
ar
X

iv
:2

01
2.

14
13

3v
1 

 [
cs

.P
L

] 
 2

8 
D

ec
 2

02
0

Verifying C11-Style Weak Memory Libraries

Sadegh Dalvandi and Brijesh Dongol ∗

University of Surrey, Guildford, UK

{m.dalvandi,b.dongol}@surrey.ac.uk

Abstract

Deductive verification of concurrent programs under weak memory has thus far been lim-
ited to simple programs over a monolithic state space. For scalabiility, we also require modular
techniques with verifiable library abstractions. This paper addresses this challenge in the con-
text of RC11 RAR, a subset of the C11 memory model that admits relaxed and release-acquire
accesses, but disallows, so-called, load-buffering cycles. We develop a simple framework for
specifying abstract objects that precisely characterises the observability guarantees of abstract
method calls. We show how this framework can be integrated with an operational semantics
that enables verification of client programs that execute abstract method calls from a library
it uses. Finally, we show how implementations of such abstractions in RC11 RAR can be
verified by developing a (contextual) refinement framework for abstract objects. Our frame-
work, including the operational semantics, verification technique for client-library programs,
and simulation between abstract libraries and their implementations, has been mechanised in
Isabelle/HOL.

1 Introduction

An effective technique for reasoning about weak memory models is to consider the observations that
a thread can make of the writes within a system. For example, for certain subsets of C11 (the 2011
C standard), reasoning about per-thread observations has led to operational characterisations of the
memory model, high-level predicates for reasoning about per-thread observations, and deductive
verification techniques applied to standard litmus tests and synchronisation algorithms [5]. Current
verification techniques are however, focussed on (closed) programs, and hence do not provide any
mechanism for (de)composing clients and libraries. This problem requires special consideration
under weak memory since the execution of a library method induces synchronisation. That is, a
thread’s observations of a system (including of client variables) can change when executing library
methods.

This paper addresses several questions surrounding client-library composition in a weak memory
context.

(1) How can a client use a weak memory library, i.e., what abstract guarantees can a library
provide a client program? Prior works [13, 3] describe techniques for specifying the behaviour

∗This work is supported by EPSRC Grant EP/R032556/1.

1

http://arxiv.org/abs/2012.14133v1


Init: d := 0; s.init();
Thread 1 Thread 2
d := 5; do r1 := s.pop()
s.push(1); until r1 = 1;

r2 ← d;
{r2 = 0 ∨ r2 = 5}

Figure 1: Unsynchronised message passing

Init: d := 0; s.init();
Thread 1 Thread 2
d := 5; do r1 := s.popA()
s.pushR(1); until r1 = 1;

r2 ← d;
{r2 = 5}

Figure 2: Publication via a synchronising stack

of abstract objects, which are in turn related to their implementations using causal relaxations of
linearizability. However, these works do not provide a mechanism for reasoning about the behaviour
of client programs that use abstract libraries. In this paper, we address this gap by presenting a
modular operational semantics that combines weak memory states of clients and libraries.

(2) What does it mean to implement an abstract library? To ensure that behaviours of client
programs using an abstract library are preserved, we require contextual refinement between a li-
brary implementation and its abstract specification. This guarantees that no new client behaviours
are introduced when a client uses a (concrete) library implementation in place of its (abstract)
library specification. Under sequential consistency (SC), it is well known that linearizable libraries
guarantee (contextual) refinement [12, 16, 15]. However, under weak memory, a generic notion of
linearizability is difficult to pin down [13, 8]. We therefore present a direct technique for establishing
contextual refinement under weak memory. A key innovation is the development of context-sensitive
simulation rules that ensures that each client thread that uses the implementation observes a subset
of the values seen by the abstraction.

(3) Can the same abstract library specify multiple implementations? A key benefit of refinement
is the ability to use the same abstract specification for multiple implementations, e.g., to fine-tune
clients for different concurrent workload scenarios. To demonstrate applicability of our framework,
we provide a proof-of-concept example for an abstract lock and show that the same lock specification
can be implemented by a sequence lock and ticket lock. The theory itself is generic and can be
applied to concurrent objects in general.

(4) How can we support verification? Can the verification techniques be mechanised? Assuming
the existence of an operational semantics for the underlying memory model, we aim for deductive
verification of both client-library composition and contextual refinement. We show that this can
be supported by prototyping the full verification stack in the Isabelle/HOL theorem prover 1.

2 Message passing via library objects

In this section, we illustrate the basic principles of client-object synchronisation in weak memory.

Client-object message passing. Under SC all threads have a single common view of the shared
state. When a new write is executed, the “views” of all threads are updated so that they are
guaranteed to only see this new write. In contrast, each thread in a C11 program has its own
view of each variable. Views may not be updated when a write occurs, allowing threads to read
stale writes. To enforce view updates, additional synchronisation (e.g., release-acquire) must be
introduced [4, 18, 23].

Now consider a generalisation of this idea to (client) programs that use library objects. The
essence of the problem is illustrated by the message-passing programs in Figures 1 and 2. Under

1Our Isabelle theories may be accessed as ancillary material in the ArXiV submission.

2



Init: d := 0; s.init();
{[d = 0]1 ∧ [d = 0]2 ∧ [s.popemp]1 ∧ [s.popemp]2}
Thread 1 Thread 2
{¬〈s.pop1〉2 ∧ [d = 0]1}
1 : d := 5;
{¬〈s.pop1〉2 ∧ [d = 5]1}
2 : s.pushR(1);
{true}

{〈s.pop1〉[d = 5]2}
3 : do r1 := s.popA()
until r1 = 1;
{[d = 5]2}
4 : r2 ← d;
{r2 = 5}

{r2 = 5}

Figure 3: A proof outline for message passing

SC, when the program in Figure 1 terminates, the value of r2 is guaranteed to be 5. However, this
is not necessarily true in a weak memory setting. Even if pop operation in thread 2 returns 1, it
may be possible for thread 2 to observe stale value 0 for d. Therefore the program only guarantees
the weaker postcondition r2 = 0 ∨ r2 = 5.

To address this problem, the library operations in Figure 2 are annotated with release-acquire
annotations. In particular, the client assumes the availability of a “releasing push” (pushR(1)),
which is to be used for message passing. Thread 2 pops from s using an “acquiring pop” (popA()).
If this pop returns 1, the stack operations induce a happens-before synchronisation in the client,
which in turn means that it is now impossible for thread 2 to read the stale initial write for d.

Verification strategy. Our aim is to enable deductive verification of such programs by leveraging
recently developed operational semantics, assertion language and Owicki-Gries style proof strategy
for RC11 RAR [5]. We show that these existing concepts generalise naturally to client-object, and
in a manner that enables modular proofs.

The assertion language of [5] enables reasoning about a thread’s views, e.g., in Figure 3, after
initialisation, thread t ∈ {1, 2} has definite value 0 for d (denoted [d = 0]t).

In this paper, we extend such assertions to capture thread views over library objects. E.g., after
initialisation, the only value a pop by thread t can return is Empty, and this is captured by the
assertion [s.popemp]t. The precondition of d := 5 states that thread 2 cannot pop value 1 from s
(as captured by the assertion ¬〈s.pop1〉2). The precondition of the until loop in thread 2 contains
a conditional observation assertion (i.e., 〈s.pop1〉[d = 5]2), which states that if thread 2 pops value
1 from s then it will subsequently be in a state where it will definitely read 5 for d.

