skip to main content
10.1145/3437802.3437821acmotherconferencesArticle/Chapter ViewAbstractPublication PagesccrisConference Proceedingsconference-collections
research-article

Generative Adversarial Networks for Respiratory Sound Augmentation

Published:04 January 2021Publication History

ABSTRACT

In this paper we propose to use generative adversarial network (GAN) for respiratory sound data augmentation. We present a GAN based approach that requires moderate amount of time and computing resources and capable to greatly increase performance of lung sound classification tasks. We also present a conditioned version of GAN, which is flexible and outperforms competitor augmentation methods. As a result, the GAN based augmentation method is able to boost RNN classifier performance by 10-15

References

  1. Antreas Antoniou, Amos Storkey, and Harrison Edwards. 2017. Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340(2017).Google ScholarGoogle Scholar
  2. Titus Josef Brinker, Achim Hekler, Jochen Sven Utikal, Niels Grabe, Dirk Schadendorf, Joachim Klode, Carola Berking, Theresa Steeb, Alexander H Enk, and Christof von Kalle. 2018. Skin cancer classification using convolutional neural networks: systematic review. Journal of medical Internet research 20, 10 (2018), e11936.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bert Brunekreef and Stephen T Holgate. 2002. Air pollution and health. The lancet 360, 9341 (2002), 1233–1242.Google ScholarGoogle Scholar
  4. Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. 2016. Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In Advances in neural information processing systems. 2172–2180.Google ScholarGoogle Scholar
  5. Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078(2014).Google ScholarGoogle Scholar
  6. Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289(2015).Google ScholarGoogle Scholar
  7. Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep learning. Vol. 1. MIT press Cambridge.Google ScholarGoogle Scholar
  8. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Advances in neural information processing systems. 2672–2680.Google ScholarGoogle Scholar
  9. Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. 2017. Improved training of wasserstein gans. In Advances in neural information processing systems. 5767–5777.Google ScholarGoogle Scholar
  10. Changhee Han, Hideaki Hayashi, Leonardo Rundo, Ryosuke Araki, Wataru Shimoda, Shinichi Muramatsu, Yujiro Furukawa, Giancarlo Mauri, and Hideki Nakayama. 2018. GAN-based synthetic brain MR image generation. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 734–738.Google ScholarGoogle ScholarCross RefCross Ref
  11. Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in neural information processing systems. 6626–6637.Google ScholarGoogle Scholar
  12. Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980(2014).Google ScholarGoogle Scholar
  13. Kirill Kochetov, Evgeny Putin, Svyatoslav Azizov, Ilya Skorobogatov, and Andrey Filchenkov. 2017. Wheeze detection using convolutional neural networks. In EPIA Conference on Artificial Intelligence. Springer, 162–173.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kirill Kochetov, Evgeny Putin, Maksim Balashov, Andrey Filchenkov, and Anatoly Shalyto. 2018. Noise masking recurrent neural network for respiratory sound classification. In International Conference on Artificial Neural Networks. Springer, 208–217.Google ScholarGoogle ScholarCross RefCross Ref
  15. Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. 2019. Improved precision and recall metric for assessing generative models. In Advances in Neural Information Processing Systems. 3927–3936.Google ScholarGoogle Scholar
  16. Yi Ma, Xinzi Xu, Qing Yu, Yuhang Zhang, Yongfu Li, Jian Zhao, and Guoxing Wang. 2019. LungBRN: A Smart Digital Stethoscope for Detecting Respiratory Disease Using bi-ResNet Deep Learning Algorithm. In 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 1–4.Google ScholarGoogle ScholarCross RefCross Ref
  17. Polina Mamoshina, Kirill Kochetov, Franco Cortese, Anna Kovalchuk, Alexander Aliper, Evgeny Putin, Morten Scheibye-Knudsen, Charles R Cantor, Neil M Skjodt, Olga Kovalchuk, 2019. Blood biochemistry analysis to detect smoking status and quantify accelerated aging in smokers. Scientific reports 9, 1 (2019), 1–10.Google ScholarGoogle Scholar
  18. Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. 2017. Least squares generative adversarial networks. In Proceedings of the IEEE international conference on computer vision. 2794–2802.Google ScholarGoogle ScholarCross RefCross Ref
  19. Brian McFee, Eric J Humphrey, and Juan Pablo Bello. 2015. A software framework for musical data augmentation.. In ISMIR, Vol. 2015. 248–254.Google ScholarGoogle Scholar
  20. Puja Mehta, Daniel F McAuley, Michael Brown, Emilie Sanchez, Rachel S Tattersall, Jessica J Manson, HLH Across Speciality Collaboration, 2020. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London, England) 395, 10229 (2020), 1033.Google ScholarGoogle Scholar
  21. Rajkumar Palaniappan, Kenneth Sundaraj, and Sebastian Sundaraj. 2014. A comparative study of the svm and k-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals. BMC bioinformatics 15, 1 (2014), 223.Google ScholarGoogle ScholarCross RefCross Ref
  22. Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le. 2019. Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint arXiv:1904.08779(2019).Google ScholarGoogle Scholar
  23. Evgeny Putin, Arip Asadulaev, Yan Ivanenkov, Vladimir Aladinskiy, Benjamin Sanchez-Lengeling, Alán Aspuru-Guzik, and Alex Zhavoronkov. 2018. Reinforced adversarial neural computer for de novo molecular design. Journal of chemical information and modeling 58, 6 (2018), 1194–1204.Google ScholarGoogle ScholarCross RefCross Ref
  24. Evgeny Putin, Arip Asadulaev, Quentin Vanhaelen, Yan Ivanenkov, Anastasia V Aladinskaya, Alex Aliper, and Alex Zhavoronkov. 2018. Adversarial threshold neural computer for molecular de novo design. Molecular pharmaceutics 15, 10 (2018), 4386–4397.Google ScholarGoogle Scholar
  25. Daniele Ravì, Charence Wong, Fani Deligianni, Melissa Berthelot, Javier Andreu-Perez, Benny Lo, and Guang-Zhong Yang. 2016. Deep learning for health informatics. IEEE journal of biomedical and health informatics 21, 1(2016), 4–21.Google ScholarGoogle Scholar
  26. BM Rocha, D Filos, L Mendes, I Vogiatzis, E Perantoni, E Kaimakamis, P Natsiavas, A Oliveira, C Jácome, A Marques, 2017. A respiratory sound database for the development of automated classification. In International Conference on Biomedical and Health Informatics. Springer, 33–37.Google ScholarGoogle Scholar
  27. Justin Salamon and Juan Pablo Bello. 2017. Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Signal Processing Letters 24, 3 (2017), 279–283.Google ScholarGoogle ScholarCross RefCross Ref
  28. Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. 2016. Improved techniques for training gans. Advances in neural information processing systems 29 (2016), 2234–2242.Google ScholarGoogle Scholar
  29. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. 2015. Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853(2015).Google ScholarGoogle Scholar
  31. Fang Zheng, Guoliang Zhang, and Zhanjiang Song. 2001. Comparison of different implementations of MFCC. Journal of Computer science and Technology 16, 6 (2001), 582–589.Google ScholarGoogle ScholarDigital LibraryDigital Library
  1. Generative Adversarial Networks for Respiratory Sound Augmentation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      CCRIS '20: Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System
      October 2020
      217 pages
      ISBN:9781450388054
      DOI:10.1145/3437802

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 4 January 2021

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format