
Learning to Drop: Robust Graph Neural Network via
Topological Denoising

Dongsheng Luo1∗, Wei Cheng2∗, Wenchao Yu2, Bo Zong2, Jingchao Ni2,
Haifeng Chen2, Xiang Zhang1

1Pennsylvania State University, 2NEC Labs America
{dul262,xzz89}@psu.edu,{weicheng,wyu,bzong,jni,haifeng}@nec-labs.com

ABSTRACT
Graph Neural Networks (GNNs) have shown to be powerful tools
for graph analytics. The key idea is to recursively propagate and
aggregate information along edges of the given graph. Despite their
success, however, the existing GNNs are usually sensitive to the
quality of the input graph. Real-world graphs are often noisy and
contain task-irrelevant edges, which may lead to suboptimal gen-
eralization performance in the learned GNN models. In this paper,
we propose PTDNet, a parameterized topological denoising net-
work, to improve the robustness and generalization performance
of GNNs by learning to drop task-irrelevant edges. PTDNet prunes
task-irrelevant edges by penalizing the number of edges in the
sparsified graph with parameterized networks. To take into con-
sideration of the topology of the entire graph, the nuclear norm
regularization is applied to impose the low-rank constraint on the
resulting sparsified graph for better generalization. PTDNet can
be used as a key component in GNN models to improve their per-
formances on various tasks, such as node classification and link
prediction. Experimental studies on both synthetic and benchmark
datasets show that PTDNet can improve the performance of GNNs
significantly and the performance gain becomes larger for more
noisy datasets.
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1 INTRODUCTION
In recent years, we have witnessed a dramatic increase in our ability
to extract and collect data from the physical world. In many appli-
cations, data with complex structures are connected for their inter-
actions and are naturally represented as graphs [35, 42, 44]. Graphs
are powerful data representations but are challenging to work with
because they require modeling both node feature information as
well as rich relational information among nodes [5, 17, 40, 51]. To
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Table 1: Statistics of positive and negative edges on Cora.

Dataset # Nodes # Edges # Pos. Edges # Neg. Edges
Cora 2,708 5,429 4,418 1,011

tackle this challenge, various Graph Neural Networks (GNNs) have
been proposed to aggregate information from both graph topology
and node features [17, 25, 43, 49, 53]. GNNs model node features as
messages and propagate them along the edges of the input graph.
During the process, GNNs compute the representation vector of
a node by recursively aggregating and transforming representa-
tion vectors of its neighboring nodes. Such methods have achieved
state-of-the-art performances in various tasks, including node clas-
sification and link prediction [54, 57].

Despite their success, GNNs are vulnerable to the quality of
the given graph due to its recursively aggregating schema. It is
natural to ask: is it necessary to aggregate all neighboring nodes? If
not, is there a principled way to select which neighboring nodes are
not needed to be included? In many real-world applications, graph
data exhibit complex topology patterns. Recent works [38, 55] have
shown that GNNs are greatly over-smoothed as edges can be pruned
without loss of accuracy. Besides, GNNs are easily aggregating
task-irrelevant information, leading to over-fitting which weakens
the generalization ability. Specifically, from the local perspective,
a node might be linked to nodes with task-specific “noisy” edges.
Aggregating information from these nodes would impair the qual-
ity of the node embedding and lead to unwanted prediction in the
downstream task. From the global view, nodes located at the bound-
ary of clusters are connected to nodes from multiple communities.
Overwhelming information collected from their neighbors would
dilute the true underlying patterns.

As a motivating example, we consider a benchmark dataset
Cora [40]. We denote the edges connecting nodes with the same
label as positive edges, otherwise, as negative edges. Table 1 shows
the statistics of different edges. It is reasonable to consider that
passing messages through positive edges leads to high quality node
representation, while information aggregated along negative edges
impair the performance of GNNs [19]. We adopt Graph Convolu-
tional Network(GCN) [25], a representative GNN, as an example to
verify this intuition. We randomly delete some positive and nega-
tive edges and conduct GCN on the resulting graphs. As shown in
Fig. 1, the performance of GCN increases with more negative edges
removed.