A key benefit of the logic in [5] is that it enables use of standard Owicki-Gries reasoning and
straightforward mechanisation [6]. As we shall see (Section 5.3), we maintain these benefits in the
context of client-object programs.

Contextual refinement. Contextual refinement relates a client using an abstract object with a
client that uses a concurrent implementation of the object. More precisely, we say that a concrete
object CO is a contextual refinement of an abstract object AO iff for any client C, every behaviour
of C when it uses CO is a possible behaviour of C when it uses AO. Thus, there is no observable
difference to any client when it uses CO in place of AO.

In a weak memory setting, to enable a client to use an object, one must specify how synchro-
nisation between object method calls affects the client state. To implement such a specification,
we must describe how the abstract synchronisation guarantees are represented in the implementa-

3



tion. Prior works have appealed to extensions of notions such as linearizability to ensure contextual
guarantees [13, 14, 26]. In this paper, we aim for a more direct approach and consider contextual
refinement directly.

3 Generalised operational semantics

We now present a simple program syntax that allows one to write open programs that can be filled
by an abstract method or concrete implementation of a method.

3.1 Program Syntax

We start by defining a syntax of concurrent programs, starting with the structure of sequential
programs (single threads). A thread may use global shared variables (from GVar) and local registers
(from LVar). We let Var = GVar∪LVar and assume GVar∩LVar = ∅. For client-library programs,
we partition GVar into GVarC (the global client variables) and GVarL (the global library variables)
and similarly LVar into LVarC and LVarL. In an implementation, global variables can be accessed
in three different synchronisation modes: acquire (A, for reads), release (R, for writes) and relaxed
(no annotation). The annotation RA is employed for update operations, which reads and writes to
a shared variable in a single atomic step. We let Obj and Meth be the set of all objects and method
calls, respectively.

We assume that ⊖ is a unary operator (e.g., ¬), ⊕ is a binary operator (e.g., ∧, +, =) and n
is a value (of type Val). Expressions must only involve local variables. The syntax of sequential
programs, Com , is given by the following grammar with r ∈ LVar , x ∈ GVar , o ∈ Obj ,m ∈
Meth, u, v ∈ Val :

ExpL ::= Val | LVar | ⊖ExpL | ExpL ⊕ ExpL

CExpL ::= • | ExpL

• ::= Val | o.m([u]) | Com , where Com contains no holes

ACom ::= • | ⊥ | r ← CAS(x, u, v)RA | r ← FAI(x)RA | r := CExpL | x :=[R] ExpL | r ←
[A] x

Com ::= ACom | Com ;Com | if B then Com else Com | while B do Com

where we assume B to be an expression of type CExpL that evaluates to a boolean. We allow
programs with holes, denoted •, which may be filled by an abstract or concrete method call. During
a program’s execution, the hole may also be filled by the null value ⊥ /∈ Val , or the return value
of the method call. The notation [X] denotes that the annotation X is optional, where X ∈ {A,R},
enabling one to distinguish relaxed, acquiring and releasing accesses. Within a method call, the
argument u is optional. Later, we will also use do-until loops, which is straightforward to define in
terms of the syntax above.

3.2 Program Semantics

For simplicity, we assume concurrency at the top level only. We let Tid to be the set of all thread
identifiers and use a function Prog : Tid → Com to model a program comprising multiple threads.
In examples, we typically write concurrent programs as C1|| . . . ||Cn, where Ci ∈ Com . We further
assume some initialisation of variables. The structure of our programs thus is Init;

(

C1|| . . . ||Cn

)

.

4



r ∈ LVar v = JEKls

(r := E, ls) −ǫ→ (⊥, ls[r := v])

x ∈ GVar a = wr[R](x, JEKls)

(x :=[R] E, ls) −a→ (⊥, ls)

a = rd[A](x, v) v ∈ Val

(r ←[A] x, ls) −a→ (⊥, ls[r := v])

(C1, ls) −a→ (C′

1, ls
′)

(C1;C2, ls) −a→ (C′

1;C2, ls
′)

v ∈ Val ∪ {⊥}

(v;C2, ls) −ǫ→ (C2, ls)

JBKls

(IF , ls) −ǫ→ (C1, ls)

¬JBKls

(IF , ls) −ǫ→ (C2, ls)

JBKls

(WHILE , ls) −ǫ→ (C;WHILE , ls)

¬JBKls

(WHILE , ls) −ǫ→ (⊥, ls)

a = rd(x, v′) v′ 6= u u, v, v′ ∈ Val

(r ← CAS(x, u, v), ls) −a→ (⊥, ls[r := false])

a = updRA(x, u, v) u, v ∈ Val

(r ← CAS(x, u, v), ls) −a→ (⊥, ls[r := true ])

a = updRA(x, u, u+ 1) u ∈ Val

(r ← FAI(x), ls) −a→ (⊥, ls [r := u])

(C[⊥], ls) −ǫ→ (C, ls)

(D, ls) −a→ (D′, ls′)

(C[D], ls) −a→L (C[D′], ls ′)

Cli
(P (t), ρ(t)) −a→ (C, ls) a ∈ Actǫ

(P, ρ) −a→t (P [t := C], ρ[t := ls])
Lib

(P (t), ρ(t)) −a→L (C, ls) a ∈ Actǫ

(P, ρ) −a→L,t (P [t := C], ρ[t := ls])

Figure 4: Program semantics, where IF = if B then C1 else C2 and WHILE = while B do C

The operational semantics for this language is defined in three parts. The program semantics
fixes the steps that the concurrent program can take. This gives rise to transitions (P, ρ) −a→t (P

′, ρ′)
of a thread t where P and P ′ are programs, ρ and ρ′ is the state of local variables and a is an
action (possibly the silent action ǫ, see below). The program semantics is combined with a memory
semantics which reflects the C11 state, and in particular the write actions from which a read action
can read. Finally, there is the object semantics, which defines the abstract semantics of the object
at hand.

We assume that the set of actions is given by Act. We let ǫ /∈ Act be a silent action and let
Actǫ = Act ∪ {ǫ}.

In the program semantics, we assume a function ρ ∈ Tid → (LVar 7→ Val), which returns the
local state for the given thread. We assume that the local variables of threads are disjoint, i.e., if
t 6= t′, then dom(ρ(t)) ∩ dom(ρ(t′)) = ∅. For an expression E over local variables, we write JEKls
for the value of E in local state ls ; we write ls [r := v] to state that ls remains unchanged except
for the value of local variable r which becomes v.

We use C[D] to denote the program C with the leftmost innermost hole filled by D. If D = ⊥,
we proceed with the execution of C, otherwise we execute D. Note that if D terminates with a

5



value (due to a method call that returns a value), then the hole contains a value and execution
may proceed by either using the rule for r := v or the rule for v;C2, both of which are present in
Figure 4. The last two rules, Cli and Lib, lift the transitions of threads to a transition of a client
and library program, respectively. These are distinguished by the subscript L, which only appears
in transitions corresponding to the library.

The rules in Figure 4 allow for all possible values for any read. We constrain these values with
respect to a memory semantics (formalised by a

t), which is described for reads, writes and updates
in Section 3.3 and for abstract objects in Section 4. The combined semantics brings together a client
state γ and library state β as follows.

