the semi-supervised learning algorithm (SSL) [5]. This method uses linear regression to 

estimate using local collection-specific scores the global comparable scores. For that purpose, their algorithm is based on 

the common documents returned from each remote collection and a centralized sample index consisting of sample 

documents from all the different collections.  

   SAFE (sample-agglomerate fitting estimate)  is a more recent algorithm that is designed to function with minimum 

cooperation between the broker and the collections [10]. SAFE is based on the principle that for a given query, the results 

of the sampled documents are a sub-ranking of the original collection, so curve fitting to this sub-ranking can be used to 

estimate the original scores.  

   Lee et al. in [11] proposed an optimization framework for results merging. They used λ-merge method [12] and they 

extended it for implementing results merging by adding the extra component of the vertical quality (resource quality) in 

this framework.   

3 METHODOLOGY 

In the experiments that we report in this paper, we used the CLEF-IP 2011 standard test. To run the experiments in a 

federated environment, we create an artificial federated environment using the intellectually assigned patent 

classification codes (IPC/CPC). Similarly to the work done by Salampasis, Paltoglou, and Giahanou [17], we split the 

collection based on the IPC codes at level 3 (subclass). The IPC/CPC system is an internationally accepted standard 

taxonomy for classifying, sorting, and organizing patent documents [18]. The split 3 has 632 different IPC codes so this 

results in 632  indexes or resources that they can be searched simultaneously. To create the indices we used anserini, a 

toolkit for information retrieval research which is based on Lucene [19] 

    There were 3973 topics at the CLEF-IP 2011 campaign which were in three languages (English, German, French). We 

use the first 300 English topics to create the queries. Each query was no more than 1000 words coming from the title, 

abstract, first 500 words of the description, and claims. 

    We test the algorithms both in cooperative settings where documents' scores and collection statistics like term 

frequencies etc. from remote collections are available and uncooperative settings which is the case most of the time in 

real world, and the returned documents are only ranked lists of documents without scores. We solve the lack of relevancy 

scores to the documents by assigning artificial scores in the documents according to their ranking and then multiplying 

the documents artificial score with the score the resource has taken at the source selection phase. We assign 0.6 to the 

first document and descending by even increments, we assign 0.4 to the last. We chose these scores as they have been 

shown to work well in the CORI algorithm [22]. Then we multiplied all these scores with the respective source selection 

score that was assigned to the specific source. 

    The algorithm we used for all source selection processes is CORI. Another parameter that is considered is the total 

number of remote collections to route the query. In other words, how many of the 632 available collections will be 

requested to return their search result to be considered in the merging phase. After several tests, we chose 20. 

3.1 Results Merging 

For merging the results the algorithms take into account the overlapping documents between the retrieved documents 

from each collection and the documents retrieved from the centralized index. The centralized index is created as follows. 

We used query-based sampling [21], a method used for creating representations of collections that can be used to 

approximate the statistics of federated collections for uncooperative environments where statistics of collections are not 

available. We created representation sets of all the collections i.e. 632 and we created a centralized index consisting of all 

the sampling documents. Each representation set consisting of around 300 documents. We used all the sampling 

documents from all the collections and we created a centralized index.  

    The overlapping documents are the common documents between the returned documents from the collections and the 

returned documents from the centralized index. The overlapping documents are used to train the models to convert local 
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collection-specific scores to the global scores that the centralized index would have assigned. The scores from the 

centralized index are comparable as the samples of all the collections co-exist in it. In other words, the models are trained 

to convert local collection-specific and non-comparable scores to global comparable scores so the final merging can be 

finally applied. 

3.2  Machine Learning Methods 

We used two different methods for merging the results. In the first set of experiments, we used the overlapping 

documents between the collections and the centralized index and we train one model for each collection. Each model was 

then used to calculate the global relevance scores for the rest of the non-common documents returned by the collection.  

    In the second set of experiments, we used global machine learning model for all the collections per query. These Global 

models (GM) take as input the returned documents' scores from all the collections. For example, if we choose to submit 

the query to ten sources, the algorithm's inputs are ten and they are the documents' scores returned from the sources if 

the document returned by the source, otherwise it is zero. The main motivation to implement these models in that way is 

because when a document is returned by more than one collection, this information will be taken into consideration.  

4 RESULTS 

We ran the experiment two times in a cooperative and uncooperative environment as already mentioned. First, we 

assume a cooperative environment where document scores returned. Second, we assign artificial scores in conjunction 

with the source selection score. At each experiment, we compare the global models, multiple models, and between them. 

Also, we implement CORI and SSL two state-of-the-art methods to examine the results merging efficiency.  

4.1 Cooperative environment 

We first assume a cooperative environment so we used the scores as returned from the collections. For the multiple 

models (MM), Table 1 summarizes the results. The best performance, in general, comes from the multiple models. The 

random forest gave the best results. We got a similar performance from the decision tree as well. Both the random forest 

and decision tree also overcame the two state-of-the-art algorithms SSL and CORI at all three metrics. Furthermore, SSL 

performs better than polynomial regression. We created a polynomial regression based on SSL. We used the linear 

regression model and we add the polynomial features 𝑥2 and 𝑥3. This suggests that linear mapping to the ranking scores 

is better than polynomial mapping. 