Topological denoising is a promising solution to address the
above-mentioned challenge by removing “noisy” edges [11, 45]. By
denoising the input graph, we can prune away task-irrelevant edges
to avoid aggregating unnecessary information in GNNs. Besides,
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Figure 1: Performance of GCN w.r.t. removing positive and
negative edges on Cora.

it can also help improve the robustness and alleviate the over-
smoothing problem inherent of GNNs [38]. The idea of topological
denoising is not new. In fact, this line of thinking has motivated
GAT [43] that aggregates neighboring nodes with weights from
attention mechanism and thus to some extent alleviate the prob-
lem. Other existing methods aim to extract smaller subgraphs from
the given graphs to preserve pre-defined properties or randomly
remove/sample edges during the training process to prevent GNNs
from over-smoothing [17, 38, 41, 46]. However, within unsuper-
vised settings, subgraphs sampled from these approaches may be
suboptimal for downstream tasks and also lack persuasive ratio-
nales to explain the outcomes of the model for the task. Instead,
the task-irrelevant “noisy” edges should be specific to the down-
stream objective. Besides, in real-life graphs, node contents and
graph topology provide complementary information to each other.
Denoising process should take both information into consideration,
which is overlooked by existing methods.

In this paper, we propose a Parameterized Topological Denois-
ing network (PTDNet) to enhance the performance of GNNs. We
use deep neural networks, considering both structural and content
information as inputs, to learn to drop task-irrelevant edges in a
data-driven way. PTDNet prunes the graph edges by penalizing
the number of edges in the sparsified graph with parameterized
networks [29, 50]. The denoised graphs are then fed into GNNs
for robust learning. The introduced sparsity in the neighboring
nodes aggregation has a variety of merits: 1) a sparse aggregation is
less complicated and hence generalizes well [15]; 2) it can facilitate
interpretability and help infer task-relevant neighbors. Consider-
ing the combinatorial nature of the denoising process, we relax
the discrete constraint with continuous distributions that could be
optimized efficiently with backpropagation, enabling PTDNet to be
compatible with various GNNs in both transductive and inductive
settings, including GCN [25], Graph Attention Network [43], Graph-
Sage [17], etc. In PTDNet, the denoising networks and GNN are
jointly optimized in an end-to-end fashion. Different from conven-
tional methods that remove edges randomly or based on pre-defined
rules, the denoising process of PTDNet is guided by the supervision
of the downstream objective in the training phase.

To further concern the global topology, the nuclear norm regu-
larization is applied to impose low-rank constraint on the resulting
sparsified graph for better generalization. Due to the discontinu-
ous nature of the rank minimization problem, PTDNet smooths
the constraint with the nuclear norm, which is the tightest convex
envelope of the rank [37]. This regularization denoises the input

graph from the global topology perspective by removing edges con-
necting multiple communities to improve generalization ability and
robustness of GNNs [11]. Experimental results on both synthetic
and benchmark datasets demonstrate that PTDNet can effectively
enhance the performance and robustness of GNNs.

2 RELATEDWORK
GNNs are powerful tools to investigate the graph data with node
contents. GNN models utilize the message passing mechanism to
encode both graph structural information and node features into
vector representations. These vectors are then used to node-level or
graph-level downstream tasks. GNNswere initially proposed in [16],
and extended in [39]. These methods learn node representations by
iteratively aggregating neighbor information until reaching a static
state. Inspired by the success of convolutional neural networks
(CNNs) in computer vision, graph convolutional networks in the
graph spectral domain were proposed based upon graph Fourier
transform [4]. Multiple extensions were further proposed [9, 25,
28, 31, 39, 43]. The express power of GNNs were analyzed in [49].
DropEdge and PairNorm investigated the over-smoothing problem
of stacking multiple GNN layers [38, 55].

Graph Sparsification and Sampling.Conventional graph spar-
sification approximates the large input graph with a sparse sub-
graph to enable efficient computation, and at the same time preserve
certain properties. Different notions have been extensively studied
including pairwise distances betweenness [7], sizes of all cuts [2],
node degree distributions [10], and spectral properties [1, 18]. These
methods remove edges only based upon the structural information,
which limits their power when combining with GNNs. Besides,
without supervised feedback from the downstream task, these ap-
proaches may generate subgraphs with suboptimal structural prop-
erties. NeuralSparse [56] learns 𝑘-neighbor subgraphs for robust
graph representation learning by selecting at most 𝑘 edges for
each nodes. The 𝑘-neighbor assumption however limits its learning
power and may lead to suboptimal performance in generalization.