(P, ρ) −ǫ→t (P
′, ρ′)

(P, ρ, γ, β) =⇒ (P ′, ρ′, γ, β)

(P, ρ) −ǫ→L,t (P
′, ρ′)

(P, ρ, γ, β) =⇒ (P ′, ρ′, γ, β)

(P, ρ) −a→t (P
′, ρ′)

γ, β a
t γ

′, β′

(P, ρ, γ, β) =⇒ (P ′, ρ′, γ′, β′)

(P, ρ) −a→L,t (P
′, ρ′)

β, γ a
t β

′, γ′

(P, ρ, γ, β) =⇒ (P ′, ρ′, γ′, β′)

These rules ensure, for example, that a read only returns a value allowed by the underlying memory
model. In Section 4, we introduce additional rules so that the memory model also contains actions
corresponding to method calls on an abstract object.

Note that the memory semantics (see Section 3.3 and Section 4) defined by γ, β a
t γ

′, β′ assumes
that γ is the state of the component being executed and β is the state of the context. For a client
step, we have that γ is the executing component state and β is the context state, where as for a
library step, these parameters are swapped.

3.3 Memory Semantics

Next, we detail the modularised memory semantics, which builds on an earlier monolithic seman-
tics [5], which is a timestamp-based revision of an earlier operational semantics [9]. Our present
extension is a semantics that copes with client-library interactions in weak memory. Namely, it
describes how synchronisation (in our example release-acquire synchronisation) in one component
affects thread views in another component. The semantics accommodates both client synchronisa-
tion affecting a library, and vice versa.

Component State. We assume Act denotes the set of actions. Following [5], each global write is
represented by a pair (a, q) ∈ Act × Q, where a is a write action, and q is a rational number that
we use as a timestamp corresponding to modification order (cf. [18, 11, 25]). The set of modifying
operations within a component that have occurred so far is recorded in ops ⊆ Act×Q. Unlike prior
works, to accommodate (abstract) method calls of a data structures, we record abstract operations
in general, as opposed to writes only.

Each state must record the operations that are observable to each thread. To achieve this, we
use two families of functions from global variables to writes (cf. [25, 19]).

• A thread view function tviewt ∈ GVar → ops that returns the viewfront of thread t. The
thread t can read from any write to variable x whose timestamp is not earlier than tviewt(x).
Accordingly, we define, for each state γ, thread t and global variable x, the set of observable
writes, where tst(w) = q denotes w’s timestamp:

γ.Obs(t, x) = {(a, q) ∈ γ.ops | var(a) = x
∧ tst(γ.tviewt(x)) ≤ q}

6



• A modification view function mvieww ∈ GVar → Act × Q that records the viewfront of write w,
i.e., the viewfront of the thread that executed w immediately after w’s execution. We use mvieww
to compute a new value for tviewt if a thread t synchronizes with w, i.e., if w ∈ WR and another
thread executes an e ∈ RA that reads from w.

The client cannot directly access writes in the library, therefore the thread view function must map
to writes within the same component. On the other hand, synchronisation in a component can
affect thread views in another (as discussed in Section 2), thus the modification view function may
map to operations across the system.

Finally, our semantics maintains a set cvd ⊆ ops. In C11 RAR, each update action occurs
in modification order immediately after the write that it reads from [9]. This property ensures
the atomicity of updates. We disallow any newer modifying operation (write or update) from
intervening between any update and the write or update that it reads from. As we explain below,
covered writes are those that are immediately prior to an update in modification order, and new
write actions never interact with a covered write.

Initialisation. Suppose GVarC = {x1, . . . , xn}, GVarL = {y1, . . . , yn}, LVar = {r1, . . . , rm},
k1, . . . , kn, l1, . . . , lm ∈ Val , and Init = x1 := k1; . . . , xn := kn; [r1 := l1; ] . . . [rm := lm; ], where we
use the notation [ri := li; ] to mean that the assignment ri := li may optionally appear in Init.
Thus each shared variable is initialised exactly once and each local variable is initialised at most
once. The initial values of the state components are then as follows, where we assume 0 is the initial
timestamp, t is a thread, xi ∈ GVarC and yi ∈ GVarL

γInit.ops = {(wr(x1, k1), 0), . . . , (wr(xn, kn), 0)}

βInit.ops = {(wr(y1, k1), 0), . . . , (wr(yn, kn), 0)}

γInit.tviewt(xi) = (wr(xi, ki), 0)

βInit.tviewt(yi) = (wr(yi, ki), 0)

γInit.mviewxi
= βInit.mviewyi

= γInit.tviewt∪βInit.tviewt

γInit.cvd = βInit.cvd = ∅

The local state component of each thread must also be compatible with Init, i.e., for each t if
ri ∈ dom(lst(t)) we have that (lst(t))(ri) = li provided ri := li appears in Init. We let lst Init be
the local state compatible with Init and let ΓInit = (lstInit, γInit, βInit).

Transition semantics. The transition relation of our semantics for global reads and writes is
given in Figure 5 and builds on an earlier semantics that does not distinguish the state of the
context [5]. Each transition γ, β a

t γ
′, β′ is labelled by an action a and thread t and updates the

target state γ (the state of component being executed) and the context β.

Read transition by thread t. Assume that a is either a relaxed or acquiring read to variable
x, w is a write to x that t can observe (i.e., (w, q) ∈ γ.Obs(t, x)), and the value read by a is the
value written by w. Each read causes the viewfront of t to be updated. For an unsynchronised
read, tviewt is simply updated to include the new write. A synchronised read causes the executing
thread’s view of the executing component and context to be updated. In particular, for each variable
x, the new view of x will be the later (in timestamp order) of either tviewt(x) or mvieww(x). To
express this, we use an operation that combines two views V1 and V2, by constructing a new view
from V1 by taking the later view of each variable:

V1 ⊗ V2 = λx ∈ dom(V1). if tst(V2(x)) ≤ tst(V1(x)) then V1(x) else V2(x)

7



Read

a ∈ {rd(x, n), rdA(x, n)} (w, q) ∈ γ.Obs(t, x) wrval(w) = n

tview
′ =

{

γ.tviewt ⊗ γ.mview(w,q) if (w, a) ∈WR × RA

γ.tviewt[x := (w, q)] otherwise

ctview
′ =

{

β.tviewt ⊗ γ.mview(w,q) if (w, a) ∈WR × RA

β.tviewt otherwise

γ, β a
t γ[tviewt := tview′], β[tviewt := ctview′]

Write

a ∈ {wr(x,n), wrR(x, n)} (w, q) ∈ γ.Obs(t, x) \ γ.cvd
freshγ(q, q

′) ops
′ = γ.ops ∪ {(a, q′)}

tview
′ = γ.tviewt[x := (a, q′)] mview

′ = tview
′ ∪ β.tviewt

γ, β a
t γ[tviewt := tview

′, mview(a,q′) := mview
′, ops := ops

′], β

Update

a = updRA(x,m, n) (w, q) ∈ γ.Obs(t, x) \ γ.cvd wrval(w) = m
freshγ(q, q

′) ops
′ = γ.ops ∪ {(a, q′)}

cvd
′ = γ.cvd ∪ {(w, q)} mview

′ = tview
′ ∪ ctview′

tview
′ =

{

γ.tviewt[x := (a, q′)]⊗ γ.mview(w,q) if w ∈ WR

γ.tviewt[x := (a, q′)] otherwise

ctview
′ =

{

β.tviewt ⊗ γ.mview(w,q) if w ∈WR

β.tviewt otherwise

γ, β a
t γ

[

tviewt := tview′, mview(a,q′) := mview′,
ops := ops

′, cvd := cvd
′

]

, β[tviewt := ctview′]

Figure 5: Transition relation for reads, writes and updates of the memory semantics

Write transition by thread t. A write transition must identify the write (w, q) after which a
occurs. This w must be observable and must not be covered — the second condition preserves the
atomicity of read-modify-write updates. We must choose a fresh timestamp q′ ∈ Q for a, which for
a C11 state γ is formalised by freshγ(q, q

′) = q < q′ ∧ ∀w′ ∈ γ.ops. q < tst(w′) ⇒ q′ < tst(w′).
That is, q′ is a new timestamp for variable x and that (a, q′) occurs immediately after (w, q). The
new write is added to the set ops.

