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Abstract
Collective communication algorithms are an important com-

ponent of distributed computation. Indeed, in the case of

deep-learning, collective communication is the Amdahl’s

bottleneck of data-parallel training.

This paper introduces SCCL (for Synthesized Collective

Communication Library), a systematic approach to synthesiz-

ing collective communication algorithms that are explicitly

tailored to a particular hardware topology. SCCL synthe-

sizes algorithms along the Pareto-frontier spanning from

latency-optimal to bandwidth-optimal implementations of a

collective. The paper demonstrates how to encode the synthe-

sis problem as a quantifier-free SMT formula which can be

discharged to a theorem prover. We show how our carefully

built encoding enables SCCL to scale.

We synthesize novel latency and bandwidth optimal algo-

rithms not seen in the literature on two popular hardware

topologies. We also show how SCCL efficiently lowers algo-

rithms to implementations on two hardware architectures
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(NVIDIA and AMD) and demonstrate competitive perfor-

mance with hand optimized collective communication li-

braries.

CCS Concepts: •Computer systems organization→ In-
terconnection architectures; • Software and its engi-
neering→ Cooperating communicating processes.

Keywords: GPU, Synthesis, Collective Communication, In-

terconnection, Network

1 Introduction
Recent trends in machine learning towards training and serv-

ing large models together with the stagnation of Moore’s-

law-induced compute performance has led system design-

ers to include novel high-bandwidth interconnect networks

both within and across nodes in distributed clusters. For in-

stance, a DGX-1 server consists of two x86 processors and

eight GPUs, interconnected by NVIDIA’s NVLink network

as shown in Figure 1. These networks’ designs are motivated

as much by the need to perform efficient Allreduce, a cru-

cial primitive in machine learning, as well as by hardware

considerations such as signal integrity, cooling and physical

layout. A wide variety of similar accelerators with novel

high-speed interconnects are used to train machine learning

models today, including AMD’s MI50 GPUs [1], Graphcore’s

IPUs [12] and Google’s TPUs [11].

These novel topologies require novel communication ker-

nels to maximize performance. Today these kernels are writ-

ten and optimized manually. For instance, NVIDIA Collec-

tive Communication Library (NCCL) has two general algo-

rithms for the supported operations such as Allreduce: a

high-bandwidth ring algorithm and a low-latency tree algo-

rithm. These implementations are manually written and they

do not necessarily have the best performance for different

topologies including DGX-1’s. On one hand, repeating this
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Figure 1. NVLink topology of an NVIDIA DGX-1.

manual effort for other communication primitives such as

Alltoall or extending already implemented algorithms to a

wide variety of hardware topologies is simply infeasible.

On the other hand, optimizing these communication ker-

nels for performance for each topology and buffer size is cru-

cial. For instance, we found 30% of the training time for the

8.3 billion parameter Megatron language model with model

parallelism is spent inside Allreduce where each buffer is

of medium size (10-100MB). Also, for data parallelism, the

communication buffers could range from a few KBs (one

layer) to a few GBs (the entire model). We expect this wide

range of sizes as large models are developed and trained on

larger distributed clusters.

In this paper, we automatically synthesize high-performance

communication kernels. Given a topology, specified as a

graph with bandwidth constraints on nodes and edges, and

a communication primitive, specified as the pre- and post-

condition on data location and computation on it, we gener-

ate (Section 3) a quantifier-free SMT formula that captures

the set of all feasible algorithms that implement the primitive

on the input topology. Exploring this space to appropriately

minimize the number of communication steps or decrease

the granularity of communication at each step, is a compu-

tationally difficult problem. We exploit an SMT solver to

synthesize algorithms that explore this tradeoff along the

Pareto frontier between latency-optimality and bandwidth-

optimality. For every solution from the SMT solver, we auto-

matically generate and lower (Section 4) high-performance

implementations.

When using SMT, finding the right encoding can make all

the difference for the feasibility of an approach. This paper

details the important design choices in our encoding that

help it scale to all of our hardware targets. We use the SMT

encoding for non-combining collectives, such as Broadcast,

while for combining collectives, such as Reduce, we employ a

reduction back to the synthesis problem for non-combining

collectives. This reduction generalizes a well known fact that

some combining collectives may be produced by inverting a

non-combining one, e.g. Reduce by inverting Broadcast.

We implement our approach in a tool called Synthesized

Collective Communication Library (SCCL), which probes the

target hardware topology, synthesizes algorithms for it using

Z3 [8] and finally generates CUDA code that efficiently im-

plements that algorithm. These algorithms are synchronous;

at every step of the algorithm, one or more of the nodes send

and/or reduce data from others.

Some of the algorithms we synthesize are novel, with no

known counterparts in the literature occupying the same

latency-bandwidth tradeoff. For example, we have produced

a latency-optimal 2-step (4-step) algorithm for the Allgather

(Allreduce) primitive in the DGX-1 topology (Figure 1) and

a bandwidth-optimal 3-step (6-step) algorithm for the All-

gather (Allreduce) primitive on the same topology. In addi-

tion to providing novel algorithms, our approach informs us

when a combination of bandwidth and number of steps is not
possible. This makes our synthesis approach a tool for prob-

ing the algorithmic properties that a given topology provides,

which is useful for co-design of hardware interconnects with

communication libraries. Our evaluation (Section 5) shows

us that this approach scales and beats NCCL in almost all

cases.

To summarize, the contributions of our paper are as fol-

lows:

• A formalization of the synthesis problem for non-com-

bining collectives.

• A general strategy for encoding the synthesis prob-

lem for collective communications algorithms into the

quantifier-free linear integer arithmetic (QF_LIA) sub-

logic of the SMT-LIB logic.

• A reduction from the synthesis problem for combining

collectives to that for non-combining collectives.

• A description of how SCCL generates efficient code for

the algorithms we synthesize on nodes with NVIDIA

or AMD GPUs.

• An evaluation of SCCL’s generated algorithms on com-

mon server topologies for deep learningworkloads and

a comparison against NCCL.

2 Overview
This section provides an overview of synthesizing latency-

and bandwidth-optimal algorithms, using Allgather for the

DGX-1 topology (Figure 1) as the running example.

2.1 Collective Communication Primitives
Collective communication primitives allow nodes in a net-

worked system to perform operations on shared data. As an

example, if each node has some input data, the Allgather

primitive transfers these data to all of the nodes. One way

to implement this is for each node to independently send

its data to all other nodes. But, an algorithm in which the

nodes collectively work together can be more efficient. The
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efficiency of such algorithms depends on the network topol-

ogy.

