
kEDM: A Performance-portable Implementation of Empirical
Dynamic Modeling using Kokkos

Keichi Takahashi
Wassapon Watanakeesuntorn

Kohei Ichikawa
keichi@is.naist.jp

wassapon.watanakeesuntorn.wq0@is.naist.jp
ichikawa@is.naist.jp

Nara Institute of Science and
Technology
Nara, Japan

Joseph Park
josephpark@ieee.org

U.S. Department of the Interior
Homestead, Florida, USA

Ryousei Takano
Jason Haga

takano-ryousei@aist.go.jp
jh.haga@aist.go.jp

National Institute of Advanced
Industrial Science and Technology

Tsukuba, Japan

George Sugihara
gsugihara@ucsd.edu

University of California San Diego
La Jolla, California, USA

Gerald M. Pao
pao@salk.edu

Salk Institute for Biological Studies
La Jolla, California, USA

ABSTRACT
Empirical Dynamic Modeling (EDM) is a state-of-the-art non-linear
time-series analysis framework. Despite its wide applicability, EDM
was not scalable to large datasets due to its expensive computational
cost. To overcome this obstacle, researchers have attempted and
succeeded in accelerating EDM from both algorithmic and imple-
mentational aspects. In previous work, we developed a massively
parallel implementation of EDM targeting HPC systems (mpEDM).
However, mpEDM maintains different backends for different archi-
tectures. This design becomes a burden in the increasingly diversify-
ing HPC systems, when porting to new hardware. In this paper, we
design and develop a performance-portable implementation of EDM
based on the Kokkos performance portability framework (kEDM),
which runs on both CPUs and GPUs while based on a single code-
base. Furthermore, we optimize individual kernels specifically for
EDM computation, and use real-world datasets to demonstrate up
to 5.5× speedup compared to mpEDM in convergent cross mapping
computation.

CCS CONCEPTS
• Computing methodologies→ Parallel computing method-
ologies; • General and reference → Performance; • Applied
computing→ Mathematics and statistics.

KEYWORDS
Empirical Dynamic Modeling, Performance Portability, Kokkos,
GPU, High Performance Computing
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEARC ’21, July 18–22, 2021, Boston, MA, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8292-2/21/07. . . $15.00
https://doi.org/10.1145/3437359.3465571

ACM Reference Format:
Keichi Takahashi, Wassapon Watanakeesuntorn, Kohei Ichikawa, Joseph
Park, Ryousei Takano, Jason Haga, George Sugihara, and Gerald M. Pao.
2021. kEDM: A Performance-portable Implementation of Empirical Dynamic
Modeling using Kokkos. In Practice and Experience in Advanced Research
Computing (PEARC ’21), July 18–22, 2021, Boston, MA, USA. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3437359.3465571

1 INTRODUCTION
Empirical Dynamic Modeling (EDM) [2] is a state-of-the-art non-
linear time-series analysis framework used for various tasks such as
assessing the non-linearity of a system,making short-term forecasts,
and identifying the existence and strength of causal relationships
between variables. Despite its wide applicability, EDM was not
scalable to large datasets due to its expensive computational cost.
To overcome this challenge, several studies have been conducted
to accelerate EDM by improving the algorithm [10] and taking
advantage of parallel and distributed computing [14].

We tackle this challenge by taking advantage of modern HPC
systems equipped with multi-core CPUs and GPUs. We have been
developing a massively parallel distributed implementation of EDM
optimized for GPU-centric HPC systems, which we refer to as
mpEDM. In our previous work [22], we have deployed mpEDM on
the AI Bridging Cloud Infrastructure (ABCI)1 to obtain an all-to-
all causal relationship map of all 105 neurons in an entire larval
zebrafish brain. To date, this is the first causal analysis of a whole
vertebrate brain at single neuron resolution.

Although mpEDM has successfully enabled EDM computation
at an unprecedented scale, challenges remain. The primary chal-
lenge is performance portability across diverse hardware platforms.
Recent HPC landscape has seen significant increase in the diversity
of processors and accelerators. This is reflected in the design of
upcoming exascale HPC systems, for example, the Frontier system
at the Oak Ridge National Laboratory will use AMD EPYC CPUs
and Radeon GPUs while the Aurora system at the Argonne National
1https://abci.ai

ar
X

iv
:2

10
5.

12
30

1v
1

 [
cs

.D
C

]
 2

6
M

ay
 2

02
1

https://doi.org/10.1145/3437359.3465571
https://doi.org/10.1145/3437359.3465571
https://abci.ai

PEARC ’21, July 18–22, 2021, Boston, MA, USA K. Takahashi et al.

Latent Manifold

Observation

x(t1)

x(t2)

x(t3)

x(t4)

y(t1)

y(t2) y(t3)y(t4)

Prediction

Reconstructed 
Manifolds

Distances and Indices di ti

Lookupk-NN SearchEmbeddingObservation

x(t)

y(t)

X(t)

Y(t)

̂Y(t)

Figure 1: Overview of Convergent Cross Mapping (CCM)

Laboratory will employ Intel Xeon CPUs and Xe GPUs; additionally,
the Fugaku system at RIKEN uses Fujitsu A64FX ARM CPUs.

The current design of HPC applications has failed to keep up
with this trend of rapidly diversifying HPC systems. Computational
application kernels are developed with the native programming
model for the respective hardware (e.g., CUDA on NVIDIA GPUs).
mpEDM is no exception and maintains two completely indepen-
dent backends for x86_64 CPUs and NVIDIA GPUs. However, this
design becomes a burden when supporting a diverse set of hard-
ware platforms because a new backend needs to be developed and
maintained for every platform. Based on this trend, various per-
formance portability frameworks [3, 4] have emerged to develop
performance-portable applications from single codebase.