We update γ.tviewt to include the new write, which ensures that t can no longer observe any
writes prior to (a, q′). Moreover, we set the viewfront of (a, q′) to be the new viewfront of t in γ
together with the thread viewfront of the environment state β. If some other thread synchronises
with this new write in some later transition, that thread’s view will become at least as recent as
t’s view at this transition. Since mview keeps track of the executing thread’s view of both the
component being executed and its context, any synchronisation through this new write will update
views across components.

Update transition by thread t. These transitions are best understood as a combination of the
read and write transitions. As with a write transition, we must choose a valid fresh timestamp
q′, and the state component ops is updated in the same way. State component mview includes
information from the new view of the executing thread t. As discussed earlier, inUpdate transitions
it is necessary to record that the write that the update interacts with is now covered, which is
achieved by adding that write to cvd. Finally, we must compute a new thread view, which is
similar to a Read transition, except that the thread’s new view always includes the new write

8



introduced by the update.

4 Abstract object semantics

The rules in Figure 5 provide a semantics for read, write and update operations for component
programs within an executing context and can be used to model clients and libraries under RC11
RAR. These rules do not cover the behaviour of abstract objects, which we now consider.

There have been many different proposals for specifying and verifying concurrent objects mem-
ory [20, 3, 14, 21, 26, 8, 13], since there are several different objectives that must be addressed. These
objectives are delicately balanced in linearizability [17], the most well-used consistency condition
for concurrent objects. Namely, linearizability ensures: 1. The abstract specification is explainable
with respect to a sequential specification. 2. Correctness is compositional, i.e., any concrete exe-
cution of a system comprising two linearizable objects is itself linearizable. 3. Correctness ensures
contextual (aka observational) refinement, i.e., the use of a linearizable implementation within a
client program in place of its abstract specification does not induce any new behaviours in the client
program.

There is however an inherent cost to linearizability stemming from the fact that the effect of
each method call must take place before the method call returns. In the context of weak memory,
this restriction induces additional synchronisation that may not necessarily be required for correct-
ness [27]. Therefore, over the years, several types of relaxations to the above requirements have
been proposed [20, 3, 14, 21, 26, 8, 13].

General data structures present many different design choices at the abstract level [26], but
discussing these now detracts from our main contribution, i.e., the integration and verification of
clients and libraries in a weak memory model. Therefore, we restrict our attention to an abstract
lock object, which is sufficient to highlight the main ideas. Locks have a clear ordering semantics
(each new lock acquire and lock release operation must have a larger timestamp than all other exist-
ing operations) and synchronisation requirements (there must be a release-acquire synchronisation
from the lock release to the lock acquire).

To enable proofs of contextual refinement (see Section 6), we must ensure corresponding method
calls return the same value at the abstract and concrete levels. To this end, we introduce a special
variable rval to each local state that stores the value that each method call returns.

Example 1 (Abstract lock). Consider the specification of a lock with methods Acquire, and
Release. Each method call of the lock is indexed by a subscript to uniquely identify the method call.
For the lock, the subscript is a counter indicating how many lock operations have been executed and
is used in the example proof in Section 5.

Acquire
a = l.acquiren ls′ = ls[rval := true]

(l.Acquire(), ls) −a→ (true, ls′)

Release
a = l.releasen ls′ = ls[rval := ⊥]

(l.Release(), ls) −a→ (⊥, ls′)

Locks, by default are synchronising. That is, in the memory semantics, a (successful) acquire
requires the operation to synchronise with most recent lock release (in a manner consistent with
release-acquire semantics), so that any writes that are happens-before ordered before the release are

9



Acquire

a = l.acquiren b = l.acquiren(t) (w, q) ∈ γ.ops w ∈ {l.init0, l.releasen−1}
q = maxTS(l, γ) q < q′

ops
′ = γ.ops ∪ {(b, q′)} mview

′ = tview
′ ∪ ctview′

cvd
′ = σ.cvd ∪ {(w, q)}

tview
′ = γ.tviewt[l := (b, q′)]⊗ γ.mview(w,q) ctview

′ = β.tviewt ⊗ γ.mview(w,q)

γ, β a
t γ

[

ops := ops′, tviewt := tview′,
mview(b,q′) := mview

′, cvd := cvd
′

]

, β[tviewt := ctview′]

Release

a = l.releasen w = l.acquiren−1(t) (w, q) ∈ γ.ops q = maxTS(l, γ) q < q′

ops
′ = γ.ops ∪ {(a, q′)} tview

′ = γ.tviewt[x := (a, q′)] mview
′ = tview

′ ∪ β.tviewt

γ, β a
t γ

[

ops := ops
′, tviewt := tview

′, mview(a,q′) := mview
′
]

, β

Figure 6: Operational semantics for lock acquire and release

visible to the thread that acquires the lock. The initial state of an abstract lock l, βInit, is given by:

βInit.ops = {(l.init0, 0)} γInit.tviewt(l) = (l.init0, 0)

γInit.cvd = ∅

We also obtain the rules below, where we assume γ is the state of the lock and β is the state of the
client.

To record the thread that currently owns the lock, we derive a new action, b, from the action
a of the program semantics. Action (w, q) represents the method that is observed by the acquire
method, which must be an operation in γ.ops such that q has the maximum timestamp for l (i.e.,
q = maxTS (l, γ). The new timestamp q′ must be larger than q. We create a new component state
γ′ from γ by

• inserting (b, q′) into γ.ops;

• updating tviewt to tview′, where tview′ synchronises with the previous thread view in γ to
include information from the modification view of (w, q), and updates t’s view of l to include the
new operation (b, q′);

• updating the contextual thread view for t to ctview′, where ctview′ synchronises with the previous
thread view in the context state β to include information from the modification view of (w, q);
and

• updating the modification view for the new operation (b, q′) to mview′, where mview′ contains the
view of t.

Finally, the context state β′ updates the thread view of t to ctview′ since synchronisation with a
release may cause the view to be updated.

A lock release, simply introduces a new operation with a maximal timestamp, provided that the
thread executing the release currently holds the lock.

5 Client-library verification

Having formalised the semantics of clients and libraries in a weak memory setting, we now work
towards verification of (client) programs that use such libraries.