2.2 Topology
The network topology specifies how the nodes are connected

with each other and the latency and bandwidth constraints

on the links connecting them. Consider the DGX-1 topol-

ogy shown in Figure 1. It consists of 8 GPUs (or nodes, in

the above formalism) split into two groups {0, 1, 2, 3} and
{4, 5, 6, 7}. The nodes in each group are fully connected. In

addition, there are four inter-group links as shown in the

figure. These nodes are connected through NVLinks, with

some nodes connected with two parallel NVLinks as shown

in Figure 1.

The DGX-1’s design was heavily influenced by the need

to do gradient reduction for machine learning workloads.

Specifically, this topology forms two non-overlapping rings:

one connecting nodes {0, 1, 4, 5, 6, 7, 2, 3} with two NVLinks

per edge and another connecting {0, 2, 1, 3, 6, 4, 7, 5} with one
NVLink per edge. These rings are bidirectional and thus form

6 logical single-NVLink rings. The NCCL library implements

Allgather by running 6 simultaneous ring algorithms as we

discuss below.

2.3 Cost Model
Wewill characterize the communication cost using the (𝛼, 𝛽)
model [14]. That is, sending a message of size 𝐿 along a link

costs 𝛼 + 𝐿 · 𝛽 time. Here, 𝛼 is the latency of communica-

tion and captures the fixed costs, such as the overhead of

initiating a transfer or invoking a GPU kernel, and 𝛽 is the

inverse bandwidth of the link and captures per-byte costs,
such as copying data into system buffers. Li et al. extensively
studies the transfer time of buffers with different sizes over

numerous GPU interconnections[16]. Their result show that

with NVLinks, the transfer time stays almost constant up-to

a large buffer size and only then it start to increase linearly.

These results confirm that the (𝛼, 𝛽) model is suitable for

characterizing communication cost over NVLinks.

The cost of a collective algorithm for an input of size 𝐿

will be of the form 𝑎 · 𝛼 + 𝑏 · 𝐿 · 𝛽 . We call 𝑎 the latency cost
of the algorithm and 𝑏 the bandwidth cost of the algorithm.

Given a class of algorithms that implement a collective on a

given topology, an algorithm is latency-optimal (bandwidth-
optimal) if no other algorithm in the class has a lower latency

(bandwidth) cost. Usually, there is a tradeoff between the la-

tency cost and the bandwidth cost when designing collective

algorithms. An algorithm with latency cost 𝑎 and bandwidth

cost 𝑏 is said to be Pareto-optimal with respect to a class of

algorithms if for every algorithm in the class with latency

cost 𝑎′ and bandwidth cost 𝑏 ′, we have 𝑎 = 𝑎′ ⇒ 𝑏 ′ ≥ 𝑏 and

𝑏 = 𝑏 ′ ⇒ 𝑎′ ≥ 𝑎.

2.4 Bandwidth-Optimal Algorithm for DGX-1
As described above, the DGX-1 topology has 6 logical rings.

Allgather for one ring can be implemented as follows. Each

node simultaneously sends its data to the next node in the

ring. In subsequent steps, each node stores the received data

and sends it to the next node in the ring. In 7 steps all nodes

will have received data from all of the other 7 GPUs. The

6-ring algorithm is a generalization of this algorithm. Each

node splits its data into 6 chunks and executes the ring al-

gorithm along each of the 6 rings, with one chunk per ring.

If 𝐿 is the size of the input data, each ring algorithm takes 7

steps and communicates
𝐿
6
bytes. Thus, the cost of the 6-ring

algorithm is

7 · 𝛼 + 7

6

· 𝐿 · 𝛽

Each node has to receive at least 7 · 𝐿 amount of data,

and it has an agglomerated incoming per-byte cost of 𝛽/6 (6
incoming NVLinks). Thus, any algorithm for Allgather has

to take at least
7

6
· 𝐿 · 𝛽 amount of time. Thus, this algorithm

is bandwidth-optimal for the DGX-1 topology. But can we

do better with the latency cost?

Using the techniques described in this paper, we have

automatically synthesized an algorithm (Section 4) with cost

3 · 𝛼 + 7

6

· 𝐿 · 𝛽

To the best of our knowledge, this algorithm was not pre-

viously known. Moreover, we prove that this algorithm is

Pareto-optimal with respect to the class of algorithms we

call 𝑘-synchronous algorithms (Section 3.1).

2.5 Latency-Optimal Algorithm for DGX-1
The next question is whether we can improve upon the la-

tency cost of the synthesized algorithm. If each node com-

municates its data along a binary tree instead of a ring, it

would take at least 3 steps. Using the techniques described

in this paper, we have automatically synthesized a better

algorithm (Section 4) with cost

2 · 𝛼 + 3

2

· 𝐿 · 𝛽

Since the DGX-1 topology has a diameter of 2, this algorithm

is latency-optimal. To the best of our knowledge, a latency-

optimal algorithm for the DGX-1 was not previously known.

This algorithm is Pareto-optimal with respect to the class of

𝑘-synchronous algorithms.

3 Algorithm Synthesis
This section demonstrates a method to synthesize Pareto-

optimal algorithms that implement a collective primitive on a

given topology. The Pareto-optimality is definedwith respect

to a class of algorithms we call 𝑘-synchronous algorithms.

We distinguish between combining collectives such as

Allreduce and Reducescatter that combine chunks through
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Figure 2.A 1-synchronous algorithm for Allgather on a ring

topology.

computation, and non-combining collectives such as All-

gather and Broadcast that simply transfer data among nodes.

We will focus on synthesizing non-combining collectives

and show how to derive combining collectives from related

non-combining ones.

3.1 𝑘-synchronous Algorithms
Figure 2 shows the recursive-doubling [25] algorithm for

Allgather for a ring topology of four nodes 𝑃0, 𝑃1, 𝑃2, 𝑃3with

four bidirectional links of equal bandwidth. This algorithm

proceeds in two steps. In the first step, nodes at "distance" 1,

namely 𝑃0, 𝑃1 and 𝑃2, 𝑃3 send their data to each other. Each

node now has data from two nodes, which it communicates

entirely with nodes at distance 2, i.e., nodes 𝑃0, 𝑃3 and 𝑃1, 𝑃2

in the second step. At the end, each node has data from

every other node. Since the second step involves sending

twice the amount of data as the first step, we say it has

two rounds where in each round, it sends data. Thus, this

step has a total of 3 rounds. Of the eight (unidirectional)

links, this algorithm uses only four of them per step. To

improve bandwidth utilization, a better option is to split the

input data into equal-sized chunks and communicate them

independently. For instance, the ring algorithm described in

Section 2.4 uses 3 chunks per node.