Recently, graph sampling has been investigated in GNNs for fast
computation and better generalization capacity, including neighbor-
level [17], node-level [6, 20, 52], and edge-level sampling meth-
ods [38]. Unlike these methods that randomly sample edges in the
training phase, PTDNet utilizes parametrized networks to actively
remove task-specific noisy edges. With supervised guidance from
downstream objective, the generated subgraphs benefit GNNs in
not only robustness but also accuracy and interpretability. Besides,
PTDNet has better generalization capacity as the parametrized
networks can be used for inductive inference.

3 NOTATIONS AND PRELIMINARIES
Notations. In general, we use lowercase, bold uppercase, and bold
lowercase letters for scalars, matrices, and vectors, respectively.
For example, we use Z to denote a matrix, whose 𝑖, 𝑗-th entry is
denoted by 𝑧𝑖 𝑗 , a lowercase character with subscripts. Let 𝐺 =

(V, E) represent the input graph with 𝑛 nodes, whereV, E stand
for its node/edge set, respectively. The adjacency matrix of 𝐺 is
denoted by A ∈ R𝑛×𝑛 . Node features are denoted by matrix X ∈
R𝑛×𝑚 with𝑚 as the dimensionality of node features. We use Y to
denote the labels in the downstream task. For instance, in the node
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classification task, Y ∈ R𝑛×𝑐 represents node labels, where 𝑐 is the
number of classes.

GNN layer. Applying a GNN layer consists of the propagation
step and the output step [57]. At the propagation step, the aggrega-
tor first computes the message for each edge. For an edge (𝑣𝑖 , 𝑣 𝑗 ),
the aggregator takes the representations of 𝑣𝑖 and 𝑣 𝑗 in previous
layer as inputs, denoted by h𝑡−1

𝑖
, and h𝑡−1

𝑗
, respectively. Then, the

aggregator collects messages from local neighborhoods for each
node 𝑣𝑖 . At the output step, the updater computes its new hidden
representation, denoted by h𝑡𝑣 .

GNN models adopt message passing mechanisms to propagate
and aggregate information along the input graph to learn node
representations. The performances can be heavily affected by the
quality of the input graph. Messages aggregated along “noisy” edges
may decrease the quality of node embeddings. Overwhelming in-
formation from multiple communities put GNNs at the risk of over-
smoothing, especially when multiple GNN layers are stacked [30,
38, 55]. Existing methods either utilize graph sparsification strate-
gies to extract subgraphs or randomly sample graphs to enhance
the robustness of GNNs. Basically, they are conducted in an unsu-
pervised way, limiting their ability to filter out task-specific noisy
edges.

The core idea of PTDNet is to actively filter out task-specific
noisy edges in the input graph with a parameterized network. It
consists of the denoising network and general GNNs. GNNs can
be applied under both inductive and transductive settings. We first
give an overview of PTDNet in Sec. 4.1, followed by details of
the denoising network in Sec. 4.2. To enhance the generalization
ability of PTDNet, we further introduce the low-rank constraint on
resulting graphs and provide smoothing relaxation to achieve an
end-to-end model.

4 THE PTDNET
4.1 The overall architecture
The architecture of PTDNet is shown in Fig. 2(a). It consists of two
major components, the denoising networks and the GNNs. The de-
noising network is a multi-layer network that samples a subgraph
from a learned distribution of edges. PTDNet is compatible with
most existing GNNs, such as GCN [25], GraphSage [17], GAT [43],
GIN [49], etc. With relaxations, the denoising network is differen-
tiable and can be jointly optimized with GNNs guided by supervised
downstream signals.

4.2 The denoising network
4.2.1 Graph edge sparsification. The goal of the denoising network
is to generate a subgraph filtering out task-irrelevant edges for
GNN layers. For the 𝑙-th GNN layer, we introduce a binary matrix
Z𝑙 ∈ {0, 1} |V |×|V | , with 𝑧𝑙𝑢,𝑣 denoting whether the edge between
node 𝑢 and 𝑣 is present (0 indicates noisy edge).