10



5.1 Assertion language

In our proof, we use observability assertions, which describe conditions for a thread to observe a
specific value for a given variable. Unlike earlier works, our operational semantics covers clients
and their libraries, and hence operates over pairs of states.

Possible observation, denoted 〈x = u〉t, means that thread t may observe value u for x [5]. We
extend this concept to cope with abstract method calls as follows. In particular, for an object o
and method m, we use 〈o.m〉t to denote that thread t can observe o.m.

〈x = n〉t(σ) ≡ ∃w ∈ σ.Obs(t, x). wrval(w) = n

〈o.m〉t(σ) ≡ ∃q. (o.m, q) ∈ σ.ops ∧ q ≥ σ.tviewt(o)

To distinguish possible observation in clients and libraries, we introduce the following notation,
where γ and β are the client and library states, respectively, and p is either a valuation (i.e., x = n)
or an abstract method call (i.e., o.m):

〈p〉Ct (γ, β) ≡ 〈p〉t(γ) 〈p〉Lt (γ, β) ≡ 〈p〉t(β)

Definite observation, denoted [x = u]t, means that thread t can only see the last write to x, and
that this write has written value u. We define the last write to x in a set of writes W as:

last(W,x) = w ≡ w ∈ {w ∈W | var(w) = x} ∧
(∀w′ ∈W|x. tst(w

′) ≤ tst(w))

We define the definite observation of a view function, view with respect to a set of writes as follows:

dview (view,W, x) = n
≡ view(x) = last(W,x) ∧ wrval (last(W,x)) = n

The first conjunct ensures that the viewfront of view for x is the last write to x in W , and the
second conjunct ensures that the value written by the last write to x in W is n. For a variable x,
thread t and value n, we define:

[x = n]t(σ) ≡ dview (σ.tviewt, σ.ops ∩W, x) = n

The extension of definite observation assertions to abstract method calls is straightforward to define.
Namely we have:

[o.m]t(σ) ≡ σ.tviewt(o) = maxTS (o, σ) ∧
(o.m,maxTS (o, σ)) ∈ σ.ops

As with possible observations, we lift definite observation predicates to state spaces featuring clients
and libraries:

[p]Ct (γ, β) ≡ [p]t(γ) [p]Lt (γ, β) ≡ [p]t(β)

Conditional observation, denoted 〈x = u〉[y = v]t, means that if thread t synchronises with a
write to variable x with value u, it must subsequently observe value v for y. For variables x and y,
thread t and values u and v, we define:

〈x = u〉[y = v]t(σ)
≡ ∀w ∈ σ.Obs(t, x). wrval (w) = u⇒

act(w) ∈WR ∧ dview (σ.mvieww, σ.ops, y) = v

11



This is a key assertion used in message passing proofs [5, 18] since it guarantees an observation
property on a variable, y, via a synchronising read of another variable, x.

As with possible and definite assertions, conditional assertions can generalised to objects and
extended to pairs of states describing a client and its library. However, unlike possible and definition
observations assertions, conditional observation enables one to describe view synchronisation across
different states. For example, consider the following, which enables conditional observation of an
abstract method to establish a definite observation assertion for the thread view of the client. We
assume a set Sync ⊆ Act that identifies a set of synchronising abstract actions.

〈o.m〉L[y = v]Ct (γ, β)
≡ o.m ∈ Sync ∧ ∀q. (o.m, q) ∈ σ.ops ∧ q ≥ γ.tviewt(o)⇒

dview (γ.mview(o.m,q), β.ops, y) = v

It is possible to define other variations, e.g., conditional observation synchronisation from clients
to libraries, but we leave out the details of these since they are straightforward to construct.

Covered operations, denoted Cu
x, where x is a variable and u a value. Recall from the Acquire

rule that a new acquire operation causes the immediately prior (release) operation l.releasen−1 to
be covered so that no later acquire can be inserted between l.releasen−1 and the new acquire. To
reason about this phenomenon over states, we use:

Co.m(σ) ≡ ∀(w, q) ∈ σ.ops|o \ σ.cvd.

w = o.m ∧ q = maxTS (o, σ)

where σ.ops|o is the set of operations over object o.

Hidden value, denoted Ho.m, states that the operation o.m exists, but all of these are hidden
from interaction. In proofs, such assertions limit the values that can be returned.

Ho.m(σ) ≡ (∃q. (o.m, q) ∈ σ.ops) ∧
(∀q. (o.m, q) ∈ σ.ops⇒ (o.m, q) ∈ σ.cvd)

Both covered and hidden-value assertions can be lifted to pairs of states and can be used to reason
about standard writes, as opposed to method calls (details omitted).

5.2 Hoare Logic for C11 and Abstract Objects

Since we have an operational semantics, the assertions in Section 5.1 can be integrated into standard
Hoare-style proof calculus in a straightforward manner [5, 6]. The only differences are the state
model (which is a weak memory state, as opposed to mappings from variables to values) and
the atomic components (which may include reads of global variables, and, in this paper, abstract
method calls).

Following [5, 6], we let ΣC and ΣL to be the set of all possible global state configurations of the
client and library, respectively and let ΣC11 = (LVar → Val) × ΣC × ΣL be the set of all possible
client-library C11 states. Predicates over ΣC11 are therefore of type ΣC11 → B. This leads to the
following definition of a Hoare triple, which we note is the same as the standard definition — the
only difference is that the state component is of type ΣC11.

Definition 2. Suppose p, q ∈ ΣC11 → B, P ∈ Prog and E = λt : Tid . ⊥. The semantics of a Hoare
triple under partial correctness is given by:

12



{p}Init{q} = q(ΓInit)

{p}Init;P{q} = ∃r. {p}Init{r} ∧ {r}P{q}

{p}P{q} = ∀ρ, γ, β, ρ′, γ′, β′. p(ρ, γ, β)∧
(P, ρ, γ, β) =⇒∗ (E, ρ′, γ′, β′)⇒ q(ρ′, γ′, β′)

This definition (in the context of RC11 [23]) allows all standard Hoare logic rules for compound
statements to be reused [5]. Due to concurrency, following Owicki and Gries, one must prove local
correctness and interference freedom (or stability) [24, 5, 6, 22]. This is also defined in the standard
manner. Namely, a statement R ∈ ACom with precondition pre(R) (in the standard proof outline)
does not interfere with an assertion p iff {p∧pre(R)} R {p}. Proof outlines of concurrent programs
are interference free if no statement in one thread interferes with an assertion in another thread.

The only additional properties that one must define are on the interaction between atomic
commands and predicates over assertions defined in Section 5.1. A collection of rules for reads,
writes and updates have been given in prior work [6, 5]. Here, we present rules for method calls of
the abstract lock object defined in Example 1.

In proofs, it is often necessary to reason about particular versions of the lock (i.e., the lock
counter). Therefore, we use l.Acquire(v) and l.Release(v) to denote the transitions that set the
lock version to v. Also note that in our example proof, it is clear from context whether an assertion
refers to the client or library state, and hence, for clarity, we drop the superscripts C and L as used
in Section 5.1.

The lemma below has been verified in Isabelle/HOL.