The algorithm in Figure 2 and many classical collective

algorithms [6, 25] are instances of synchronous algorithms.

A synchronous algorithm proceeds in a sequence of syn-

chronous communication steps with nodes waiting for other

nodes to finish their rounds before starting the next step.

Even if an implementation might not enforce a global barrier

across the nodes, these algorithms choose the amount of data

to communicate per step based on the bandwidth constraints

so that the nodes finish each step at (roughly) the same time.

Many algorithms, like the one in Figure 2, communicate

different numbers of chunks per step. We consider each step

as consisting of multiple rounds with each node sending at

most one chunk per unit-bandwidth on its outgoing links.

Intuitively, the number of rounds in an algorithm controls

Name Relation

All [𝐺] × [𝑃]
Root [𝐺] × {𝑛root}
Scattered {(𝑐, 𝑛) ∈ [𝐺] × [𝑃] | 𝑛 = 𝑐 mod 𝑃}
Transpose {(𝑐, 𝑛) ∈ [𝐺] × [𝑃] | 𝑛 =

⌊
𝑐
𝑃

⌋
mod 𝑃}

Table 1. Common relations in pre- and post-conditions of

collective primitives.

its bandwidth cost, while the number of steps controls its

latency cost. A synchronous algorithm with 𝑆 steps and 𝑅

rounds is 𝑘-synchronous if 𝑅 ≤ 𝑆 + 𝑘 . The parameter 𝑘 limits

the amount of communication per step and allows an SMT

solver to effectively search the space of algorithms bounded

by that 𝑘 .

3.2 Non-combining Collective Instance
Now we will provide a uniform formulation for representing

𝑘-synchronous algorithms for non-combining collectives. An

instance of SynColl is a tuple (𝐺, 𝑆, 𝑅, 𝑃, 𝐵, pre, post), where
Parameters:

– 𝐺 ∈ Z≥0 is the global number of chunks

– 𝑆 ∈ Z≥0 is the total number of steps

– 𝑅 ∈ Z≥0 is the total number of rounds

Topology:

– 𝑃 ∈ Z≥0 is the number of nodes

– 𝐵 ⊆ P([𝑃] × [𝑃]) × N is the bandwidth relation

Specification:

– pre ⊆ [𝐺] × [𝑃] is the pre-condition
– post ⊆ [𝐺] × [𝑃] is the post-condition

Note that for a set 𝑀 we write P(𝑀) for the power set of
𝑀 , i.e., the set of all subsets. For an integer 𝑥 , we write [𝑥]
for the set {0, 1, . . . , 𝑥}. Here, 𝐺, 𝑆, 𝑅 are parameters to the

desired 𝑘-synchronous algorithm. The rest are explained

below.

3.2.1 Topology. 𝑃 is the number of nodes in the topology.

𝐵 gives a flexible way to express different bandwidth con-

straints we have seen in practice. In its most general form,

𝐵 bounds the sum of chunks sent along a set of edges in

a single round. A point-to-point communication link from

𝑠 to 𝑑 with maximum bandwidth (in chunks per round) 𝑏

can be modeled by ({(𝑠, 𝑑)}, 𝑏) ∈ 𝐵. Some topologies might

limit the net outgoing bandwidth 𝑏 from a certain node 𝑠 . If

𝐸 is the set of outgoing neighbors of 𝑠 , we can model this

by ({(𝑠, 𝑒) | 𝑒 ∈ 𝐸}, 𝑏) ∈ 𝐵. To model shared bus topolo-

gies, where only one node can send in a round, we include

({(𝑎, 𝑏) | 𝑎 ∈ 𝑁,𝑏 ∈ 𝑁 }, 𝑏) in 𝐵 for the set of nodes 𝑁 shar-

ing the same link. Note that these constraints are per round,

and when performing 𝑟𝑖 rounds in step 𝑖 , we simply multiply

the bandwidth constraint by 𝑟𝑖 .
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Collective pre post

Gather Scattered Root

Allgather Scattered All

Alltoall Scattered Transpose

Broadcast Root All

Scatter Root Scattered

Table 2. Specifications of collective primitives as SynColl

instances using a small set of common relations for pre- and

post-conditions.

3.2.2 Collective Specification. The pre relation specifies
the nodes where the chunks reside at the beginning of the

algorithm and the post relation specifies the set of nodes

where a chunk needs to be transferred to. Table 1 specifies

useful relations that can be used to specify common collec-

tives as shown in Table 2. For instance, Allgather starts in a

state where chunks are in the Scattered relation in Table 1.

In other words, the 𝑐 chunks of the input at node 𝑛 are given

chunk identifier 𝑖 · 𝑃 + 𝑛 for 0 ≤ 𝑖 < 𝑐 . From this Scattered

state, Allgather requires all the input chunks to be copied to

all nodes, as specified by All relation in Table 1. Similarly,

Broadcast requires all the chunks from the root 𝑛𝑟𝑜𝑜𝑡 to be

copied to all nodes.

While SynColl uses a global number of chunks 𝐺 , it is

more typical in existing literature to consider the per-node

number of chunks 𝐶 . We will use the per-node number

when discussing the cost model and search algorithm in

Sections 3.6 and 3.7 and when presenting our evaluation in

Section 5. Note that how these two counts relate to each

other is collective dependent: for Broadcast𝐺 = 𝐶 , while for

Allgather𝐺 = 𝑃 ·𝐶 . The formalization must still use a global

numbering of chunks, as some exotic collectives, e.g. MPI’s

Allgatherv, may not have a single per-node chunk count.

3.3 Candidate Solution
Given an instance of SynColl (𝐺, 𝑆, 𝑅, 𝑃, 𝐵, pre, post), a can-
didate solution is a pair (𝑄,𝑇 ). Here 𝑄 is a sequence 𝑟0,

𝑟1, . . . , 𝑟𝑆−1 such that

∑
𝑖 𝑟𝑖 = 𝑅 and denotes the number of

rounds per step. 𝑇 is a set of sends of the form (𝑐, 𝑛, 𝑛′, 𝑠),
which specifies that chunk 𝑐 must be sent from node 𝑛 to

node 𝑛′
at step 𝑠 . This defines a run defined as a sequence

𝑉0,𝑉1, . . . ,𝑉𝑆 such that 𝑉0 = pre and for all 0 ≤ 𝑠 < 𝑆 , 𝑉𝑠+1
reflects the chunks present at a given node after accounting

for the sends at step 𝑠:

𝑉𝑠+1 = 𝑉𝑠 ∪ {(𝑐, 𝑛′) | (𝑐, 𝑛) ∈ 𝑉𝑠 ∧ (𝑐, 𝑛, 𝑛′, 𝑠) ∈ 𝑇 }
This candidate solution is a valid𝑘-synchronous algorithm

for the instance if 𝑉𝑆 ⊆ post and the following bandwidth

constraint hold

∀𝑠 ∈ [𝑆] , (𝐿,𝑏) ∈ 𝐵

|{(𝑐, 𝑛, 𝑛′, 𝑠) ∈ 𝑇 | (𝑛, 𝑛′) ∈ 𝐿}| ≤ 𝑏 · 𝑟𝑠

At each step 𝑠 consisting of 𝑟𝑠 rounds, the number of sends

in each link should be bounded by the bandwidth constraint

multiplied by 𝑟𝑠 .

