
Analysis of an automatic grading system within first year
Computer Science programming modules

Emlyn Hegarty-Kelly
Department of Computer Science, Maynooth University

Maynooth, Ireland
emlyn.hegartykelly@mu.ie

Dr Aidan Mooney
Department of Computer Science, Maynooth University

Maynooth, Ireland
aidan.mooney@mu.ie

ABSTRACT
Reliable and pedagogically sound automated feedback and grad-
ing systems are highly coveted by educators. Automatic grading
systems are useful for ensuring equity of grading of student submis-
sions to assignments and providing timely feedback on the work. 
Many of these systems test submissions to assignments based on 
test cases and the outputs that they achieve, while others use unit
tests to check the submissions.

The approach presented in this paper checks submissions based
on test cases but also analyses what the students actually wrote in 
their code. Assignment questions are constructed based around the
concepts that the student are currently learning in lectures, and 
the patterns searched for in their submissions are based on these
concepts. In this paper we show how to implement this approach 
effectively. We analyse the use of an automatic grading system
within first year Computer Science programming modules and 
show that the system is straightforward to use and suited for novice
programmers, while providing automatic grading and feedback.

Evaluation received from students, demonstrators and lecturers
show the system is extremely beneficial. The evaluation shows that 
such systems allow demonstrators more time to assist students
during labs. Lecturers can also provide instant feedback to students 
while keeping track of their progress and identifying where the 
gaps in students’ knowledge are.

KEYWORDS
Automated Assessment, Computer Science Education, CS1, Coding
ACM Reference Format:
Emlyn Hegarty-Kelly and Dr Aidan Mooney. 2021. Analysis of an automatic 
grading system within first year Computer Science programming modules. 
In Computing Education Practice 2021 (CEP ’21), January 7, 2021, Durham, 
United Kingdom. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/ 
3437914.3437973

1 INTRODUCTION
Automatic grading of student submissions is often seen as an ideal
rather than a reality. Can an automated system perform equally 
as well, or better, than a human grader? Within Computer Science

CEP ’21, January 7, 2021, Durham, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8959-4/21/01. . . $15.00
https://doi.org/10.1145/3437914.3437973

(CS) students tend to be exposed initially to CS1 which focuses on
programming. CS has a notoriously high failure rate at the end of
first year with programming modules seen as a major stumbling
block. In Ireland, the non-progression rate for first year CS students
is currently at 25%, the highest among all disciplines in higher
education [6].

Additionally, CS1 tends to have high student numbers and pro-
gramming is an individual task and can be very frustrating, with
struggling students feeling isolated and often embarrassed to ask
questions, and it is not until the final exam that they may be identi-
fied as struggling [10]. The CS1 class discussed within the paper
was a first year university class with approximately 400 students
and covered topics from variables up to multi-dimensional arrays in
Java. The class consists of mainly school leavers and is comprised
of students doing a wide cohort of degree programmes, across both
Science and Arts fields.

Grading CS1 coding assignments can be an unwieldy process.
Students may submit their assignments online or they are corrected
in labs by demonstrators. These methods have their own inherent
problems. When assignments are submitted online they need to
be sorted and organised to ensure they are in the correct file type
and format, they then need to be compiled and run on the graders
computer before finally having a mark assigned. When they are cor-
rected in labs by demonstrators it is difficult to ensure that grading
is consistent and unbiased when there are multiple demonstrators.
While this grading is taking place, students are missing out on
vital help and support that the demonstrator could be providing.
Both of these grading processes are difficult with small class sizes
and become more onerous and time consuming as the class size
increases. The way to overcome the inherent difficulties with these
processes is to incorporate an automated grading system.

An automated grading system which is unbiased is extremely
beneficial to students and educators. All students within a class
group will be graded similarly ensuring that no bias occurs; in
comparison to the case where multiple demonstrators might be
reviewingworkwithin a class.When the student submits the assign-
ment, the files are required to be in the correct type and format, and
the file will be automatically compiled and executed by the system
with an associated grade being assigned. The time to complete the
entire grading process is also greatly reduced. Wilcox [14] looked at
"The role of automation in undergraduate computer science educa-
tion" and concluded that automation can save significant time and
resources without negatively impacting the academic performance
of students in introductory courses. However, as highlighted by
Wrenn et al. [15] automated grading systems do have their place,
but we must reflect on their usage regularly to determine if they
are actually benefiting students.