Formally, the adjacency matrix of the resulting subgraph is
A𝑙 = A ⊙ Z𝑙 ,where ⊙ is the element-wise product. One way to re-
duce noisy edges with the least assumptions about A𝑙 is to directly
penalize the number of non-zero entries in Z𝑙 of different layers.

𝐿∑︁
𝑙=1
| |Z𝑙 | |0 =

𝐿∑︁
𝑙=1

∑︁
(𝑢,𝑣) ∈E

I[𝑧𝑙𝑢,𝑣 ≠ 0], (1)

where I[·] is an indicator function, with I[𝑇𝑟𝑢𝑒] = 1 and I[𝐹𝑎𝑙𝑠𝑒] =
0, | | · | |0 is the ℓ0 norm. There are 2 |E | possible states of Z𝑙 . Because
of its nondifferentiability and combinatorial nature, optimizing
this penalty is computationally intractable. Therefore, we consider
each binary number 𝑧𝑙𝑢,𝑣 to be drawn from a Bernoulli distribution
parameterized by 𝜋𝑙𝑢,𝑣 , i.e., 𝑧𝑙𝑢,𝑣 ∼ 𝐵𝑒𝑟𝑛(𝜋𝑙𝑢,𝑣). The matrix of 𝜋𝑙𝑢,𝑣 ’s
is denoted by Π𝑙 . Then, penalizing the non-zero entries in Z𝑙 , i.e.,
the number of edges being used, can be reformulated as regularizing∑
(𝑢,𝑣) ∈E 𝜋

𝑙
𝑢,𝑣 [29].

Since 𝜋𝑙𝑢,𝑣 is optimized jointly with the downstream task, it de-
scribes the task-specific quality of the edge (𝑢, 𝑣). A small value of
𝜋𝑙𝑢,𝑣 indicates the edge (𝑢, 𝑣) is more likely to be noise and should
be with small weight or even be removed in the following GNN.
Although the regularization of the reformulated form is continuous,
the adjacency matrix of the resulting graph is still generated by a bi-
narymatrixZ𝑙 . The expected cost of downstream task could bemod-
eled as 𝐿({Π𝑙 }𝐿

𝑙=1) = EZ1∼𝑝 (Π1), · · · ,Z𝐿∼𝑝 (Π𝐿) 𝑓 ({Z𝑙 }𝐿𝑙=1,X). To mini-
mize the expected cost via gradient descent, we need to estimate the
gradient ∇Π𝑙EZ1∼𝑝 (Π1), · · · ,Z𝐿∼𝑝 (Π𝐿) 𝑓 ({Z𝑙 }𝐿𝑙=1,X), 𝑙 ∈ [1, 2, · · · , 𝐿].
Existing methods adopt various estimators to approximate the gra-
dient, including score function [48], straight-through [3], etc. How-
ever, these methods suffer from either high variance or biased gra-
dients [33]. In addition, to make PTDNet suitable for the inductive
setting and enhance generalization ability, a parameterized method
for modeling Z𝑙 should be adopted.
4.2.2 Continuous relaxation with parameterized networks. To effi-
ciently optimize subgraphs with gradient methods, we adopt the
reparameterization trick [22] and relax the binary entries 𝑧𝑙𝑢,𝑣 from
being drawn from a Bernoulli distribution to a deterministic func-
tion 𝑔 of parameters 𝛼𝑙𝑢,𝑣 ∈ R and an independent random variable
𝜖𝑙 . That is 𝑧𝑙𝑢,𝑣 = 𝑔(𝛼𝑙𝑢,𝑣, 𝜖𝑙 ).

∇
𝛼𝑙𝑢,𝑣
E𝜖1,...,𝜖𝐿 𝑓 ({𝑔,X}) = ∇𝛼𝑙𝑢,𝑣E𝜖1,...,𝜖𝐿

[
𝜕𝑓

𝜕𝑔

𝜕𝑔

𝜕𝛼𝑙𝑢,𝑣

]
. (2)

To enable the inductive setting, we should not only figure out
which edges but also why they should be filtered out. To learn
to drop, for each edge (𝑢, 𝑣), we adopt parameterized networks
to model the relationship between the task-specific quality 𝜋𝑙𝑢,𝑣
and the node information including node contents and topological
structure. In the training phase, we jointly optimize denoising net-
works and GNNs. In the testing phase, the input graphs could also
be denoised with the learned denoising networks. Since we need to
compute a subgraph of the input graph, the time complexity of the
denoising network in the inference phase is linear to the number
of edges 𝑂 ( |E |).