3.4 SMT Encoding for Non-combining Collectives
Given an instance, the SMT encoding incorporates the con-

straints above allowing the SMT solver to systematically

search over candidate solutions (𝑄,𝑇 ). It is straightforward
to encode each 𝑟𝑠 of 𝑄 as integer variables whose sum is 𝑅.

In contrast, one has to be careful in encoding𝑇 . For instance,

our initial attempt to encode every tuple (𝑐, 𝑛, 𝑛′, 𝑠) ∈ 𝑇 as a

Boolean variable was not successful, because Z3, the SMT

solver we used, did not solve larger problem instances fast

enough. One way we were able to scale Z3 is to use a care-

ful combination of Boolean, integer, and pseudo-Boolean

constraints as we describe below.

We split the encoding of𝑇 into integer variables time𝑐,𝑛 ≥
0, indicating the earliest step a chunk 𝑐 becomes available at

node 𝑛 and Boolean variables snd𝑛,𝑐,𝑛′ determining whether

a node 𝑛 sends chunk 𝑐 to 𝑛′
(at any step). To help with

pruning the encoding, let 𝐸 = {(𝑛, 𝑛′) | ∀(𝐿,𝑏) ∈ 𝐵 (𝑛, 𝑛′) ∈
𝐿 ⇒ 𝑏 > 0}, i.e., the pairs of nodes with non-zero bandwidth

between them. Pseudo-Boolean constraints allow one to use

Boolean variables as 0, 1 integers which we will use in the

exposition below.

The following two constraints enforce the pre- and post-

conditions

∀(𝑐, 𝑛) ∈ pre time𝑐,𝑛 = 0 (C1)

∀(𝑐, 𝑛) ∈ post time𝑐,𝑛 ≤ 𝑆 (C2)

If a chunk becomes available in a node, but is not part of the

precondition, then the node should have received the chunk

from some other node. For optimality, we also enforce that

the node does not redundantly receive the chunk more than

once.

∀(𝑐, 𝑛) ∉ pre time𝑐,𝑛 ≤ 𝑆 ⇒ Σ (𝑛′,𝑛) ∈𝐸 snd𝑛′,𝑐,𝑛 = 1 (C3)

To send a chunk, it must exist on the source node before it

is received on the destination node.

∀(𝑐, 𝑛) ∈ 𝐸 snd𝑛,𝑐,𝑛′ ⇒ time𝑐,𝑛 < time𝑐,𝑛′ (C4)

The following enforces the bandwidth constraint at all steps

1 ≤ 𝑠 ≤ 𝑆 and bandwidth constraint (𝐿,𝑏) ∈ 𝐵:

Σ (𝑐,(𝑛,𝑛′)) ∈[𝐺 ]×𝐿
(
snd𝑛,𝑐,𝑛′ ∧ time𝑐,𝑛′ = 𝑠

)
≤ 𝑏 · 𝑟𝑠 (C5)

Note, we have multiplied the bandwidth constraints by 𝑟𝑠 to

allow 𝑟𝑠 rounds at step 𝑠 . Finally, the following bounds the

total rounds 𝑅:

Σ1≤𝑠≤𝑆 (𝑟𝑠 ) = 𝑅 (C6)

Once the problem instance has been encoded, the SMT

solver will attempt to find a model𝑀 , which maps the vari-

ables time𝑐,𝑛 , snd𝑛,𝑐,𝑛′ and 𝑟𝑠 to concrete values such that
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Constraints C1 through C6 are satisfied. If a model exists

then an algorithm (𝑄,𝑇 ) can be constructed with:

𝑄 = 𝑀 (𝑟0), . . . , 𝑀 (𝑟𝑆−1)
𝑇 = {(𝑐, 𝑛, 𝑛′, 𝑡) | 𝑀 (snd𝑛,𝑐,𝑛′) ∧𝑀 (time𝑐,𝑛) = 𝑡 + 1}

If the SMT solver says the problem is unsatisfiable, then no

algorithm exists for the problem instance.

3.5 Combining Collectives
It is well known that certain combining collectives are in-
verses of non-combining collectives. For instance, a Reduce

algorithm can be generated by inverting an algorithm for

Broadcast on a topology where all links have been reversed.

Intuitively, whenever the Broadcast sends the same chunk

to two different nodes, in its inverse the Reduce algorithm

will receive the two versions of the chunk from these nodes

and apply the reduction operation. The node will send the

resulting chunk to the node it received the chunk from in

the Broadcast. Similarly, we can generate Reducescatter al-

gorithms by inverting Allgather algorithms.

Generally the inverting procedure works for any com-

bining collective that has a single root node for each chunk.

Notably, this does not include Allreduce, which replicates the

result onto all nodes. For synthesizing Allreduce algorithms,

we first notice that Allreduce can be expressed as a combi-

nation of Reducescatter followed by an Allgather. We syn-

thesize Allreduce algorithms by synthesizing an Allgather

algorithm and preceding it with its inverse Reducescatter

algorithm.

3.6 Cost Model
Say we have synthesized a 𝑘-synchronous algorithm with

𝐶 chunks, 𝑆 steps, and 𝑅 rounds. We will use the (𝛼, 𝛽) cost
model [14] to evaluate cost of this algorithm. Here, 𝛼 is the

latency of each link in the topology and 𝛽 is the time taken

sending a byte along a unit-bandwidth link. If the input data

of 𝐿 bytes is divided into 𝐶 chunks, a step 𝑠 with 𝑟𝑠 rounds

takes 𝛼 + 𝑟𝑠
𝐶
· 𝐿 · 𝛽 time. Therefore, the entire algorithm will

finish in time

𝑆 · 𝛼 + 𝑅

𝐶
· 𝐿 · 𝛽

3.7 Pareto-optimal Algorithms
The discussion above shows that for a given topology and a

collective with an input size 𝐿, the cost of a 𝑘-synchronous

algorithm can be characterized by the tuple (𝑆, 𝑅
𝐶
). An al-

gorithm with cost (𝑎, 𝑏) is Pareto-optimal with respect to

the class of 𝑘-synchronous algorithms if for every algorithm

in this class with cost (𝑎′, 𝑏 ′) we have 𝑎 = 𝑎′ ⇒ 𝑏 ′ ≥ 𝑏

and 𝑏 = 𝑏 ′ ⇒ 𝑎′ ≥ 𝑎. An algorithm with cost (𝑎, 𝑏) is
considered latency-optimal (bandwidth-optimal), if for every
𝑘-synchronous algorithm with cost (𝑎′, 𝑏 ′) we have 𝑎′ ≥ 𝑎

(𝑏 ′ ≥ 𝑏).