In this paper, we use the Kokkos [1] framework and develop a
performance-portable implementation of EDM that runs on both
CPUs and GPUs, herein referred to as kEDM. This new implemen-
tation is based on a single-source design and facilitates the future
development and porting to new hardware. Furthermore, we iden-
tify and take advantage of optimization opportunities in mpEDM
and achieve up to 5.5× higher performance on NVIDIA V100 GPUs.

The rest of this paper is organized as follows: Section 2 first
introduces EDM briefly and discusses the challenges in mpEDM;
Section 3 presents kEDM, a novel implementation of EDM based on
the Kokkos performance portability framework; Section 4 compares
kEDM and mpEDM using both synthetic and real-world datasets
and assesses the efficiency of kEDM; and finally Section 5 concludes
the paper and discusses future work.

2 BACKGROUND
2.1 Empirical Dynamic Modeling (EDM)
Empirical Dynamic Modeling (EDM) [2, 25] is a non-linear time
series analysis framework based on the Takens’ embedding theo-
rem [6, 19]. Takens’ theorem states that given a time-series obser-
vation of a deterministic dynamical system, one can reconstruct
the latent attractor manifold of the dynamical system using time-
delayed embeddings of the observation. While the reconstructed
manifold might not preserve the global structure of the original
manifold, it preserves the local topological features (i.e., a diffeo-
morphism).

Convergent Cross Mapping (CCM) [13, 18, 21] is one of the
widely used EDM methods that identifies and quantifies the causal
relationship between two time series variables. Figure 1 illustrates
the overview of CCM. To assess if a time series 𝑌 (𝑡) (hereinafter
called target) causes another time seris 𝑋 (𝑡) (hereinafter called
library), CCM performs the following four steps:

(1) Embedding: Both time series 𝑋 and 𝑌 are embedded into
𝐸-dimensional state space using their time lags. For example,
embedding of 𝑋 is denoted by 𝑥 , where 𝑥 (𝑡) = (𝑋 (𝑡), 𝑋 (𝑡 −
𝜏), . . . , 𝑋 (𝑡 − (𝐸 − 1)𝜏)). Here, 𝜏 is the time lag and 𝐸 is the
embedding dimension, which is empirically determined and
usually 𝐸 < 20 in real-world datasets.

(2) k-Nearest Neighbor Search: For every library point 𝑥 (𝑡), its
𝐸+1 nearest neighbors in the state space are searched. These
neighbors form an 𝐸-dimensional simplex that encloses 𝑥 (𝑡)
in the state space. We refer to these nearest neighbors as
𝑥 (𝑡1), 𝑥 (𝑡2), . . . , 𝑥 (𝑡𝐸+1) and the Euclidean distance between
𝑥 (𝑡) and 𝑥 (𝑡𝑖) as 𝑑 (𝑡, 𝑡𝑖) = ∥𝑥 (𝑡) − 𝑥 (𝑡𝑖)∥.

(3) Lookup: The prediction 𝑦 (𝑡) for a target point 𝑦 (𝑡) is a lin-
ear combination of its neighbors 𝑦 (𝑡1), 𝑦 (𝑡2), . . . , 𝑦 (𝑡𝐸+1).

kEDM: A Performance-portable Implementation of Empirical Dynamic Modeling using Kokkos PEARC ’21, July 18–22, 2021, Boston, MA, USA

Specifically,

𝑦 (𝑡) =
𝐸+1∑︁
𝑖=1

𝑤𝑖∑𝐸+1
𝑖=1 𝑤𝑖

· 𝑦 (𝑡𝑖)

where

𝑤𝑖 = exp

−
𝑑 (𝑡, 𝑡𝑖)

min
1≤𝑖≤𝐸

𝑑 (𝑡, 𝑡𝑖)


The prediction 𝑌 (𝑡) for 𝑌 (𝑡) is made by extracting the first
component of 𝑦 (𝑡).

(4) Assessment of Prediction: Pearson’s correlation 𝜌 between the
target time series 𝑌 and the predicted time series 𝑌 is com-
puted to assess the predictive skill. If 𝜌 is high, we conclude
that 𝑌 “CCM-causes” 𝑋 .

These four steps are repeated for all pair of time series when
performing pairwise CCM between multiple time series. Out of
these steps, the 𝑘-nearest neighbor search and the lookup consume
significant runtime and need to optimized. The 𝑘-nearest neighbor
search and lookup in the state space are fundamental operations in
EDM and generally dominate the runtime in other EDM algorithms
as well. We showed in our previous work [22] that one can precom-
pute the nearest neighbors for every point in 𝑥 (all 𝑘-NN search)
and store them as a lookup table of distances and indices. This
table can then be used to make predictions for all target time series.
This approach reduces the number of 𝑘-NN search and provides
significant speedup.

2.2 Challenges in mpEDM
This subsection discusses the two major challenges in mpEDM2,
our previous parallel implementation of EDM.

2.2.1 Performance portability across diverse hardware. The GPU
backend of mpEDMwas based on ArrayFire [11], a general purpose
library for GPU computing. We chose ArrayFire primarily for its
productivity and portability. ArrayFire provides CUDA and OpenCL
backends to run on OpenCL devices. Although it also provides a
CPU backend, most of the functions provided by the CPU backend
are neither multi-threaded nor vectorized. We therefore developed
our own implementation for CPUs using OpenMP.