Following [43], we adopt deep neural networks to learn the
parameter 𝛼𝑙𝑢,𝑣 that controls whether to remove the edge (𝑢, 𝑣).
Without loss of generality, we focus on a node 𝑢 in the training
graph. LetN𝑢 be its neighbors. For the 𝑙-th GNN layer, we calculate
𝛼𝑙𝑢,𝑣 for node 𝑢 and 𝑣 ∈ N𝑢 with 𝛼𝑙𝑢𝑣 = 𝑓 𝑙𝜃𝑙 (h

𝑙
𝑢 , h𝑙𝑣), where 𝑓 𝑙𝜃𝑙 is an

MLP parameterized by 𝜃𝑙 . To get 𝑧𝑙𝑢,𝑣 , we utilize the concrete dis-
tribution along with hard sigmoid function [29, 32]. First, we draw
𝑠𝑙𝑢,𝑣 from a binary concrete distribution with 𝛼𝑙𝑢𝑣 parameterizing
the location [22, 32]. Formally,

𝜖 ∼ Uniform(0, 1), 𝑠𝑙𝑢,𝑣 = 𝜎 ((log 𝜖 − log(1 − 𝜖) + 𝛼𝑙𝑢𝑣)/𝜏), (3)
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Figure 2: The PTDNet model.

where 𝜏 ∈ R+ indicates the temperature and 𝜎 (𝑥) = 1
1+𝑒−𝑥 is the

sigmoid function. With 𝜏 > 0, the function is smoothed with a
well-defined gradient 𝜕𝑠

𝑙
𝑢,𝑣

𝜕𝛼𝑙𝑢𝑣
, enabling efficient optimization of the

parameterized denoising network.
Since the binary concrete distribution has a range of (0,1), to

encourage the weights for task-specific noisy edges to be exactly
zeros, we first extend the range to (𝛾, 𝜁 ), with 𝛾 < 0 and 𝜁 > 1 [29].
Then, we compute 𝑧𝑙𝑢,𝑣 by clipping the negative values to 0 and
values larger than 1 to 1.

𝑠𝑙𝑢,𝑣 = 𝑡 (𝑠𝑙𝑢,𝑣) = 𝑠𝑙𝑢,𝑣 (𝜁 − 𝛾) + 𝛾, 𝑧𝑙𝑢,𝑣 = min(1,max(𝑠𝑙𝑢,𝑣, 0)). (4)

Within the above formulation, the constraint on the number of
non-zero entries in Z𝑙 in Eq.( 1) can be reformulated with

R𝑐 =
𝐿∑︁
𝑙=1

∑︁
(𝑢,𝑣) ∈E

(1 − P
𝑠𝑙𝑢,𝑣
(0|𝜃𝑙 )) . (5)

P
𝑠𝑙𝑢,𝑣
(0|𝜃𝑙 ) is the cumulative distribution function (CDF) of 𝑠𝑙𝑢,𝑣 .

As shown in [32], the density of 𝑠𝑙𝑢,𝑣 is

𝑝
𝑠𝑙𝑢,𝑣
(𝑥) =

𝜏𝛼𝑙𝑢,𝑣𝑥
−𝜏−1 (1 − 𝑥)−𝜏−1

(𝛼𝑙𝑢,𝑣𝑥−𝜏 + (1 − 𝑥)−𝜏 )2
. (6)

The CDF of variable 𝑠𝑙𝑢,𝑣 is

P
𝑠𝑙𝑢,𝑣
(𝑥) = 𝜎 ((log𝑥 − log(1 − 𝑥))𝜏 − 𝛼𝑙𝑢,𝑣). (7)

Since the function 𝑠𝑙𝑢,𝑣 = 𝑡 (𝑠𝑙𝑢,𝑣) in Eq. (4) is monotonic. The proba-
bility density function of 𝑠𝑙𝑢,𝑣 is

𝑝
𝑠𝑙𝑢,𝑣
(𝑥) = 𝑝

𝑠𝑙𝑢,𝑣
(𝑡−1 (𝑥)) | 𝜕

𝜕𝑥
𝑡−1 (𝑥) |

=
(𝜁 − 𝛾)𝜏𝛼𝑙𝑢,𝑣 (𝑥 − 𝛾)−𝜏−1 (𝜁 − 𝑥)−𝜏−1

(𝛼𝑙𝑢,𝑣 (𝑥 − 𝛾)−𝜏 + (𝜁 − 𝑥)−𝜏 )2
.