Note that latency- or bandwidth-optimal algorithms are

not necessarily Pareto-optimal as they can be "wasteful"

in the other parameter. Pareto-optimal algorithms form a

Pareto-frontierwith different algorithms in the frontier being

better than others for a given input size 𝐿 based on the 𝛼

and 𝛽 parameters of the topology.

Algorithm 1 Synthesizing Pareto-Optimal Algorithms

1: procedure Pareto-Synthesize(𝑘,Coll, 𝑃, 𝐵)
2: 𝑎𝑙 = Diameter (P, B)
3: 𝑏𝑙 = InvBisectionBandwidth(P, B)
4: (pre, post) = Lookup(Coll) ⊲ Table 2

5: for 𝑆 = 𝑎𝑙 , 𝑎𝑙 + 1 . . . do
6: 𝐴 = {(𝑅,𝐶) | 𝑆 ≤ 𝑅 ≤ 𝑆 + 𝑘 ∧ 𝑅

𝐶
≥ 𝑏𝑙 }

7: for (𝑅,𝐶) ∈ 𝐴 in ascending order of
𝑅
𝐶
do

8: 𝐺 = ToGlobal(Coll,𝐶)
9: if SMT (G, S, R, P, B, pre, post) = SAT then
10: Report synthesized algorithm (𝑆, 𝑅,𝐶)
11: if 𝑅

𝐶
= 𝑏𝑙 then

12: return
13: break

The procedure above systematically synthesizes Pareto-

optimal 𝑘-synchronous algorithms. The inputs are the pa-

rameter 𝑘 , the name of the collective to synthesize, and the

topology parameters 𝑃, 𝐵 (Section 3.2.1). The procedure com-

putes the latency lower bound 𝑎𝑙 from the diameter of the

topology, and the bandwidth lower bound𝑏𝑙 from the inverse

bisectional bandwidth of the topology. The procedure starts

enumerating steps 𝑆 starting with 𝑎𝑙 . Then it generates𝐴, the

candidate set of tuples (𝑅,𝐶) that satisfy the round constraint
and the inverse bandwidth constraint. Note that without the

𝑘 parameter, this set would be unbounded. The procedure

checks if a (𝑆, 𝑅,𝐶) algorithm exists in the increasing order

of the bandwidth cost
𝑅
𝐶
using the encoding discussed in Sec-

tion 3.4. If one exists, the reported algorithm is guaranteed

to be Pareto-optimal for the current steps 𝑆 . As we increase

the number of 𝑆 , we get algorithms with lower bandwidth

cost. Additionally, if the current bandwidth cost matches the

lower bound 𝑏𝑙 , the procedure returns. As we have already

generated the Pareto-optimal algorithm with 𝑏𝑙 bandwidth

cost, it is not necessary to increase 𝑆 further. Note, that it

is possible for this procedure to never terminate as there

can sometimes be unbounded number of Pareto-optimal al-

gorithms for certain topologies and collectives. While the

synthesis procedure above is for non-combining collectives,

synthesis for combining collectives is similar (Section 3.5).

4 Code Generation
The prior section described a synthesis procedure for gen-

erating Pareto-optimal algorithms. This section describes a



Synthesizing Optimal Collective Algorithms PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea

tool called SCCL that implements this procedure and gener-

ates high-performance collective implementations for both

NVIDIA and AMD GPUs.

Every synthesized algorithm, at its core, is a sequence

of commands that describe what data needs to be sent (i.e.,

which chunk), where it needs to be sent (i.e., a source and

destination), when it needs to be sent (i.e., during which

synchronous step), and with which chunk(s) it needs to be

reduced. SCCL generates SPMD multi-process C++ code com-

bined with CUDA kernels that implement these commands.

Each GPU involved in the computation has its own code

as part of a top-level switch statement. Communication be-

tween GPUs is enabled using CUDA IPC memory handles,

which allows a GPU to access a remote GPU’s memory using

shared pointers. Thus, communication between GPUs simply

involves writing data to appropriate buffers. However, there

are a few crucial choices that impact the communication

performance.

DMA engines and kernel copies: Data may be moved ei-

ther by executing load or store instructions through a kernel,

or by using a specialized DMA engine via cudaMemcpy. A
kernel copy allows data movement and computation to be

fused in a kernel while a DMA engine has a higher initial

𝛼 cost but may have higher bandwidth, leading to a lower

𝛽 cost. On NVLink, DMA engine bandwidth is about 10%

better than kernel copy bandwidth, due to details of the wire-

level protocol. Transfers are packetized, with each packet

including a header (containing address, error correction data,

etc.) and a variable-length payload. DMA engines are able

to emit maximum-sized packets, but kernel copy packets are

limited to the 128-byte cache line size.

Push and pull models: Each DMA engine is located on

a particular GPU. Data movement between two GPUs can be

executed by either the receiver’s DMA engine (a pull model)

or by the sender’s DMA engine (a pushmodel). Kernel copies

have the same two approaches. This may have performance

implications due to the link protocol: the push model only

needs to send write request packets with a payload, whereas

a pull model first sends request packets and then receives

response packets with data. When communicating bidirec-

tionally, the request packets reduce the bandwidth available

for the response packets. Thus, even though the push model

may require extra memory, we have found it to be up to 10%

faster than the pull model.

Single and multiple kernels: One way to implement a

synthesized algorithm is by emitting several kernels, one per

step, which forces a global synchronization between steps

and, as a consequence, introduces large overheads. Alterna-

tively, SCCL fuses all steps into one kernel and thus we imple-

ment the synchronizations between GPUs as a fine-grained

signal and wait mechanism with shared flags. In our single

kernel implementation, each chunk for each connection has

a dedicated flag; a chunk on a GPU is valid only when the

associated flag is set. There is a __threadfence_system()
between the data movement operations and the operation

to set the flag on the remote GPU signals that the transfer is

complete.