As a result, mpEDM had an ArrayFire-based GPU implementa-
tion and an OpenMP-based CPU implementation of EDM, which
double the maintenance cost. Considering the diversifying target
hardware, a unified implementation that achieves consistent and
reasonable performance across a diverse set of hardware is required.

2.2.2 Kernels tailored for EDM. Since mpEDM was relying on Ar-
rayFire’s k-nearest neighbor search function nearestNeighbour(),
we were unable to modify or tune the k-NN search to suit our use
case and missed opportunities for further optimization. ArrayFire’s
nearest neighbor function accepts arrays of reference and query
points, and returns arrays of closest reference points and their dis-
tances for every query point. This interface is simple and easy-to-
use; however, when applying to EDM, the time-delayed embedding
needs to be performed on the CPU in advance and then passed on
to ArrayFire. This hinders performance because it increases the

2https://github.com/keichi/mpEDM

amount of memories copies between the CPU and the GPU and
memory reads from GPU memory.

Another potential optimization opportunity is the partial sort
function topk() invoked in the k-NN search. ArrayFire uses NVIDIA’s
CUB3 library to implement partial sort. CUB is a collection of highly
optimized parallel primitives and is being used by other popular
libraries such as Thrust4. ArrayFire’s topk() function divides the
input array into equal sized sub-array and then calls CUB’s parallel
radix sort function to sort each sub-array. It then extracts the top-𝑘
elements from each sub-array and concatenates them into a new
array. This is recursively repeated until the global top-𝑘 elements
are found. Even though this implementation is well-optimized, it
may not be optimal for EDM because the target 𝑘 is relatively small
(≤ 20).

Finally, we were unable to implement efficient lookups on GPU
using ArrayFire. ArrayFire provides a construct for embarrassingly
parallel computation called GFOR that allows one to perform inde-
pendent for-loops in parallel. Although we were able to implement
lookups using GFOR, the attained performance was poor. Managing
memory consumption and memory copies was also challenging be-
cause ArrayFire implicitly allocates, deallocates and copies arrays.

3 KEDM
3.1 Overview
kEDM5 is our performance-portable implementation of EDM based
on the Kokkos framework. We retain the high-level design of
mpEDM, but reimplement the whole application using Kokkos
and optimize the bottleneck kernels (i.e., all 𝑘-nearest neighbor
search and lookup). To ensure the correctness of the implementa-
tion, outputs from kEDM are validated against mpEDM as well as
the reference implementation of EDM (cppEDM6), using automated
unit tests.

Prior to implementing kEDM, we have examined a number
of popular performance portability frameworks. These include
OpenMP, OpenACC, OpenCL and SYCL. We chose Kokkos because
recent studies [3, 4, 12] have shown that it delivers portable per-
formance on a large set of devices compared to its alternatives.
In addition, it has already been adopted by multiple production
applications [5, 8, 17]. SYCL and OpenMP are certainly attractive
choices as they have grown rapidly over the last few years in terms
of hardware coverage and delivered performance, but we still con-
sider them immature compared to Kokkos at the point of writing
this paper. Therefore, we choose Kokkos to implement kEDM.

3.2 Kokkos
Kokkos [1] is a performance portability framework developed at
the Sandia National Laboratories. The aim of Kokkos is to abstract
away the differences between low-level programming models such
as OpenMP, CUDA and HIP, and exposes a high-level C++ program-
ming interface to the developer. Kokkos allows developers to build
cross-platform and performance-portable applications on a single
codebase.

3https://nvlabs.github.io/cub
4https://github.com/NVIDIA/thrust
5https://github.com/keichi/kEDM
6https://github.com/SugiharaLab/cppEDM

https://github.com/keichi/mpEDM
https://nvlabs.github.io/cub
https://github.com/NVIDIA/thrust
https://github.com/keichi/kEDM
https://github.com/SugiharaLab/cppEDM

PEARC ’21, July 18–22, 2021, Boston, MA, USA K. Takahashi et al.

Listing 1: Basic data parallel loop� �
1 Kokkos::parallel_for(RangePolicy<ExecSpace>(N),
2 KOKKOS_LAMBDA(int i) {
3 y(i) = a * x(i) + y(i);
4 });� �

Listing 2: Hierarchical data parallel loop� �
1 parallel_for(TeamPolicy<ExecSpace>(M, AUTO),
2 KOKKOS_LAMBDA(const member_type &member) {
3 int i = member.team_rank();
4 float sum = 0.0f;
5
6 parallel_reduce(TeamThreadRange(member, N),
7 [=] (int j, float &tmp) {
8 tmp += A(i, j) * x(j)
9 }, sum);
10
11 single(PerTeam(member),
12 [=] () {
13 y(i) = sum;
14 });
15 });� �
To parallelize a loop in the Kokkos programming model, the de-

veloper specifies (1) the parallel pattern, (2) computational body, and
(3) execution policy of the loop. Available parallel patterns include
parallel-for, parallel-reduce and parallel-scan. The computational
body of a loop is given as a lambda function.

The execution policy defines how a loop is executed. For example,
RangePolicy defines a simple 1D range of indices. TeamPolicy and
TeamThreadRange are used to launch teams of threads to exploit
the hierarchical parallelism of the hardware. For example, on a
GPU, teams and threads map to thread blocks and threads within
thread blocks, respectively. On a CPU, teams map to physical cores
and threads map to hardware threads within cores. TeamPolicy
gives access to team-private and thread-private scratch memory,
an abstraction of shared memory in GPUs. Each execution policy is
bound to an execution space, an abstraction of where the code runs.
The latest release of Kokkos supports Serial, OpenMP, OpenMP
Target, CUDA, HIP, Pthread, HPX and SYCL as execution spaces.