Lemma 3. Each of the following holds, where the statements are decorated with the identifier of
the executing thread, assuming m ∈ {Acquire, Release} and t 6= t′

{Hl.releaseu} l.Acquire(v)t {v > u+ 1} (1)

{Hl.releaseu} l.m(v)t {Hl.releaseu} (2)

{[l.releaseu]t} l.Acquire(v)t {[l.acquireu+1]t} (3)

{[x = u]t} l.m(v)t′ {[x = u]t} (4)

{〈l.releaseu〉[x = n]t} l.Acquire(v)t {v = u+ 1⇒ [x = n]t} (5)
{

¬〈l.releaseu〉t′ ∧ [x = v]t
}

l.Release(u)t {〈releaseu〉[x = v]t′} (6)

5.3 Example Client-Library Verification

To demonstrate use of our logic in verification, consider the simple program in Figure 7, which
comprises a lock object l and shared client variables d1 and d2 (both initially 0). Thread 1 writes
5 to both d1 and d2 after acquiring the lock while thread 2 reads d1 and d2 (into local registers r1
and r2) also after acquiring the lock.

Under SC, it is a standard exercise to show that the program terminates with r1 = r2 and ri = 0
or ri = 5. We show that the lock specification in Section 4 together with the assertion language from
Section 5.1 and Owicki-Gries logic from Section 5.2 is sufficient to prove this property. In particular,
the specification guarantees adequate synchronisation so that if the Thread 2’s lock acquire sees the
lock release in Thread 1, it also sees the writes to d1 and d2. The proof relies on two distinct types
of properties:

13



Init: d1 := 0; d2 := 0; l.init();
{Inv ∧ [d1 = 0]1 ∧ [d2 = 0]1 ∧ [d1 = 0]2 ∧ [d2 = 0]2}

Thread 1 Thread 2
1 : {Inv ∧P1} if l.Acquire()
2 : {Inv ∧P2} d1 := 5;
3 : {Inv ∧P3} d2 := 5;
4 : {Inv ∧P4} l.Release()

1 : {Inv ∧Q1} if l.Acquire(rl)
2 : {Inv ∧Q2} r1 ← d1;
3 : {Inv ∧Q3} r2 ← d2;
4 : {Inv ∧Q4} l.Release()

5 : {(r1 = 0 ∧ r2 = 0) ∨ (r1 = 5 ∧ r2 = 5)}

where assuming Ppo = (pc2 = 1⇒ ¬〈l.release2〉2) ∧Hl.init0
, we have

P1 =[d1 = 0]1 ∧ [d2 = 0]1∧
(pc2 = 1⇒ [l.init0]1 ∧ [l.init0]2)
∧(pc2 ∈ {2, 3, 4} ⇒ Cl.acquire1

)
P2 =[d1 = 0]1 ∧ [d2 = 0]1 ∧ Ppo

P3 =[d1 = 5]1 ∧ [d2 = 0]1 ∧ Ppo

P4 =[d1 = 5]1 ∧ [d2 = 5]1 ∧ Ppo

Q′

1 = pc1 = 5 ∧ 〈l.release2〉[d1 = 5]2 ∧ 〈l.release2〉[d2 = 5]2
Q1 =

(

pc1 /∈ {2, 3, 4} ⇒([l.init0]2 ∧ [d1 = 0]2 ∧ [d2 = 0]2) ∨Q′

1

)

∧ (pc1 = 1⇒ [l.init0]1) ∧ (pc1 = 5⇒ Hl.init0
)

Q2 = (rl = 1⇒ [d1 = 0]2 ∧ [d2 = 0]2)
∧ (rl = 3⇒ [d1 = 5]2 ∧ [d2 = 5]2)

Q3 = (rl = 1⇒ r1 = 0 ∧ [d2 = 0]2)
∧ (rl = 3⇒ r1 = 5 ∧ [d2 = 5]2)

Q4 = (rl = 1⇒ r1 = 0 ∧ r2 = 0) ∧ (rl = 3⇒ r1 = 5 ∧ r2 = 5)

Figure 7: Proof outline for lock-synchronisation

• Mutual exclusion: As in SC, no two threads should execute their critical sections at the same
time.

• Write visibility: If thread 1 enters its critical section first, its writes to both d1 and d2 must be
visible to thread 2 after thread 2 acquires the lock. Note that this property is not necessarily
guaranteed in a weak memory setting since all accesses to d1 and d2 in Figure 7 are relaxed.

Our proof is supported by the following global invariant:

Inv ≡ ¬(pc1 ∈ {2, 3, 4} ∧ pc2 ∈ {2, 3, 4})∧ (rl ∈ {1, 3})

The first conjunct establishes mutual exclusion, while the second ensures that the lock version
written by the acquire in thread 2 is either 1 or 3, depending on which thread enters its critical
section first.

The main purpose of the definite and possible observation assertions is to establish Q′
1 (which

appers in Q1) using rule (6). This predicate helps establish [d1 = 5]2 and [d2 = 5]2 in thread 2
whenever thread 2 acquires the lock after thread 1.

The most critical of these assertions is Q1, which states that if thread 1 is not executing it’s
critical section then we either have

• [l.init0]2∧[d1 = 0]2∧[d2 = 0]2, i.e., thread 2 can definitely see the lock initialisation and definitely
observes both d1 and d2 to have value 0, or

• Q′
1 holds, i.e., thread 1 has released the lock and has established a state whereby if thread 2

acquires the lock, it will be able to establish the definite value assertions [d1 = 5]2 and [d2 = 5]2.

Note that Q1 also includes a conjunct pc1 = 5⇒ Hl.init0
, which ensures that if thread 2 enters its

critical section after thread 1 has terminated, then it does so because it sees l.release2 (as opposed
to l.init0). This means that we can establish rl = 1 ⇒ [d1 = 0]2 ∧ [d2 = 0]2 (i.e., thread 2 has

14



acquired the lock first) and rl = 3 ⇒ [d1 = 5]2 ∧ [d2 = 5]2 (i.e., thread 2 has acquired the lock
second) in Q2. Using these definite value assertions, we can easily establish that the particular
values that are loaded into registers r1 and r2. The lemma has been verified in Isabelle/HOL.

Lemma 4. The proof outline in Figure 7 is valid.

6 Contextual Refinement

We now describe what it means to implement a specification so that any client properties that was
preserved by the specification is not invalidated by the implementation. We define and prove con-
textual refinement directly, i.e., without appealing to external correctness conditions over libraries,
c.f. linearizability [17, 8, 16, 13, 15].

6.1 Refinement and Simulation for Weak Memory

Since we have an operational semantics with an interleaving semantics over weak memory states,
the development of our refinement theory closely follows the standard approach under SC [7].

Suppose P is a program with initialisation Init. An execution of P is defined by a possibly
infinite sequence Π0 Π1 Π2 . . . such that

1. each Πi is a 4-tuple (Pi, lsi, γi, βi) comprising a program, local state, global client state and
global library state, and

2. (ls0, γ0, σ0) = (lsInit, γInit, σInit), and

3. for each i, we have Πi =⇒ Πi+1 as defined in Section 3.2.

A client trace corresponding to an execution Π0 Π1 Π2 . . . is a sequence ct ∈ Σ∗
C such that ct i =

(π2(Πi)|C , π3(Πi)), where πn is a projection function that extracts the nth component of a given
tuple and ls|C restricts the given local state ls to the variables in LVarC . Thus each ct i is the
global client state component of Πi.