Size and Number of Thread Blocks: SCCL dedicates a

given number of thread blocks to each link and for each step,

it uses the same number of thread blocks to communicate

through that link. For different input sizes, the number of

thread blocks significantly affects performance and in later

sections we show how we empirically search for the fastest

configuration for various input sizes.

5 Evaluation
This section demonstrates how we model and synthesize

collectives for two multi-GPU systems with proprietary in-

terconnects used for training large deep learning models. In

both cases, we demonstrate 1) how to model the interconnect

using SCCL, 2) what transport we utilize in lowering synthe-

sized collectives, and 3) the Pareto-frontier of algorithms we

find for the respective interconnects.

5.1 Hardware
The following section describes the hardware topology we

model for our NVIDIA and AMD machines.

5.1.1 NVIDIADGX-1: 8V100GPUs. ADGX-1 is amulti-

GPU server sold directly by NVIDIA in addition to being

a pay-as-you-go rental option in most cloud providers. It

contains two 20-core Intel Xeon E5-2698 v4 processors with

512 GB DRAM split across the two sockets, along with 8

NVIDIA V100 GPUs, each with 32 GB of HBM2 memory. The

GPUs are connected using NVIDIA’s proprietary NVLink

interconnect; each GPU has 6 25 GB/s NVLink ports. Figure 1

shows the topology: the 8 GPUs are interconnected with 2

non-overlapping Hamiltonian cycles. One of those cycles

has two NVLink connections between each pair of GPUs.

The GPUs are also connected to the CPUs by PCIe 3.0 x16

links, but we do not use them due to the wide disparity

between per-GPU NVLink and PCIe bandwidth (∼150 GB/s
vs. ∼14 GB/s). We also run synthesis on this platform.

5.1.2 Gigabyte Z52: 8 AMD MI50 GPUs. A Gigabyte

Z52 system is a consumer grade multi-GPU system. It has

two 64-core AMD EPYC 7002 processors with 1 TB DRAM

split across the two sockets, as well as 8 AMD MI50 GPUs,

each with 32 GB of HBM2 memory. 4 GPUs are connected

to each socket with PCIe links, denoted by a box in Figure 3.

Like NVIDIA, AMD also provides a proprietary high-speed

interconnect called xGMI that links GPUs together. Each blue

line is an xGMI link between a pair of GPUs. Note that the

xGMI connections build two disconnected islands: 3 GPUs

per island are on 1 socket while a lone GPU is on the other
socket (i.e., GPU 1 and 5). The Gigabyte system uses PCIe
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Figure 3. Topology of a Gigabyte MI50 8 GPU AMD System.

4.0 x16 links with measured bandwidth (∼27 GB/s) that ap-
proaches xGMI’s measured bandwidth (∼33 GB/s). As such,
we use PCIe to connect the rings.

5.2 Modeling Bandwidth Constraints
The hardware in this paper has distinct and interesting topolo-

gies. This section describes how we model those respective

topologies in SCCL.

5.2.1 NVIDIA DGX-1: 8 V100 GPUs. Each NVLink con-

nection is point-to-point; thus our bandwidth constraints

are simply the enumeration of each pair of GPUs connected

via NVLink. As each NVLink connection can send 1 chunk

per round, 𝐵 has entries ({(𝑛, 𝑛′)}, 1) for each pair of GPUs

in one cycle and entries ({(𝑛, 𝑛′)}, 2) for GPUs in the other.

5.2.2 Gigabyte Z52: 8AMDMI50GPUs. UnlikeNVLink,
xGMI connections are not simply point-to-point but also

transparently act as a router. For example, GPU 2 can send a

message to GPU 3 even though they lack a physical connec-

tion: GPU 0 routes messages on GPU 2’s behalf. However,

this utilizes multiple links, and thus if GPU 0 concurrently

sends a message to GPU 3, it can expect half the bandwidth

of the link. We thus only model the direct connections in

Figure 3. One way to connect the rings is to utilize PCIe and

let GPU 1 connect to all other GPUs within its same socket

(0, 2, and 3) and GPU 5 connect to GPUs within its same

socket (4, 6, and 7). Because PCIe is shared, we could also

enforce that only 1 PCIe connection occurs on every round,

per socket. For example, the entry in 𝐵 for the left socket

is ({(0, 1), (1, 0), (1, 2), (2, 1), (1, 3), (3, 1)}, 1). However, we
were unable to utilize both xGMI and PCIe at the same time

so our model of the bandwidth ignores the dotted xGMI

connections in Figure 3. As such, we explicitly model the

topology as a ring with GPUs 1 and 5 connecting the xGMI

islands. Lastly, because the bisection bandwidth between the

two xGMI islands is limited by the PCIe links that connect

them, any bandwidth optimal algorithm will be limited by

the bandwidth of these PCIe links. Therefore, we model the

Collective 𝐶 𝑆 𝑅

Allgather/Reducescatter 6 7 7

Allreduce 48 14 14

Broadcast/Reduce 6𝑚 6 +𝑚 6 +𝑚
Table 3. NCCL hand-written collectives and their chunks

and steps. For Reducescatter 𝐶 should be multiplied by 8.

same 𝛽 cost for xGMI and PCIe and assume all links can send

a single chunk per step.

5.3 NCCL and RCCL Baselines
We use NCCL (version 2.7.8-1) and RCCL (installed from

ROCm 3.5.0) for baselines on NVIDIA and AMD hardware,

respectively. NCCL is a hand-written and optimized commu-

nication library from NVIDIA. RCCL is a port of NCCL that

uses the ROCm HIP compiler and targets AMD hardware.

They share the same core algorithms and differ only in how

they interact with the underlying hardware.

Table 3 gives an overview of the collectives that NCCL

implements and number of chunks and steps they use on

a DGX-1. NCCL’s algorithms are all based on either rings

or trees. However, Table 3 uses only ring algorithms, as we

observed that on DGX-1 NCCL’s trees are just simple paths,

which are no better than using rings for any input size.

Our analysis of the chunks (𝐶), steps (𝑆), and rounds(𝑅)

is from our manual inspection of the NCCL source. For

Reduce and Broadcast NCCL implements a pipelined algo-

rithm, which chooses a multiplier𝑚 such that chunks stay

approximately equally sized. Their running times are then

(6 +𝑚) · 𝛼 + 6+𝑚
6𝑚

· 𝐿 · 𝛽 and they get closer to bandwidth

optimality as𝑚 gets larger.

As we show in the next section, SCCL is able to synthe-

size all these NCCL collectives and more, including Scatter,

Gather, and Alltoall.

5.4 Synthesizing Collective Algorithms
Table 4 and Table 5 enumerate various algorithms we synthe-

size for NVIDIA DGX-1 and Gigabyte’s AMD architecture.