Views are fundamental data types in Kokkos that represent ho-
mogeneous multidimensional arrays. Views are explicitly allocated
by the user and deallocated automatically by Kokkos using ref-
erence counting. Each view is associated to a memory space, an
abstraction of where the data resides.

Listing 1 shows a vector addition kernel implemented in Kokkos.
In this example, a parallel-for loop is launched that iterates over the
1D range [1, 𝑁]. Listing 2 shows a matrix vector multiplication ker-
nel leveraging hierarchical parallelism. The outer parallel-for loop
launches𝑀 teams that each computes one row of the output vector
𝑦. The inner parallel-reduce computes the dot product between one
row in 𝐴 and 𝑥 .

3.3 All 𝑘-Nearest Neighbor Search
We implement the all 𝑘-NN search using an exhaustive approach
similar to [7]. That is, we first calculate the pairwise distances
between all embedded library points in the state space and obtain
a pairwise distance matrix. Subsequently, each row of the obtained

distance matrix is partially sorted to find the distances and indices
of the top-𝑘 closest points.

3.3.1 Pairwise distances. As discussed in Section 2.2, storing the
time-delayed embeddings in memory and then calculating the pair-
wise distances is inefficient since it increases memory access. In-
stead, we simultaneously perform the time delayed embedding and
distance calculation.

Algorithm 1 shows the pairwise distance calculation algorithm
in kEDM. Using Kokkos’ TeamPolicy and TeamThreadRange, we
map the outer-most 𝑖-loop to thread teams and the 𝑗-loop to threads
within a team. A consideration on CPU is which loop to vectorize.
Since the inner-most 𝑘-loop is short (𝐸 ≤ 20) in our use case,
vectorizing it is not profitable. We therefore use Kokkos’ SIMD
types7 to vectorize the 𝑗-loop. SIMD types are short vector with
overloaded operators that map to intrinsic functions. SIMD types
are mapped to scalars on GPUs and do not impose any overhead.
Note that the library time series 𝑥 is reused if 𝐸 > 1 and we can
expect more reuse with larger 𝐸. In addition, we explicitly cache
𝑥 (𝑘𝜏 + 𝑖) (where 𝑘 = [1, 𝐸]) on team-local scratch memory to speed
up memory access.

Algorithm 1: Pairwise distances
Input: Library time series 𝑥 of length 𝐿

Output: 𝐿 × 𝐿 pairwise distance matrix 𝐷
// TeamPolicy

1 parallel for 𝑖 ← 1 to 𝐿 do
// TeamThreadRange

2 parallel for 𝑗 ← 1 to 𝐿 do
3 𝐷 (𝑖, 𝑗) ← 0

4 for 𝑘 ← 1 to 𝐸 do
5 𝐷 (𝑖, 𝑗) ← 𝐷 (𝑖, 𝑗) + (𝑥 (𝑘𝜏 + 𝑖) − 𝑥 (𝑘𝜏 + 𝑗))2
6 end
7 end
8 end

3.3.2 Top-𝑘 search. The top-𝑘 search kernel is particularly chal-
lenging to implement in a performance-portable manner because
state-of-the-art top-𝑘 search algorithms [9, 16] are usually opti-
mized for specific hardware. Thus, we designed and implemented a
top-𝑘 search algorithm that works on both CPU and GPU efficiently.

Algorithm 2 outlines our top-𝑘 search algorithm. In our algo-
rithm, each thread team finds the top-𝑘 elements from one row of
the distance matrix. Each thread within a thread team maintains a
local priority queue on team-private scratch memory that holds the
top-𝑘 elements it has seen so far. Threads read the distance matrix
in a coalesced manner and push the distances and indices to their
local priority queues. Once all elements are processed, one leader
thread in each thread team merges the local queues within the team
and writes the final top-𝑘 elements to global memory.

3.4 Lookup
To increase the degree of parallelism and reuse of precomputed
distance and index matrices, we implement batched lookups. That
7https://github.com/Kokkos/simd-math

https://github.com/Kokkos/simd-math

kEDM: A Performance-portable Implementation of Empirical Dynamic Modeling using Kokkos PEARC ’21, July 18–22, 2021, Boston, MA, USA

Algorithm 2: Partial sort
Input: 𝐿 × 𝐿 pairwise distance matrix 𝐷
Output: 𝐿 × 𝑘 top-𝑘 distance matrix 𝐷𝑘 and index matrix 𝐼𝑘
// TeamPolicy

1 parallel for 𝑖 ← 1 to 𝐿 do
// TeamThreadRange

2 parallel for 𝑗 ← 1 to 𝐿 do
3 Insert 𝐷 (𝑖, 𝑗), 𝑗 into local priority queue
4 end
5 for 𝑗 ← 1 to 𝑘 do
6 for 𝑗 ← 1 to # of threads in the team do
7 𝐷𝑘 (𝑖, 𝑗), 𝐼𝑘 (𝑖, 𝑗) ← Pop element from priority

queue
8 end
9 end

// Normalize 𝐷𝑘

10 end

is, we perform the lookups for multiple target time series in parallel.
CCM requires the library time series to be embedded in the optimal
embedding dimension of the target time series. Therefore, we first
group the target time series by their optimal embedding dimensions
and then perform multiple lookups for target time series that have
the same optimal embedding dimension in parallel.