17

This work is licensed under a Creative Commons Attribution International 4.0 License. 

https://doi.org/10.1145/3437914.3437973
https://doi.org/10.1145/3437914.3437973
https://doi.org/10.1145/3437914.3437973
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3437914.3437973&domain=pdf&date_stamp=2021-01-07


CEP ’21, January 7, 2021, Durham, United Kingdom Emlyn Hegarty-Kelly and Dr Aidan Mooney

There are a number of approaches that one could take when
looking at the automatic grading of student assignments and these
will be discussed in more detail in Section 2. This paper looks at
our approach to automated grading of student assignments in their
introductory programming module during weekly lab assignments.
Within our CS1 module, and subsequent CS2 module, students are
encouraged to continue to work outside of scheduled class and lab
times. They have access to an automated grading system to redo
past assignments and practice their programming at all times, all
of which aids in their learning. The work presented in this paper
is early stage research and we are currently enhancing the system
with the intention of bench-marking the effectiveness of the system
in the near future.

2 RELATEDWORK
Automatic grading has received a lot of attention in CS education
[7] and as such many different systems have been developed and
used to supplement teaching within CS. Each of these systems
provide ways for students to store and maintain their code, but they
each use different methods to grade the students work.

There are a number of approaches that can be taken with an au-
tomatic grading system. One approach taken looks at using certain
inputs to a program and determining if the output of a students
program matches the expected output, taking in to account the
functionality that is expected from the assessed program. Examples
of this are repl.it classroom [11], Stepik [13] and Autolab Project
[1]. These systems allow students to write code in an online editor
and submit it for grading. Automatic grading is then completed by
having predetermined test cases in the form of input values and
when the code runs it is matched against expected output values. A
calculated grade is then assigned to this submission on this basis.

Another approach is to allow students to test their own code
using tools like Web-CAT [4]. When a student is submitting code in
Web-CAT they must also supply test cases via JUnit. The JUnit test
cases, provided by the student, ensure the solution addresses all of
the requirements of the question being asked and that the solution is
valid. OK [9] is a system that combines both approaches mentioned
above but provides more graphical feedback for graders about how
many students submitted solutions and the grades achieved, among
other statistics. DeNero, Sridhara, Pérez-Quiñones, Nayak, and
Leong [3] carried out an overview of automatic grading systems, in-
cluding Autolab Project, Web-CAT and OK, where they identify the
structure of each of the systems and how they operate. HackerRank
[5] is a professional automatic assessment platform that is used by
technology recruiters and hiring managers to objectively evaluate
developer skills. The platform can be used to assess developers skills
based on their program outputs. A system like HackerRank has
many advantages but it does not provide the same level of support
for novice programmers as other tools.

All of the systems presented provide automatic grading solutions
for different aspects of CS modules, from code output to unit tests
and algorithm visualisations. These systems however, either just
test against a suite of test cases for a solution, which does not take
into account the students code, or look for unit tests that students
must also write for their code. This can be problematic for novice
CS students who might have difficulty in grasping the core concepts
of writing a program and do not need these extra complexities.

Another approach to automatic grading uses pattern matching
techniques to looks for certain constructs in the code. For example,
an educator may want students to use a for loop and an array struc-
ture, and pattern matching techniques can be used to look for these
in the code submission. A combination of the discussed techniques
can be used to allow for as much coverage of student submissions
as possible. Our solution uses this pattern matching technique, with
novice CS students, to assist them in core programming concepts
and give them feedback based on what they have written in their
submitted code as well as testing for correctness with test cases,
which check the output from the submissions.

3 BASH SCRIPTING
The automatic grading system operates using Bash scripting. This
section describes in detail how the scripts have been continually
developed and improved upon to incorporate new features and will
present how the automatic grading is carried out.

Initially, the scripts started out in their simplest form and running
the students code against a series of test cases. The system would
then generate a grade based on the number of test cases that the
code passed. However, no consideration was made in this approach
for the work that the student had put into their solution when it
did not pass the test cases. With this in mind further work was
undertaken on the scripts to not only look at the output from
student’s code but also to look at what they wrote in their solutions.
The steps undertaken were as follows:

(1) Compile the students code and check for errors,
(2) Use grep functionality to identify patterns that match to

concepts being assessed,
(3) Provide input for the test cases along with the expected

output for each checking howmany test cases the are passed,
(4) Assign marks for each of the 3 steps above,
(5) Determine appropriate feedback for the students.
There are two different frameworks that our automatic grading

system has used. These are the Virtual Programming Lab (VPL)
[12] and MULE [2]. VPL is a plugin for the Moodle learning envi-
ronment, and MULE is a browser-based Integrated Development
Environment (IDE). The frameworks allow the students to view
course assignments and write their code in an online platform. Ad-
ditionally, they allow students to practice their coding skills when
not in a lab environment, and still receive feedback on their work.