For each collective, we synthesize a latency and bandwidth

optimal implementation, along with others that exist at vari-

ous points along the latency-bandwidth curve. The first col-

umn combines collectives which are the inverse of each other

(i.e., Scatter and Gather) and those that can be reduced to

the non-combining collective using the reduction explained

in Section 3.5 (e.g. Reduce to Broadcast).

5.4.1 Optimality. Note we find many latency and band-

width optimal algorithms for each collective, as we search

over 𝑘-synchronous algorithms for different values of 𝑘 . Con-

sider the Allgather collective: we find many algorithms with

various numbers of steps. However, the latency optimal algo-

rithms (2 steps) dominate all others in the 𝛼 term of the cost
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Collective 𝐶 𝑆 𝑅 Optimality Time

Allgather 1 2 2 Latency 0.3 s

(Reducescatter) 2 3 3 0.8 s

3 4 4 1.5 s

4 5 5 2.3 s

5 6 6 3.3 s

6 7 7 Bandwidth 4.6 s

6 3 7 Bandwidth 6.6 s

2 2 3 Latency 0.9 s

Allreduce 8 4 4 Latency 0.3 s

16 6 6 0.6 s

24 8 8 1.3 s

32 10 10 2.9 s

40 12 12 5.6 s

48 14 14 Bandwidth 12.8 s

48 6 14 Bandwidth 23.0 s

16 4 6 Latency 0.8 s

Broadcast 2 2 2 Latency 0.1 s

(Reduce) 6 3 3 0.3 s

12 4 4 1.0 s

18 5 5 8.5 s

6 3 5 0.9 s

Gather 1 2 2 Latency 0.3 s

(Scatter) 2 3 3 0.9 s

3 4 4 1.6 s

4 5 5 2.7 s

5 6 6 3.8 s

6 7 7 Bandwidth 6.0 s

6 3 7 Bandwidth 11.4 s

2 2 3 Latency 1.0 s

Alltoall 8 3 3 2.6 s

8 2 3 Latency 3.0 s

24 8 8 Bandwidth 133.7 s

24 2 8 Both 24.3 s

Table 4. DGX-1 collectives with chunks (𝐶), steps (𝑆) and

rounds (𝑅). Time includes both encoding and solving. For

Reducescatter and Scatter 𝐶 should be multiplied by 8.

model. Likewise, the bandwidth optimal algorithms dom-

inate all others with their low ratio of rounds to chunks

(7/6). We synthesized algorithms in the 0-synchronous class

(𝑅 = 𝐶) as the code generation is much easier.

Note that NCCL’s Allgather algorithm is bandwidth op-

timal, and while it is also the lowest latency algorithm that

NCCL provides, it is not latency optimal. We are able to

synthesize both a bandwidth optimal algorithm with better

latency (6-chunks 3-steps 7-rounds), as well as a latency op-

timal algorithm. In general, our synthesized latency optimal

algorithms have no counterpart in NCCL and our bandwidth

optimal algorithms are better than NCCL’s for Allgather,

Broadcast, and Reduce.

Collective 𝐶 𝑆 𝑅 Optimality Time

Allgather 1 4 4 Latency 0.5 s

(Reducescatter) 2 7 7 Bandwidth 1.3 s

2 4 7 Both 1.7 s

Allreduce 8 8 8 Latency 0.4 s

16 14 14 Bandwidth 0.9 s

16 8 14 Both 1.6 s

Broadcast 2 4 4 Latency 0.1 s

(Reduce) 4 5 5 0.2 s

6 6 6 0.3 s

8 7 7 0.5 s

10 8 8 0.6 s

Gather 1 4 4 Latency 0.4 s

(Scatter) 2 4 7 Both 1.8 s

Alltoall 8 4 8 Both 8.2 s

Table 5. AMD collectives with chunks (𝐶), steps (𝑆) and

rounds (𝑅). Time includes both encoding and solving. For

Reducescatter and Scatter 𝐶 should be multiplied by 8.

5.4.2 Synthesizing All Collectives. Collective commu-

nication libraries need to support a large and diverse set

of hardware architectures. Efficiently implementing latency

and bandwidth optimal algorithms for various topologies is

time-consuming and error-prone. SCCL’s synthesis based ap-

proach allows it to easily extend the set of algorithms through

search: SCCL synthesizes algorithms for Alltoall, Gather and

Scatter where no such counterparts exist in NCCL.

5.4.3 Synthesis time. The longest synthesis time is just

over 2 minutes and most of the time under 10 seconds. The

synthesis problem is non-trivial and its complexity is defined

by both the collective, as well as the hardware topology

we synthesize for. The clever encoding described in Sec-

tion 3.4 was critical for achieving these fast synthesis times.

As a point of comparison, synthesizing the 24-chunk 8-step

bandwidth-optimal Alltoall algorithm with a more direct en-

coding with a Boolean variable for each tuple (𝑐, 𝑛, 𝑛′, 𝑠) ∈ 𝑇

did not finish within 60 minutes. With the better encoding

the synthesis finishes in just over 2 minutes.

5.5 Performance Evaluation
In this section, we compare SCCL’s generated algorithms

with NCCL and RCCL on the NVIDIA and AMD hardware.

Our code generation uses a protocol similar to the simple

protocol (i.e., NCCL_PROTO=Simple). Thus, we use NCCL

with the simple protocol as our baseline. We investigate the

performance of Allgather, Allreduce, and Alltoall as they are

popular primitives in different workloads including machine

learning. For each hardware platform and collective, we gen-

erate multiple algorithms; for each algorithm, we lower using

(1) a single kernel-launch, or (2) multiple cudaMemcpy calls
with one per step. Each algorithm uses a push model for
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copying and when SCCL is compared with NCCL, we ex-

haustively search the size and the number of thread blocks

and report the best performing combination for both SCCL

and NCCL. See Section 4 for more details.

Figure 4 compares SCCL’s generated code for Allgather

with NCCL’s Allgather. A point on Figure 4a (𝑥 ,𝑦) shows the

running time in 𝑦 milliseconds as a function of send input

buffer size in 𝑥 Kbytes while a point on Figure 4b shows the

𝑦 speedup of SCCL’s generated code over NCCL’s Allgather

as a function of send input buffer size in 𝑥 Kbytes. We plot

one line per algorithm denoted as (𝐶, 𝑆, 𝑅) for respectively
chunks, steps, and rounds as defined in Table 4. To show

the impact of our lowering, we plot two versions of a band-

width optimal algorithm (6, 7, 7) (which utilizes a push-copy)
and (6, 7, 7) cudaMemcpy. The latter of which shows the sig-

nificant impact lowering can have on the performance. To

simplify the figure, we only show algorithms that were faster

on at least one input size we experimented with. As it can be

seen from the lines, SCCL is up-to 2.2× faster than NCCL’s

Allgather on small sizes and 1.14× faster on larger sizes. It

is possible for SCCL to automatically switch between multi-

ple implementations based on the input size. In which case,

SCCL will consistently outperform NCCL.