Algorithm 3 shows our lookup algorithm. The outer most 𝑖-loop
iterates over all time series of which optimal embedding dimen-
sion is 𝐸. The loop is parallelized using TeamPolicy, where each
team performs prediction of one target time series. The 𝑗-loop is
parallelized using TeamThreadRange, where each thread makes a
prediction for each time point within a time series. The inner most
serial 𝑘-loop is unrolled to increase instruction-level parallelism.
Since Kokkos currently lacks a feature to indicate loop unrolling,
we use the #pragma unroll directive here. The loop body requires
indirect access to the target time series using the indices table. To
speed up random memory access, we cache the target time series
in team-private scratch memory.

Algorithm 3: Lookup
Input: Array of target time series 𝑦, top-𝑘 distance matrix

𝐷𝑘 and index matrix 𝐼𝑘 computed from the library
time series

Output: Array of predicted time series 𝑦
// TeamPolicy

1 parallel for 𝑖 ← 1 to 𝑁 do
// TeamThreadRange

2 parallel for 𝑗 ← 1 to 𝐿 do
3 𝑦 (𝑖, 𝑗) ← 0

4 for 𝑘 ← 1 to 𝐸 + 1 do
5 𝑦 (𝑖, 𝑗) ← 𝑦 (𝑖, 𝑗) + 𝐷𝑘 (𝑗, 𝑘) · 𝑦 (𝐼𝑘 (𝑗, 𝑘))
6 end
7 end
8 end

In case the raw prediction is unneeded but only the assessment
of the predictive skill is needed, kEDM does not write out the pre-
dicted time series to global memory. Instead, Pearson’s correlation
is computed on-the-fly. Kokkos’ custom reduction feature is used
to implement parallel calculation of the correlation coefficient. The
algorithm is based on a numerically stable algorithm for computing
covariance proposed in [15].

4 EVALUATION
In this section, we compare kEDMwith mpEDM using micro bench-
marks and real-world datasets. Furthermore, we conduct a roofline
analysis of kEDM to assess the efficiency of our implementation.

4.1 Evaluation Environment
We evaluated kEDM on two compute servers installed at the Salk
Institute: Ika and Aori. Ika is equipped with two sockets of 20-core
Intel Xeon Gold 6148 CPUs, one NVIDIA V100 PCIe card and 384
GiB of DDR4 RAM. Aori is equipped with two sockets of 64-core
AMD EPYC 7742 CPUs and 1 TiB of DDR4 RAM. kEDM was built
with Kokkos 3.2 on both machines. On Aori, we used the AMD
Optimizing C/C++ Compiler (AOCC) 2.2.0, a fork of Clang by AMD.
On Ika, we used the NVIDIA CUDA Compiler (NVCC) 10.1.

4.2 Micro Benchmarks
We implemented micro benchmarks to measure the performance
of the individual kernels we described in Section 3 and compare it
with that of mpEDM.

Figure 2 shows the runtime of the all k-NN search kernel of
kEDM and mpEDM on NVIDIA V100. Here, we generated a syn-
thetic time series with 104 time steps and varied the embedding
dimension. The results indicate that the pairwise distance calcu-
lation in kEDM is significantly faster than mpEDM (up to 6.6×).
This is because the time-delayed embedding is performed during
the distance calculation on the GPU. The partial sort is also faster
than mpEDM if 𝐸 is small (6.2× faster if 𝐸 = 1). However, kEDM’s
partial sort performance degrades as 𝐸 increases and slightly under-
performs mpEDM when 𝐸 = 20. Since the local priority queues are
stored in shared memory, increasing the capacity of the local queues
increases shared memory usage and results in lower multiprocessor
occupancy. We confirmed this fact using NVIDIA’s Nsight Compute
profiler. Figure 3 shows the runtime on AMD EPYC 7742. kEDM
exhibits identical performance as mpEDM on EPYC 7742.

Figures 4 and 5 show the runtime of the lookup kernel (without
cross correlation calculation) on V100 and EPYC 7742, respectively.
Here, we generated 105 synthetic target time series each having
104 time steps and performed lookups from a library time series
with the same length. Note that we only executed kEDM on V100
since mpEDM lacks a lookup kernel for GPU as described earlier in
Section 2.2.2. These plots indicate that kEDM on V100 consistently
outperforms EPYC 7742 by a factor of 3–4×. Interestingly, kEDM
slightly outperforms mpEDM on EPYC as well. This might attribute
to the fact that we load the target time series to scratch memory
before performing lookups. Even though CPUs do not have user-
manageable memory as opposed to GPUs, accessing the target time
series might have loaded the time series on cache and improved
the cache hit ratio.

PEARC ’21, July 18–22, 2021, Boston, MA, USA K. Takahashi et al.