After a projection, the concrete implementation may contain (finite or infinite) stuttering [7],
i.e., consecutive states in which the client state is unchanged. We let rem stut(ct) be the function
that removes all stuttering from the trace ct , i.e., each consecutively repeating state is replaced by
a single instance of that state. We let TrSF (P ) denote the set of stutter-free traces of a program
P , i.e., the stutter-free traces generated from the set of all executions of P .

Below we refer to the client that uses the abstract object as the abstract client and the client
that uses the object’s implementation as the concrete client. The notion of contextual refinement
that we develop ensures that a client is not able to distinguish the use of a concrete implementation
in place of an abstract specification. In other words, each thread of the concrete client should only
be able to observe the writes (and updates) in the client state (i.e., γ component) that the thread
could already observe in a corresponding of the client state of the abstract client.

First we define trace refinement for weak memory states.

Definition 5 (State and Trace Refinement). We say a concrete state γC is a refinement of an
abstract state γA, denoted (lsA, γA) ⊑ (lsC , γC) iff lsA = lsC, γA.cvd = γC .cvd and for all threads
t and x ∈ GVar, we have γC .Obs(t, x) ⊆ γA.Obs(t, x). We say a concrete trace ct is a refinement
of an abstract trace at, denoted at ⊑ ct, iff ct i ⊑ at i for all i.

15



This now leads to a natural definition of contextual refinement that is based on the refinement
of traces.

Definition 6 (ProgramRefinement). A concrete program PC is a refinement of an abstract program
PA, denoted PA ⊑ PC , iff for any (stutter-free) trace ct ∈ TrSF (PC) there exists a (stutter-free)
trace at ∈ TrSF (PA) such that at ⊑ ct.

Finally, we obtain a notion of contextual refinement for abstract objects. Suppose P is a program
with holes. We let P [O] be the program in which the holes are filled with the operations from object
O. Note that O may be an abstract object, in which case execution of each method call follows
the abstract object semantics (Section 4), or a concrete implementation, in which case execution of
each method call follows the semantics of reads, writes and updates (Section 3.2).

Definition 7 (Contextual refinement). We say a concrete object CO is a contextual refinement of
an abstract object AO iff for any client program C, we have C[AO] ⊑ C[CO].

To verify contextual refinement, we use a notion of simulation, which once again is a stan-
dard technique from the literature. The difference in a weak memory setting is the fact that the
refinement rules must relate more complex configurations, i.e., tuples of the form (P, lst , γ, α).

The simulation relation, R, relates triples (als, γA, α), comprising an abstract local state als,
client state γA and library state α, with triples (cls, γC , β) comprising a concrete local state cls,
a client state γC and concrete library state β. The simulation condition must ultimately ensure
(als|C , γA) ⊑ (cls|C , γC) at each step as defined in Definition 5. However, since client synchroni-
sation can affect the library state, a generic forward simulation rule is non-trivial to define since
it requires one to describe how clients steps affect the simulation relation. We therefore present a
simpler use case for libraries that are used by clients that do not perform any synchronisation out-
side the library itself (e.g., the client in Figure 7). If Π = (P, lst, γ, α), we let state(Π) = (lst, γ, α)
be the state corresponding to Π.

Definition 8 (Forward simulation for synchronisation-free clients). For an abstract object AO and
a concrete object CO and a client C that only synchronises through AO (and CO), C[AO] ⊑ C[CO]
holds if there exists a relation R such that

1. R((als, γA, α), (cls, γC , β))⇒

als|C = cls|C ∧ γA.cvd = γC .cvd ∧
∀t, x. γC .Obs(t, x) ⊆ γA.Obs(t, x) ∧

als(t)(rval) = cls(t)(rval)
(client observation)

2. R(state(ΩInit), state(ΠInit)) (initialisation)

3. For any concrete configurations Π, Π′ and abstract configuration Ω, if Π =⇒ Π′ via a step
corresponding to CO, and R(state(Ω), state(Π)), then either

• R(state(Ω), state(Π)), or (stuttering step)

• there exists an abstract configuration Ω′ such that Ω =⇒ Ω′ and R(state(Ω′), state(Π′)).

(non-stuttering step)

Theorem 8.1. If R is a forward simulation between AO and CO, then for any client that only
synchronises through AO (and CO) we have C[AO] ⊑ C[CO].

16



6.2 Sequence Lock

The first refinement example is a sequence lock which operates over a single shared variable (glb).

Init: glb = 0

Acquire():

1: do do r ←A glb until even(r) ;
2: loc← CAS(glb, r, r + 1)
3: until (loc)

Release():

1: glb :=R r + 2

The Acquire operation returns true if, and only if, the CAS on line 2 is successful. Therefore, in
order to prove the refinement, we will need to prove that whenever the CAS operation is successful,
the abstract object can also successfully acquire the lock maintaining the simulation relation. Also,
the read on line 1 and the unsuccessful CAS are stuttering steps and we need to show that when
those steps are taken the abstract state remains unchanged and the new concrete state preserves
the simulation relation. The Release operation contains only one releasing write on variable glb,
which is considered to be a refining step. It is straightforward to show that this operation refines
the abstract object release operation. The following proposition has been verified in Isabelle/HOL.

Proposition 9. For synchronisation-free clients, there exists a forward simulation between the
abstract lock object and the sequence lock.

6.3 Ticket Lock

Our second refinement example is the ticket lock:

Init: nt = 0, sn = 0

Acquire():

1: m t← FAI(nt)
2: do s n←A sn until m t = s n

Release():

1: sn : v =R s n+ 1

The ticket lock has two shared variables nt (next ticket) and sn (serving now). Invocation of
Acquire loads the next available ticket into a local register (m t) and increases the value of nt by
one using a fetch-and-increment (FAI) operation. It then enters a busy loop and reads sn until it
sees its own ticket value in sn before it can enter its critical section.

If the read on line 2 of the Acquire operation reads from a write whose value is equal to
the value of m t, then the lock is acquired. Therefore we will need to show that if this situation
arises, the abstract lock object can also take a step and successfully acquire the lock. We consider
the FAI operation on line 1 and the read on line 2 if it reads a value that is not equal to m t
to be a stuttering step. We prove that each of the stuttering and non-stuttering steps preserves
the simulation relation. Similar to the previous example, the Release operation consists of only
one releasing write to variable sn and it is straightforward to show that this operation refines the
abstract release operation. This proof has been mechanised in Isabelle/HOL.

Proposition 10. For synchronisation-free clients, there exists a forward simulation between the
abstract lock object and the ticket lock.

17



7 Conclusions

In this paper, we present a new approach to specifying and verifying abstract objects over weak
memory by extending an existing operational semantics for RC11 RAR (which is a fragment of the
C11 memory model). We show that our methodology supports two types of verification: (1) proofs of
correctness of client programs that use abstract libraries and (2) refinement proofs between abstract
libraries and their implementations. Moreover, the operational semantics allows one to execute
programs in thread order and accommodates weak memory behaviours via a special encoding of
the state. To exploit this operational semantics, we develop an assertion language that describes a
thread’s observations of client-library states, which is in turn used to verify program invariants and
proofs of refinement. The operational semantics, proof rules and example verifications have been
mechanised in Isabelle/HOL.