(8)

Similarly, we have the CDF of 𝑠𝑙𝑢,𝑣
P
𝑠𝑙𝑢,𝑣
(𝑥) = P

𝑠𝑙𝑢,𝑣
(𝑡−1 (𝑥))

= 𝜎 ((log(𝑥 − 𝛾) − log(𝜁 − 𝑥))𝜏 − 𝛼𝑙𝑢,𝑣).
(9)

By setting 𝑥 = 0, we have the

P
𝑠𝑙𝑢,𝑣
(0|𝜃𝑙 ) = 𝜎 (𝜏 log −𝛾

𝜁
− 𝛼𝑙𝑢,𝑣) . (10)

Algorithm 1 summarizes the overall training of PTDNet.

Algorithm 1: PTDNet algorithm
1: Input: Training Graph𝐺 = (V, E) , node features X, number of GNN

layers 𝐿, labels Y for downstream task.
2: Output: Predicted labels for downstream task
3: for each minibatch do
4: for 𝑙 ← 1 to 𝐿 do
5: 𝐺𝑑 = (V, E𝑑 ) ← subgraph of𝐺 sampled by 𝑙-th denoising

network.
6: Feed𝐺𝑑 into the following GNN layer.
7: H𝑙 ← hidden representations updated by GNN layer.
8: end for
9: {ŷ𝑣 |𝑣 ∈ V} ← prediction with H𝐿 .
10: Compute 𝑙𝑜𝑠𝑠 (Ŷ,Y) and regularizors.
11: Update parameters of GNN and denoising networks.
12: end for

Algorithm 2: Forward pass to compute nuclear norm

1: Input: Adjacency A𝑙 , approximate hyper-parameter 𝐾
2: Output: nuclear norm loss R̃𝑙𝑟
3: for 𝑙 ← 1 to 𝐿 do
4: (U𝑙 )Λ𝑙 (V𝑙 )∗ ← SVD(A𝑙 ) ⊲ dismiss gradients at backpro.
5: B← (A𝑙 )∗A𝑙
6: for 𝑖 ← 1 to 𝐾 do
7: v𝑙

𝑖
←PI(B, v𝑙

𝑖
)

8: 𝜆̃𝑙
𝑖
←

√︃
[ (v𝑙

𝑖
)𝑇 Bv𝑙

𝑖
]/[ (v𝑙

𝑖
)𝑇 v𝑙

𝑖
]

9: B← B − Bv𝑙
𝑖
(v𝑙
𝑖
)𝑇 ⊲ deflation

10: end for
11: end for
12: R̃𝑙𝑟 ←

∑𝐿
𝑙=1

∑𝐾
𝑖=1 |𝜆̃𝑙𝑖 |

4.3 The low-rank constraint
In the previous section, we introduced parameterized networks to
remove the task-specific noisy edges from the local neighborhood
perspective. In real-life graph data, nodes from multiple classes can
be divided into different clusters. Intuitively, nodes from different
topological communities are more likely with different labels [13].
Hence, edges connecting multiple communities are highly possible
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noise for GNNs. Based upon this intuition, we further introduce a
low-rank constraint on the adjacency matrix of the resulting sub-
graph to enhance the generalization capacity and robustness, since
the rank of the adjacency matrix reflects the number of clusters.
This regularization denoises the input graph from the global topol-
ogy perspective by encouraging the denoising networks to remove
edges connecting multiple communities such that the resulting
subgraphs to have dense connections within communities while
sparse between them [24]. Recent work also shows that graphs
with low rank are more robust to network attacks [11, 23].