1 2 5 10 20

kE
D

M

kE
D

M

kE
D

M

kE
D

M

kE
D

M

m
pE

D
M

m
pE

D
M

m
pE

D
M

m
pE

D
M

m
pE

D
M

E

0

2

4

6

8

10

12

14
R

un
tim

e
[m

s]

Parwise distances
Partial sort

Figure 2: Breakdown of all k-NN search runtime on V100
(𝐿 = 104)

1 2 5 10 20

kE
D

M

kE
D

M

kE
D

M

kE
D

M

kE
D

M

m
pE

D
M

m
pE

D
M

m
pE

D
M

m
pE

D
M

m
pE

D
M

E

0

2

4

6

8

10

R
un

tim
e

[m
s]

Parwise distances
Partial sort

Figure 3: Breakdown of all k-NN search runtime on EPYC
7742 (𝐿 = 104)

1 2 5 10 20
E

0

10

20

30

40

50

60

70

80

R
un

tim
e

[m
s]

Figure 4: Runtime of lookups on V100 (𝐿 = 104, 𝑁 = 105)

1 2 5 10 20

kE
D

M

kE
D

M

kE
D

M

kE
D

M

kE
D

M

m
pE

D
M

m
pE

D
M

m
pE

D
M

m
pE

D
M

m
pE

D
M

E

0

50

100

150

200

250

300

350

R
un

tim
e

[m
s]

Figure 5: Runtime of lookups on EPYC 7742 (𝐿 = 104, 𝑁 =

105)

4.3 Real-world Datasets
We prepared six real-world datasets with diverse number and length
of time series that reflect the variety of use cases. We then measured
the runtime of kEDN for completing pairwise CCM calculations.

Table 1 shows the runtime for performing a pairwise CCM on
each dataset. Fish1_Normo is a subset of 154 representative neu-
rons of the dominant default zebrafish larvae neuronal behaviors
collected by lightsheet microscopy of fish transgenic with nuclear
localized GCAMP6f, a calcium indicator. Fly80XY is a drosophila
melanogaster whole brain lightfield microscopy GCAMP6 record-
ing, where distinct brain areas were identified by independent com-
ponent analysis with the fly left right and forward walking speed
behaviors collected on a styrofoam ball. Genes_MEF contains the
gene expression profiles of all genes and small RNAs from mouse
embryo fibrobast genes over 96 time steps of two cycles of serum
induction and starvation stimulation. Subject6 and Subject11 are
whole brain light sheep microscopy GCAMP6f recordings at whole
brain scale and single neuron resolution of larval zebrafish. F1 is a
subset of a larval zebrafish biochemically induced seizure recording
with three phases: control conditions, pre-seizure and full seizure.

The results clearly demonstrate that kEDM outperforms mpEDM
in most cases. In particular, kEDM shows significantly higher (up
to 5.5×) performance than mpEDM on NVIDIA Tesla V100 and
Intel Xeon Gold 6148. This performance gain is obtained from the
optimized 𝑘-nearest neighbor search and GPU-enabled lookup.

4.4 Efficiency
To assess the efficiency of our implementation, we conducted a
roofline analysis [23] of our kernels. The compute and memory ceil-
ings on each platform were measured using the Empirical Roofline
Toolkit (ERT)8 1.1.0. Since ERT fails to measure the L1 cache band-
width on GPUs, we used the theoretical peak performance instead.
We followed the methodology presented in [24] to measure the
arithmetic intensity and the attained FLOP/s. Nvprof 10.1 and lik-
wid [20] 5.0.1 were used to collect the required metrics on GPU and
8https://bitbucket.org/berkeleylab/cs-roofline-toolkit

https://bitbucket.org/berkeleylab/cs-roofline-toolkit

kEDM: A Performance-portable Implementation of Empirical Dynamic Modeling using Kokkos PEARC ’21, July 18–22, 2021, Boston, MA, USA

Table 1: Benchmark of CCM runtime using real-world datasets

V100 & Xeon Gold 6148 EPYC 7742
Dataset # of Time Series # of Time Steps kEDM mpEDM Speedup kEDM mpEDM Speedup
Fish1_Normo 154 1,600 3s 11s 3.67× 3s 4s 1.33×
Fly80XY 82 10,608 11s 50s 4.55× 22s 30s 1.36×
Genes_MEF 45,318 96 344s 334s 0.97× 96s 139s 1.45×
Subject6 92,538 3,780 5,391s 29,579s 5.49× 12,145s 11,571s 0.95×
Subject11 101,729 8,528 20,517s 85,217s 4.15× 43,812s 38,542s 0.88×
F1 8,520 29,484 11,372s 20,128s 1.77× 23,001s 19,950s 0.87×

10
2

10
1

10
0

10
1

10
2

10
3

Arithmetic Intensity [FLOPs/Byte]

10
2

10
3

10
4

P
er

fo
rm

an
ce

 [G
FL

O
P

/s
]

FMA: 13955.0 GFLOP/s

No-FMA: 6977.5 GFLOP/s

L1
: 1

41
31

.0
 G

B/
s

L2
: 3

04
3.

6
GB

/s
HB

M
: 7

84
.2

 G
B/

s

E=1
E=2
E=5
E=10
E=20

L1
L2
HBM

Figure 6: Roofline analysis of pairwise distance kernel on
V100 (𝐿 = 104)

CPU, respectively. We used an artificial dataset containing 105 time
series each having 104 time steps. This scale reflects our largest
use case.

Figures 6 and 7 depict the hierarchical roofline models for the
pairwise distance kernel on V100 and EPYC 7742, respectively. As
expected, the arithmetic intensity of the pairwise distance kernel
increases with the embedding dimension since the reuse of the
time series improves. On V100, the kernel was bounded by HBM
bandwidth when 𝐸 = 1. However, the kernel was not able to reach
the rooflines as 𝐸 increases. We found out using NVIDIA Nsight
profiler that the load/store units were saturated because of excessive
memory transactions. A common technique to reduce the number of
memory transactions is to use vectorized loads and stores; however,
it is not applicable here because the memory alignment depends on
the user-supplied parameters 𝐸 and 𝜏 . On EPYC 7742, the kernel is
initially hitting the L3 cache roofline and then bounded by L1 and
L2 cache bandwidth.