Likewise, Figure 5 shows the running time in milliseconds

(Figure 5a) or speedup (Figure 5b) for Allreduce as a function

of the receive input size. Each line denotes (𝐶, 𝑆, 𝑅) for re-
spectively chunks, steps, and rounds, respectively. With the

exception of 4 middle sizes, SCCL beats NCCL’s Allreduce

with an 8-chunk algorithm for small input sizes by up-to

1.8× and with a 48-chunk algorithm for large input sizes by

up-to 1.06×.
Alltoall is a complex algorithm which is very difficult to

write efficiently by hand. Unlike the prior collectives, NCCL

does not natively support Alltoall; instead, NCCL suggests

using 𝑁 point-to-point exchanges (for 𝑁 GPUs) and thus

its resulting algorithm is neither bandwidth nor latency op-

timal. Because SCCL uses program synthesis to generate

optimal algorithms, it is able to synthesize three Alltoall al-

gorithms in a matter of minutes. Figure 6a shows the latency

in milliseconds of SCCL and NCCL as a function of input size

while Figure 6b shows speedup over NCCL again as a func-

tion of input size. Each line denotes (𝐶, 𝑆, 𝑅) for respectively
chunks, steps, and rounds and demonstrates a speedup of

over 6.8× for large input sizes and over 1.4× for small input

sizes, depending on whether we pick a latency or bandwidth

optimal implementation from SCCL. This significant speedup

really shows off the power of SCCL’s automated approach

to building algorithms tailored specifically to a hardware

architecture.

Lastly, we demonstrate Allgather on the Gigabyte AMD

workstation. Like the other plots, a point on Figure 7 (𝑥 ,𝑦)

shows the latency or speedup 𝑦 for Allgather as a function

of the receive input size in bytes 𝑥 . We plot two algorithms,

(1, 4, 4) and (2, 7, 7); it is clear that (i) the lower latency

algorithm (1, 4, 4) is better at smaller input sizes, (ii) the

higher bandwidth algorithm (2, 7, 7) is faster for large input
sizes, and (iii) SCCL’s generated code is faster than RCCL

for large sizes but slower for medium and small sizes. The

Gigabyte machine, in particular, is new hardware and SCCL

can synthesize new algorithms and implementations for it;

this shows SCCL can help design future interconnects and

co-design them with communication libraries.

These graphs in concert show that SCCL is able to synthe-

size algorithms along the Pareto-optimal frontier and also

lower than to hardware so as to be competitive with a hand

optimized baseline.

6 Related Work
The message passing interface (MPI) [9] is a widely-used

standardized abstraction for communication primitives in

a multi processor system. Implementations of MPI provide

reliable and portable implementations of collective primi-

tives. Efficient algorithms for implementing these primitives

is a long-studied research area [6, 20, 25], including opti-

mized algorithms for specific architectures like mesh, hyper-

cube, or fat-tree[4, 5, 22] and for clusters of shared-memory

processors [21, 24, 26, 27]. The class of 𝑘-synchronous algo-

rithms studied in this paper is designed to include many of

the algorithms proposed in these works and implemented

in popular MPI implementations such as MPICH [25] and

OpenMPI [10].

We evaluated OpenMPI, either through builtin CUDA ca-

pability or through Unified Communication X (UCX) [28].

They lack custom implementations for architectures such as

the DGX-1, and result in subpar performance compared with

our NCCL baselines. NCCL [18] is a library for multi NVIDIA

GPU systems and it utilizes the underlying hardware trans-

port such as NVLink, NVSwitch or Infiniband for an efficient

implementation of collective primitives. RCCL [2] is a port

of NCCL for AMD GPUs and the HIP compiler suite. While

these libraries provide efficient implementations for a limited

set of algorithms, SCCL is able to synthesize a wide range

of algorithms suitable for different input sizes and generate

collective primitives that are not even a part of standard MPI

set.

There are also hybrid algorithms [3, 6] that switch be-

tween latency- and bandwidth-optimal algorithm along each

dimension of a mesh network. However, to the best of our

knowledge, these prior works do not seek to identify al-

gorithms that are Pareto-optimal for a given topology. In

contrast to these prior works, the goal of this paper is to

automatically synthesize Pareto-optimal algorithms for a

given topology.

There are also hierarchical approaches to implement col-

lective primitives in distributed systems. Horovod [23] im-

plements collective primitives by using NCCL locally in node

and MPI across nodes. Others such as BlueConnect [7] and
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Figure 4. Allgather performance comparison with NCCL
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Figure 5. Allreduce performance comparison with NCCL

PLink [17] exploit the hierarchical network topology of a

cloud system or a data center to improve the performance of

collective primitives. In this paper, we focus on synthesizing

algorithms for a single node with multiple GPU, while the

above approaches are beneficial on multi node systems.

Motivated by recent resurgence inmachine-learningwork-

loads, recent research has focused on optimizing the com-

munication of distributed machine learning. Blink [29], the

closest to our work, automatically synthesizes bandwidth-

efficient collective primitives for a given topology. This work

is based on packing spanning trees and is suitable for one-

to-many collective primitives such as broadcast and reduce,

and implements Allreduce as a reduce followed by a broad-

cast. Blink is not guaranteed to generate bandwidth-optimal

algorithms as it heuristically selects a few trees based on

an approximate spanning-tree packing algorithm. Moreover,

Blink’s focus is not on generating latency-optimal algorithms.

In contrast, this work generates latency- and bandwidth-

optimal algorithms for a given topology. There are also other

works [13, 15, 19, 30] on optimizing distributed machine

learning that do so by overlapping computation and commu-

nication and are orthogonal to this work.
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Figure 7. Allgather performance comparison with RCCL

7 Conclusion
This paper introduces SCCL: a systematic method to syn-

thesize algorithms in the Pareto-frontier spanning from the

latency-optimal algorithm to the bandwidth-optimal algo-

rithm for a given collective on an input topology. We charac-

terize a class of algorithms that captures a broad set of known

algorithms and prove Pareto-optimality of both known algo-

rithms and synthesized new algorithms. We automatically

generate an implementation of these algorithms that is com-

petitive with manually hand-tuned communication kernels

in use today.
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