3.1 Compile the code
The first step is to check if the code provided by the student as a
solution compiles correctly. If there are errors in the compilation
process the errors are outputted to the screen for the students to fix
them. At this stage it is also important to check that the submission
contains code and is not an empty file.

3.2 Grep and Regular Expressions
The next step is to use grep, which is a process within the bash
scripting language allowing the system to search the code for pat-
terns. The regular expressions (regex) to find these patterns would
correspond to different concepts within the Java programming
language. In initial iterations of the system there were regexs’ de-
veloped that would not always properly capture a fully syntactically

18



Analysis of an automatic grading system in CS1 CEP ’21, January 7, 2021, Durham, United Kingdom

correct construct. For example, in a “for loop” if a student uses com-
mas instead of the required semi colons within the for loop block,
the compilation process would fail as the syntax is incorrect but
the student might get full marks for this incorrect code structure.
As a result many of the original regexs’ needed to be better struc-
tured to allow students flexibility in how they write their code but
still ensuring to capture the concept being assessed, while being
syntactically correct.

3.3 Test Cases
After compiling the code, it remains important to ensure that the
student is on the correct learning path with correctly functioning
code and to use test cases to check that the code functions correctly.
These test cases should effectively check the student’s solutions
to ensure complete test coverage. In the output, the students are
shown how their code handled each test case, and if they failed a
test case they would be shown the expected result. This helps to
provide the student with reasoning and feedback as to where they
have gone wrong. To allow for students to solve the question in an
unexpected way the number of test cases that their code passes is
compared to the actual number of test cases. If the students code
passes all test cases then full marks are awarded.

3.4 Assign Marks
Lab questions are created weekly based on the concepts being cov-
ered in class. Marks are awarded within the questions in three
categories. The first category sees marks awarded for the successful
compilation of their code. The second category sees marks awarded
for matching the different code constructs for the topic being as-
sessed. The third category sees marks awarded for passing the test
cases for the question being asked.

3.5 The Feedback That Is Provided
At different stages in the process, feedback can be provided. If the
student submission does not compile, standard error messages are
displayed. If certain code patterns are not found in the solution a
message can be displayed highlighting this. The system can provide
the input and expected output for the test cases and determine if
the solution passes these test cases. The current feedback system
has proven to be successful in engaging students [8], but it was felt
that the feedback could be improved and further developed.

4 EVALUATION
While maintaining and developing this automatic grading system
evaluation from the different user types was gathered. These users
are the students completing assignments, demonstrators who assist
students during lab times and lecturers who set assignments. In this
section we provide a review of these different types of evaluation.

4.1 Student Evaluation
Students were asked for their evaluation on using an automated
grading system to do their weekly lab assignments. Participation
in this survey was voluntary and some of the comments included:

• Instant feedback is extremely helpful understanding code.
• I feel it is an excellent piece of software to practice my code.
• Easier to plan and organise my code.

• Challenging, efficient, helpful to the module.
• Useful in the sense that it tells you what your code is missing.
• Having a built-in set of test cases meant the evaluation was
a big help.

This collection of comments represents the positive experience of
the automated grading system experienced within the class. There
was some negative feedback to the system, mainly related to the
description of errors provided by the tool, as summarised by:

• It would help more if it gave a more detailed description of
errors.

4.2 Demonstrator Evaluation
Demonstrators work directly with the students in their weekly labs
and have experienced the automatic grading system first-hand. The
demonstrators were asked about the advantages and disadvantages
of using the automatic grading system. In total seven demonstrators
provided evaluation to the survey through Microsoft Forms.

When asked about the advantages of using the system and feed-
back provided, the following comments were received:

• Less biased and error prone correcting work, an automatic
grading can resolve some trivial issues reducing workload.

• With auto grading, more time is allowed for teaching rather
than marking their answers.