Figures 8 and 9 present the rooflines for the lookup kernel on
V100 and EPYC 7742, respectively. These plots suggest that the
lookup kernel is bounded by the L2 cache on V100 and the L1 cache
on EPYC 7742. This is explained from the fact that the distance and
index matrices fit on the respective caches. For example, the total
size of the distance and index matrices is 1.6 MB if 𝐸 = 20, which
fits on EPYC 7742’s L1 cache (4 MiB) and V100’s L2 cache (6 MiB).

10
2

10
1

10
0

10
1

10
2

10
3

Arithmetic Intensity [FLOPs/Byte]

10
1

10
2

10
3

10
4

P
er

fo
rm

an
ce

 [G
FL

O
P

/s
]

FMA: 3740.0 GFLOP/s

No-FMA: 1870.0 GFLOP/s

L1
: 6

56
9.5

 G
B/

s

L2
: 4

03
4.7

 G
B/

s

L3
: 1

63
1.9

 G
B/

s
DRAM

: 1
53

.0
GB/

s

E=1
E=2
E=5
E=10
E=20

L1
L2
L3
DRAM

Figure 7: Roofline analysis of pairwise distance kernel on
EPYC 7742 (𝐿 = 104)

10
3

10
2

10
1

10
0

10
1

10
2

Arithmetic Intensity [FLOPs/Byte]

10
1

10
2

10
3

10
4

P
er

fo
rm

an
ce

 [G
FL

O
P

/s
]

FMA: 13955.0 GFLOP/s
No-FMA: 6977.5 GFLOP/s

L1
: 1

41
31

.0
GB/s

L2
: 3

04
3.6

 G
B/s

HBM: 7
84

.2
GB/s

E=1
E=2
E=5
E=10
E=20

L1
L2
HBM

Figure 8: Roofline analysis of lookup kernel on V100 (𝐿 =

104, 𝑁 = 105)

Overall, these roofline models indicate that kEDM operates close
to the ceilings and achieves high efficiency in most cases. Fur-
thermore, the roofline models reveal that EDM is an inherently
memory-bound algorithm, primarily bounded by memory or cache

PEARC ’21, July 18–22, 2021, Boston, MA, USA K. Takahashi et al.

10
3

10
2

10
1

10
0

10
1

10
2

Arithmetic Intensity [FLOPs/Byte]

10
1

10
2

10
3

P
er

fo
rm

an
ce

 [G
FL

O
P

/s
]

FMA: 3740.0 GFLOP/s
No-FMA: 1870.0 GFLOP/s

L1
: 6

56
9.5

 G
B/s

L2
: 4

03
4.7

 G
B/s

L3
: 1

63
1.9

 G
B/s

DRAM: 1
53

.0
GB/s

E=1
E=2
E=5
E=10
E=20

L1
L2
L3
DRAM

Figure 9: Roofline analysis of lookup kernel on EPYC 7742
(𝐿 = 104, 𝑁 = 105)

bandwidth depending on the embedding dimension. It does not en-
ter the compute-bound region of the roofline model in our use cases.
This observation suggests that kEDM would benefit from hardware
with higher memory, cache, and load/store unit bandwidth.

5 CONCLUSION & FUTUREWORK
We designed and developed kEDM, a performance portable im-
plementation of EDM using the Kokkos performance portability
framework. The new implementation is based on a single code-
base and runs on both CPUs and GPUs. Furthermore, we removed
several several inefficiencies from mpEDM and custom-tailored
kernels. Benchmarks using real-world datasets indicate up to 5.5×
speedup in convergent cross mapping computation.

In the future, we will implement a Python binding to facilitate
adoption by users. We are also planning to evaluate on other hard-
ware platforms such as AMD GPUs and Fujitsu A64FX ARM pro-
cessors.

ACKNOWLEDGMENTS
This work was partly supported by JSPS KAKENHI Grant Number
JP20K19808 (KT) and an Innovation grant by the Kavli Institute for
Brain and Mind (GMP). The authors would like to thank Dominic
R. W. Burrows at the MRC Centre for Neurodevelopmental Disor-
ders, Institute of Psychiatry, Psychology and Neuroscience, King’s
College London, London, UK for providing the F1 dataset used in
the performance evaluation.

REFERENCES
[1] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos:

Enablingmanycore performance portability through polymorphicmemory access
patterns. J. Parallel and Distrib. Comput. 74, 12 (Dec. 2014), 3202–3216.

[2] ChunWei Chang, Masayuki Ushio, and Chih Hao Hsieh. 2017. Empirical dynamic
modeling for beginners. Ecological Research 32, 6 (Nov. 2017), 785–796.

[3] Tom Deakin, Simon Mcintosh-Smith, James Price, Andrei Poenaru, Patrick Atkin-
son, Codrin Popa, and Justin Salmon. 2019. Performance Portability across Diverse
Computer Architectures. In International Workshop on Performance, Portability
and Productivity in HPC. 1–13.

[4] Tom Deakin, Andrei Poenaru, Tom Lin, and Simon McIntosh-Smith. 2020. Track-
ing Performance Portability on the Yellow Brick Road to Exascale. In International
Workshop on Performance, Portability and Productivity in HPC.

[5] Irina Demeshko, Jerry Watkins, Irina K. Tezaur, Oksana Guba, William F. Spotz,
Andrew G. Salinger, Roger P. Pawlowski, and Michael A. Heroux. 2019. Toward
performance portability of the Albany finite element analysis code using the
Kokkos library. International Journal of High Performance Computing Applications
33, 2 (2019), 332–352.