    For the global models, the deep neural network was created with 4 hidden layers with [632,300,150,50] neurons at 

each hidden layer respectively. The activation function was "relu" and we used Adam optimizer with a learning rate of 

0.01. The loss function we used was the mean squared error. The best performance from global models in terms of MAP 

was from the deep neural network. Random forest gave the best PRESS and RECALL scores. Except for the support vector 

machine all the global models gave better PRESS and RECALL results than CORI. This is important because the patent 

industry is recall-oriented as missing patent documents can have a huge economic impact. SSL performed better than all 

global models. SVR performed well in the MM, here in the GM seems to perform quite badly compared to other models. 

This might have to do with the function of SVR when it split clusters of data in conjunction with the big differences in 

document scores that different sources might return. Additionally, SSL performed better than CORI. The centralized 

approach gave the best MAP than all DIR methods. 

4.2 Uncooperative Environment 

For the multiple models, we used random forest, SVR, decision tree, and polynomial regression. The best performance 

algorithm at all three metrics was again the MM random forest following by the MM decision tree. From the multiple 

models, random forest, decision tree, and SVR overcame both CORI and SSL in PRESS and RECALL score. SSL performed 

better than both polynomial regressions so again the linear mapping is better than polynomial mapping. 

    For the global models, the best performing algorithm here is the random forest in terms of MAP and the linear 

regression in terms of PRESS and RECALL. The deep neural network was very close to the previous two. Both CORI and 
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SSL performed better than all global models in terms of MAP but random forest, linear regression, decision tree, and the 

deep neural network has greater PRESS and RECALL scores. 

    Looking at CORI and SSL it can be observed that CORI overcame SSL at MAP. This is an interesting finding as it suggests 

that CORI is more robust than SSL in terms of MAP when assigning local scores. In the cooperative environment, SSL 

performs better than CORI and this is consistent with other findings reported in the literature [5]. Comparing all the 

models, MM random forest is the best performing model following by the decision tree. Also, random forest performed 

better than the centralized approach. Table 1 summarizes the results. 

Table 1: Scores of models in both environments 

 Cooperative Environment Uncooperative environment 

      MAP 

     @100 

 PRESS 

     @100 

     RECALL 

@100 

 MAP 

  @100 

  PRESS 

@100 

    RECALL 

@100 

MM Random Forest 0.0777 0.3358 0.3468 0.0837 0.2674 0.2738 

MM SVR 0.0612 0.2679 0.2779 0.0709 0.2348 0.2413 

MM Decision Tree 0.0745 0.3283 0.3391 0.0774 0.2672 0.2740 

MM Polynomial 𝑥2 0.0454 0.2036 0.2105 0.0437 0.1182 0.1200 

MM Polynomial 𝑥3 0.0299 0.1243 0.1287 0.0440 0.1252 0.1275 

GM Random Forest 0.0465 0.2406 0.2483 0.0460 0.2434 0.2513 

GM SVR 0.0218 0.0788 0.0820 0.0217 0.0846 0.0882 

GM Decision Tree 0.0414 0.2315 0.2391 0.0420 0.2318 0.2394 

GM Linear Regression  0.0517 0.2401 0.2474 0.0436 0.2444 0.2523 

GM DNN 0.0693 0.2353 0.2416 0.0412 0.2434 0.2510 

CORI 0.0650 0.2102 0.2161 0.0714 0.1940 0.1969 

SSL 0.0725 0.2464 0.2528 0.0623 0.2168 0.2219 

Centralized 0.0793 0.2592 0.2660 0.0793 0.2592 0.2660 

In summary, MM random forest was the best model and produced significant improvement compared to CORI and SSL in 

both environments. This proves its robustness and also that it can fit the documents score in a ranking better than linear 

and polynomial functions. Finally, the new method for assigning local scores in uncooperative environments seems to be 

promising as in some cases like the GM random forest we got higher results than the respective in the cooperative 

environment.  

5 CONCLUSION 

In this paper, ML models for results merging are proposed and tested. Also, a new method for assigning scores to 

documents in an uncooperative environment is presented and the document scores in a ranking are investigated. We 

tested random forest, decision tree, linear regression, polynomial regression, SVR, DNN in multiple models, and global 

model conditions, and the multiple model random forest was the best model which increased the results compared to 

traditional approaches up to +60%. Random forest was the best at all different environments and this shed its robustness. 

Also, it managed to overcome the centralized approach and this suggests that random forest could be a better option 

especially for the patent industry where missing a single patent can cause important economic loss. 

    In uncooperative environments assign artificial scores and multiplying with the source selection score increased the 

results and seems to be a better way to assign document scores. For the document scores ranking, linear regression is 

better than polynomial regression but the random forest is even better than both, so linear mapping to the scores is not 

the best option. 

   For future work, we plan to further investigate the models and try a different combination of parameters. Also, we plan 

to create reusable models that can be trained and reused. We plan to train our models on a larger dataset and run larger 

experiments.  
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