There are now several different approaches to program verification that support different aspects
of weak memory using pen-and-paper proofs (e.g., [22, 31, 2, 10]), model checking (e.g., [20, 1]),
specialised tools (e.g., [30, 21, 29, 28]), and generalist theorem provers (e.g., [5]). These cover a
variety of (fragments of) memory models and proceed via exhaustive checking, specialist separation
logics, or Hoare-style calculi.

The idea that abstract methods should specify synchronisation guarantees has been established
in earlier work [8, 13], where it has been shown to be necessary for contextual refinement [13] and
compositionality [8]. Raad et al [26] have tackled the problem of client-library programs and also
consider the C11 memory model.

Krishna et al [21] have developed an approach to verifying implementations of weakly con-
sistent libraries [14]. They account for weak memory relaxations by transitioning over a generic
happens-before relation encoded within a transition system. On the one hand, this means that their
techniques apply to any memory model, but on the other hand, such a happens-before relation must
ultimately be supplied.

In future work, it would be interesting to further investigate implementations of other concurrent
data types and transactional memory within this operational framework.

References

[1] P. A. Abdulla, J. Arora, M. F. Atig, and S. N. Krishna. Verification of programs under the
release-acquire semantics. In PLDI, pages 1117–1132, 2019.

[2] J. Alglave and P. Cousot. Ogre and Pythia: an invariance proof method for weak consistency
models. In G. Castagna and A. D. Gordon, editors, POPL, pages 3–18. ACM, 2017.

[3] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++ concurrency. In
R. Giacobazzi and R. Cousot, editors, POPL, pages 235–248. ACM, 2013.

[4] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++ concurrency. In
T. Ball and M. Sagiv, editors, POPL, pages 55–66. ACM, 2011.

[5] S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim. Owicki-gries reasoning for C11 RAR. In
R. Hirschfeld and T. Pape, editors, ECOOP, volume 166 of LIPIcs, pages 11:1–11:26. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

18



[6] S. Dalvandi, B. Dongol, and S. Doherty. Integrating Owicki-Gries for C11-style memory models
into Isabelle/HOL. CoRR, abs/2004.02983, 2020.

[7] W. P. de Roever and K. Engelhardt. Data Refinement: Model-oriented Proof Theories and
their Comparison, volume 46 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1998.

[8] S. Doherty, B. Dongol, H. Wehrheim, and J. Derrick. Making linearizability compositional for
partially ordered executions. In C. A. Furia and K. Winter, editors, iFM, volume 11023 of
LNCS, pages 110–129. Springer, 2018.

[9] S. Doherty, B. Dongol, H. Wehrheim, and J. Derrick. Verifying C11 programs operationally.
In Jeffrey K. Hollingsworth and Idit Keidar, editors, PPoPP, pages 355–365. ACM, 2019.

[10] M. Doko and V. Vafeiadis. Tackling real-life relaxed concurrency with fsl++. In ESOP, pages
448–475. Springer, 2017.

[11] S. Dolan, KC Sivaramakrishnan, and A. Madhavapeddy. Bounding data races in space and
time. In PLDI, PLDI 2018, pages 242–255, New York, NY, USA, 2018. ACM.

[12] B. Dongol and L. Groves. Contextual trace refinement for concurrent objects: Safety and
progress. In ICFEM, volume 10009 of LNCS, pages 261–278, 2016.

[13] B. Dongol, R. Jagadeesan, J. Riely, and A. Armstrong. On abstraction and compositionality
for weak-memory linearisability. In VMCAI, volume 10747 of LNCS, pages 183–204. Springer,
2018.

[14] M. Emmi and C. Enea. Weak-consistency specification via visibility relaxation. Proc. ACM
Program. Lang., 3(POPL):60:1–60:28, 2019.

[15] I. Filipovic, P. W. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects.
Theor. Comput. Sci., 411(51-52):4379–4398, 2010.

[16] A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction. In ICALP (2), volume
6756 of LNCS, pages 453–465. Springer, 2011.

[17] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM TOPLAS, 12(3):463–492, 1990.

[18] J.-O. Kaiser, H.-H. Dang, D. D., O. Lahav, and V. Vafeiadis. Strong logic for weak memory:
Reasoning about release-acquire consistency in Iris. In Peter Müller, editor, ECOOP, volume 74
of LIPIcs, pages 17:1–17:29. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[19] J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, and D. Dreyer. A promising semantics for relaxed-
memory concurrency. In POPL, pages 175–189. ACM, 2017.

[20] M. Kokologiannakis, A. Raad, and V. Vafeiadis. Model checking for weakly consistent libraries.
In PLDI, pages 96–110, 2019.

[21] S. Krishna, M. Emmi, C. Enea, and D. Jovanovic. Verifying visibility-based weak consistency.
In P. Müller, editor, ESOP, volume 12075 of Lecture Notes in Computer Science, pages 280–
307. Springer, 2020.

19



[22] O. Lahav and V. Vafeiadis. Owicki-Gries reasoning for weak memory models. In M. M.
Halldórsson, K. Iwama, N. Kobayashi, and B. Speckmann, editors, ICALP, volume 9135 of
LNCS, pages 311–323. Springer, 2015.

[23] O. Lahav, V. Vafeiadis, J. Kang, C.-K. Hur, and D. Dreyer. Repairing sequential consistency
in C/C++11. In PLDI, pages 618–632. ACM, 2017.

[24] S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta Inf.,
6:319–340, 1976.

[25] A. Podkopaev, I. Sergey, and A. Nanevski. Operational aspects of C/C++ concurrency. CoRR,
abs/1606.01400, 2016.

[26] A. Raad, M. Doko, L. Rozic, O. Lahav, and V. Vafeiadis. On library correctness under weak
memory consistency: specifying and verifying concurrent libraries under declarative consistency
models. Proc. ACM Program. Lang., 3(POPL):68:1–68:31, 2019.

[27] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen. x86-tso: a rigorous and
usable programmer’s model for x86 multiprocessors. Commun. ACM, 53(7):89–97, 2010.

[28] A. J. Summers and P. Müller. Automating deductive verification for weak-memory programs.
In D. Beyer andM. Huisman, editors, TACAS, volume 10805 of LNCS, pages 190–209. Springer,
2018.

[29] K. Svendsen, J. Pichon-Pharabod, M. Doko, O. Lahav, and V. Vafeiadis. A separation logic for
a promising semantics. In A. Ahmed, editor, ESOP, volume 10801 of LNCS, pages 357–384.
Springer, 2018.

[30] J. Tassarotti, D. Dreyer, and V. Vafeiadis. Verifying read-copy-update in a logic for weak
memory. In D. Grove and S. Blackburn, editors, PLDI, pages 110–120. ACM, 2015.

[31] A. Turon, V. Vafeiadis, and D. Dreyer. GPS: navigating weak memory with ghosts, protocols,
and separation. In A. P. Black and T. D. Millstein, editors, OOPSLA, pages 691–707. ACM,
2014.

20


	1 Introduction
	2 Message passing via library objects
	3 Generalised operational semantics
	3.1 Program Syntax
	3.2 Program Semantics
	3.3 Memory Semantics

	4 Abstract object semantics
	5 Client-library verification
	5.1 Assertion language
	5.2 Hoare Logic for C11 and Abstract Objects
	5.3 Example Client-Library Verification

	6 Contextual Refinement
	6.1 Refinement and Simulation for Weak Memory
	6.2 Sequence Lock
	6.3 Ticket Lock

	7 Conclusions