[6] Ethan R. Deyle and George Sugihara. 2011. Generalized theorems for nonlinear
state space reconstruction. PLoS ONE 6, 3 (2011), 8 pages.

[7] Vincent Garcia, Eŕic Debreuve, Frank Nielsen, and Michel Barlaud. 2010. k-
nearest neighbor search: Fast GPU-based implementations and application to
high-dimensional feature matching. International Conference on Image Processing
(Sept. 2010), 3757–3760.

[8] John K. Holmen, Alan Humphrey, Daniel Sunderland, and Martin Berzins. 2017.
Improving Uintah’s Scalability Through the Use of Portable Kokkos-Based Data
Parallel Tasks. In Practice and Experience in Advanced Research Computing,
Vol. Part F1287. 1–8.

[9] Jeff Johnson, Matthijs Douze, and Herve Jegou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data (2019), 12 pages.

[10] Huanfei Ma, Kazuyuki Aihara, and Luonan Chen. 2014. Detecting causality from
nonlinear dynamics with short-term time series. Scientific Reports 4 (2014), 1–10.

[11] James Malcolm, Pavan Yalamanchili, Chris McClanahan, Vishwanath Venu-
gopalakrishnan, Krunal Patel, and John Melonakos. 2012. ArrayFire: a GPU
acceleration platform. In Modeling and Simulation for Defense Systems and Appli-
cations VII, Vol. 8403. 84030A.

[12] Matthew Martineau, Simon McIntosh-Smith, and Wayne Gaudin. 2017. Assess-
ing the performance portability of modern parallel programming models using
TeaLeaf. Concurrency and Computation: Practice and Experience 29, 15 (2017),
1–15.

[13] Hiroaki Natsukawa and Koji Koyamada. 2017. Visual analytics of brain effective
connectivity using convergent cross mapping. In SIGGRAPHAsia 2017 Symposium
on Visualization. 9 pages.

[14] Bo Pu, Lujie Duan, and Nathaniel D. Osgood. 2019. Parallelizing Convergent
Cross Mapping Using Apache Spark. In International Conference on Social Com-
puting, Behavioral-Cultural Modeling, & Prediction and Behavior Representation in
Modeling and Simulation (SBP-BRiMS 2019). 133–142.

[15] Erich Schubert and Michael Gertz. 2018. Numerically stable parallel computation
of (co-)variance. In 30th International Conference on Scientific and Statistical
Database Management. 1–12.

[16] Anil Shanbhag, Holger Pirk, and Samuel Madden. 2018. Efficient Top-K Query
Processing on Massively Parallel Hardware. In International Conference on Man-
agement of Data. 1557–1570.

[17] M. A. Sprague, S. Ananthan, G. Vijayakumar, and M. Robinson. 2020. ExaWind:
A multifidelity modeling and simulation environment for wind energy. Journal
of Physics: Conference Series 1452, 1 (2020), 13 pages.

[18] George Sugihara, Robert May, Hao Ye, Chih Hao Hsieh, Ethan Deyle, Michael
Fogarty, and Stephan Munch. 2012. Detecting causality in complex ecosystems.
Science 338, 6106 (2012), 496–500.

[19] Floris Takens. 1981. Detecting strange attractors in turbulence. In Dynamical
systems and turbulence, Warwick 1980. Springer, 366–381.

[20] Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. LIKWID: A Lightweight
Performance-Oriented Tool Suite for x86 Multicore Environments. In 39th Inter-
national Conference on Parallel Processing Workshops. 207–216.

[21] Niels van Berkel, Simon Dennis, Michael Zyphur, Jinjing Li, Andrew Heathcote,
and Vassilis Kostakos. 2020. Modeling interaction as a complex system. Human-
Computer Interaction 36, 4 (2020), 1–27.

[22] Wassapon Watanakeesuntorn, Keichi Takahashi, Kohei Ichikawa, Joseph Park,
George Sugihara, Ryousei Takano, JasonHaga, andGeraldM. Pao. 2020. Massively
Parallel Causal Inference of Whole Brain Dynamics at Single Neuron Resolution.
In 26th International Conference on Parallel and Distributed Systems. 10 pages.

[23] Samuel Williams, Andrew Waterman, and David Patterson. 2008. Roofline: An
Insightful Visual Performance Model for Floating-Point Programs and Multicore
Architectures. Commun. ACM 52, 4 (2008), 65–76.

[24] Charlene Yang, Thorsten Kurth, and SamuelWilliams. 2020. Hierarchical Roofline
analysis for GPUs: Accelerating performance optimization for the NERSC-9
Perlmutter system. Concurrency and Computation: Practice and Experience 32, 20
(Oct. 2020), 12 pages.

[25] Hao Ye, Richard J Beamish, SarahMGlaser, Sue CHGrant, Chih-haoHsieh, Laura J
Richards, Jon T Schnute, and George Sugihara. 2015. Equation-free mechanistic
ecosystem forecasting using empirical dynamic modeling. Proceedings of the
National Academy of Sciences 112, 13 (2015), E1569–E1576.

	Abstract
	1 Introduction
	2 Background
	2.1 Empirical Dynamic Modeling (EDM)
	2.2 Challenges in mpEDM

	3 kEDM
	3.1 Overview
	3.2 Kokkos
	3.3 All k-Nearest Neighbor Search
	3.4 Lookup

	4 Evaluation
	4.1 Evaluation Environment
	4.2 Micro Benchmarks
	4.3 Real-world Datasets
	4.4 Efficiency

	5 Conclusion & Future Work
	Acknowledgments
	References