• If the mistake was anticipated the feedback is good enough
I don’t need to help much, the students can make progress
themselves. However, if the mistake was unexpected, it can
be time consuming to find out where the problem lies.

• Failed test cases are very helpful to show the student where
their code went wrong. Often the grading script will have
better test cases than the student or I could have come up
with it.

Overall 86% of demonstrators said the system was very help-
ful for the students in labs with the remaining 14% expressing
no feelings either way. The demonstrators were also asked about
disadvantages of the system and the common sentiment was:

• The system is not always capable of guiding the student
to the correct answer. A demonstrator grading can usually
give an excuse for an answer being incorrect. There are
cases where the system provides a fail, but the reason is not
obvious ..., sometimes leading to further confusion.

The demonstrators were asked "From a demonstrator point of
view, does the feedback provided by the automatic grading system
help you to help the students". Some of the responses were:

• It is quicker to see where they’re going wrong.
• Yes, the system helps me find the type of error quickly and
the test cases help me determine what inputs are causing
the students program to fail.

• Yes, with the feedback, reading errors is encouraged and this
shows them how to locate their mistake; showing them how
to read their errors has been greatly helped by the feedback.

The demonstrators were asked "From a demonstrator’s point of
view, how useful do you find the automatic grading in labs? (1 - not
useful at all and 5 - extremely useful). The average response here
was 4.4 out of 5, highlighting the strong belief of demonstrator’s
that this tool is a significant benefit to them supporting students.

19



CEP ’21, January 7, 2021, Durham, United Kingdom Emlyn Hegarty-Kelly and Dr Aidan Mooney

4.3 Lecturer Evaluation
Evaluation was received from three lecturers who regularly use au-
tomated grading tools, in order to gather evidence on their benefits.
The automatic grading system was given a rating of 4.5/5 in terms
of its usefulness to lecturers in their modules. The lecturers were
also asked about the benefits of the system within their module for
both demonstrators and students. The responses were:

• It has the potential to provided faster feedback (sometimes
dynamic feedback) to the student. It guarantees that grad-
ing is consistent. The digital recording of the submission
and grade data is useful for auditing and storing of assign-
ments. Once developed it can save timewhich can be used for
demonstrators and lecturers to use in the lab for discussion.

• Yes, the quick feedback and time saved allows for more dis-
cussion in the lab sessions.

• Yes definitely. The demonstrator can use the grading received
by a student to direct their support and not get lost in trying
to find errors within the code.

• The system removes the need for the command line interface
required by MASM (and C), this allows students to focus on
concepts and for demonstrators to do the same. The quicker
code/compile/review cycle also maintains focus on the as-
signment in the lab.

The main disadvantage that the lecturers discussed was around
the set up time of the scripts for the assignments but they com-
mented that once a script was created it was relatively easy to
transfer it across to other questions with minor adjustments. The
lecturers were also asked about what improvements could be made
to the system. The responses to this question were as follows:

• An easier method of creating scripts.
• The system should look at the totality of the submission, code
submitted, compile and run time and test cases. With code it
should be aware of industry standards (e.g. indentation, etc)
and algorithms (e.g. detect quick sort or bubble sort).

• Allow for a wider range of text/string answers (Which are
obviously checked by more complex regular expressions).

The lecturers were asked if the feedback provided by the auto-
matic grading system helped them in helping their students:

• Yes, the quick feedback and time saved allows for more dis-
cussion in the lab sessions.

• Indirectly as it is allowing the demonstrators to provide more
time to them without spending time correcting work.

In additional evaluation, one lecturer referred to the increased
support and scaffolding available for students as they have more
demonstrator one-on-one time with the students in labs.

4.4 Discussion
Evaluation on our automated grading systems was very positive
from all involved. Students appreciated the quick grading which
allowed them to improve their code. It appears to motivate the stu-
dents to strive towards passing all of the test cases by highlighting
failed ones. Demonstrators are freed up to spend more time helping
the students and the automated grading tool allows them to quickly
see where they should target their support. Lecturers noted that the
consistency in grading is a key feature for these tools as all students

are grading equally. In addition, the recording of all submissions
and grades aids easy auditing of modules.

5 CONCLUSIONS AND FUTUREWORK
Automatic grading of student work can free up other resources in
class like demonstrator time. This allows demonstrators to spend
time helping students with their coding issues rather than spending
time grading their work. Automated grading tools also ensure that
all students are graded using the same rubric, thus ensuring equality
and non-bias while also ensuring a high standard of work.

We have been using automated tools for a number of years. The
positive feedback voiced by students, demonstrators and lecturers
alike have convinced us to invest more time and effort enhancing
these tools. We endeavour to enhance these tools by refining and
improving the already created scripts, in addition to adding more
questions to our bank of scripts. With our system the valuable and
timely feedback for students is most important, and with this in
mind we are beginning a large scale study of over 400 CS1 students.
We will analyse each student’s code every time they save and eval-
uate work while answering questions, to gain strong insights into
how the students react to feedback and errors in real time. We
hope this investigation will help us further refine our system and to
help students get the most from this novel approach to automatic
grading for CS1 and CS2 class groups. The main potential effects of
this intervention would be to see a higher student engagement with
the course material through tailored feedback in the assessments
and increased retention within the modules.

REFERENCES
[1] Autolab Project. 2020. Autolab Project. http://www.autolabproject.com Accessed:

2020-06-11.
[2] Natalie Culligan and Kevin Casey. 2018. Building an Authentic Novice Pro-

gramming Lab Environment. In International Conference on Enguaging Pedagogy
(ICEP).

[3] John DeNero, Sumukh Sridhara, Manuel A Pérez-Quiñones, Aatish Nayak, and
Ben Leong. 2017. Beyond Autograding: Advances in Student Feedback Platforms..
In SIGCSE. 651–652.

[4] Stephen H Edwards and Manuel A Perez-Quinones. 2008. Web-CAT: automati-
cally grading programming assignments. In ACM SIGCSE Bulletin, Vol. 40. ACM,
328–328.

[5] HackerRank. 2020+. HackerRank. https://www.hackerrank.com Accessed:
2020-07-14.

[6] David Harmon and Stephen Erskine. 2017. Eurostudent Survey VI. http:
//hea.ie/assets/uploads/2018/01/HEA-Eurostudent-Survey.pdf

[7] Jack Hollingsworth. 1960. Automatic graders for programming classes. Commun.
ACM 3, 10 (1960), 528–529.

[8] Aidan Mooney, Susan Bergin, and Emlyn Hegarty-Kelly. 2017. Incorporating
the Virtual Programming Lab into a first year Computer Science module. In
Technology-Enabled Feedback Approaches for First-Year: Y1Feedback Case Studies
in Practice.

[9] OK. 2020. OK. https://okpy.org Accessed: 2020-07-11.
[10] Keith Quille, Susan Bergin, and Aidan Mooney. 2015. Press#, a web-based edu-

cational system to predict programming performance. International Journal of
Computer Science and Software Engineering (IJCSSE) 4, 7 (2015), 178–189.

[11] Replit. 2020. repl.it classroom. https://repl.it/site/classrooms Accessed: 2019-06-
11.

[12] Juan Carlos Rodríguez-del Pino, Enrique Rubio Royo, and Zenón Hernán-
dez Figueroa. 2012. A Virtual Programming Lab for Moodle with automatic
assessment and anti-plagiarism features. (2012).

[13] Stepik. 2020. Stepik - smart tools for IT instructors. https://stepik.org/catalog
Accessed: 2020-07-11.

[14] Chris Wilcox. 2015. The role of automation in undergraduate computer science
education. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education. ACM, 90–95.

[15] John Wrenn, Shriram Krishnamurthi, and Kathi Fisler. 2018. Who Tests the
Testers? (ICER ’18). Association for Computing Machinery, New York, NY, USA,
51–59.

20

http://www.autolabproject.com
https://www.hackerrank.com
http://hea.ie/assets/uploads/2018/01/HEA-Eurostudent-Survey.pdf
http://hea.ie/assets/uploads/2018/01/HEA-Eurostudent-Survey.pdf
https://okpy.org
https://repl.it/site/classrooms
https://stepik.org/catalog

	Abstract
	1 Introduction
	2 Related Work
	3 Bash Scripting
	3.1 Compile the code
	3.2 Grep and Regular Expressions
	3.3 Test Cases
	3.4 Assign Marks
	3.5 The Feedback That Is Provided

	4 Evaluation
	4.1 Student Evaluation
	4.2 Demonstrator Evaluation
	4.3 Lecturer Evaluation
	4.4 Discussion

	5 Conclusions and Future Work
	References