Formally, the straightforward regularizer R𝑙𝑟 for low-rank con-
straint of PTDNet is

∑𝐿
𝑙=1 Rank(A

𝑙 ), where A𝑙 is the adjacency
matrix for the 𝑙-th GNN layer. It has been shown in previous stud-
ies that the matrix rank minimization problem (RMP) is NP-hard [8].
We approximately relax the intractable problem with the nuclear
norm, which is the convex surrogate for RMP problem [14]. The
nuclear norm of a matrix is defined as the sum of its singular values.
It is a convex function that can be optimized efficiently. Besides,
previous studies have shown that in practice, nuclear norm con-
straints produce very low-rank solutions [11, 14, 37]. With nuclear
norm minimization, the regularizer is

R𝑙𝑟 =
𝐿∑︁
𝑙=1
| |A𝑙 | |∗ =

𝐿∑︁
𝑙=1

|V |∑︁
𝑖=1
|𝜆𝑙𝑖 |, (11)

where 𝜆𝑙
𝑖
is the 𝑖-th largest singular values of graph adjacency

matrix A𝑙 .
Singular value decomposition (SVD) is required to optimize the

nuclear norm regularization. However, SVD may lead to unsta-
ble results during backpropagation. As shown in [21], the partial
derivatives of the nuclear norm requires computing of a matrix M𝑙

with elements

𝑚𝑙𝑖 𝑗 =

{
1/( (𝜆𝑙

𝑖
)2 − (𝜆𝑙

𝑗
)2), 𝑖 ≠ 𝑗

0, 𝑖 = 𝑗
. (12)

When (𝜆𝑙
𝑖
)2 − (𝜆𝑙

𝑗
)2 is small, the partial derivatives become very

large, leading to an arithmetic overflow. Besides, the gradient-based
optimization on SVD is time-consuming. The Power Iteration (PI)
method with deflation procedure is one way to solve this prob-
lem [34, 36, 47]. PI approximately computes the largest eigenvalue
and the dominant eigenvector of the matrix (A𝑙 )∗A𝑙with an itera-
tive procedure from a randomly initiated vector. (A𝑙 )∗ stands for
the transpose-conjugate matrix of A𝑙 . The largest singular value of
A𝑙 is then the square root of the largest eigenvalues. To calculate
other eigenvectors, the deflation procedure is involved to iteratively
remove the projection of the input matrix on this vector. However,
PI may output inaccurate approximations if two eigenvalues are
close to each other. The situation becomes worse when we consider
eigenvalues near zero. Besides, with randomly initiated vectors, PI
may need more iterations to get a precise approximation.

To address the problem, we combine SVD and PI [47] and further
relax the nuclear norm to Ky Fan 𝐾-norm [12], which is the sum
of top 𝐾 , 1 ≤ 𝐾 ≪ |V|, largest singular values. Fig. 2(b) shows
the forward pass and backpropagation of the nuclear norm. In the
forward pass, as shown in Algorithm 2, SVD is used to calculate
singular values, left and right singular vectors. Then we get the
nuclear norm as the regularization loss. In order to minimize the

nuclear norm, we utilize the power iteration to compute top 𝐾
singular values, denoted by 𝜆̃𝑙1, ...𝜆̃

𝑙
𝐾
. Note that the PI process does

not update the values in singular vectors and singular values. It only
serves to compute the gradients during backpropagation, which
is shown with red dot lines in Fig. 2(b). We estimate the nuclear
norm with R̃𝑙𝑟 =

∑𝐿
𝑙=1

∑𝐾
𝑖=1 |𝜆̃𝑙𝑖 |. R̃𝑙𝑟 is a lower bound function of

R𝑙𝑟 with gap

R𝑙𝑟 − R̃𝑙𝑟 =

𝐿∑︁
𝑙=1

|V|∑︁
𝑖=𝐾+1

|𝜆̃𝑙𝑖 | =
𝐿∑︁
𝑙=1

|V|∑︁
𝑖=𝐾+1

|𝜆𝑙𝑖 | ≤ ( |V | −𝐾)
𝐿∑︁
𝑙=1
|𝜆𝑙𝐾+1 |.

(13)
It is obvious that ⌈ |V |

𝐾
⌉R̃𝑙𝑟 is the upper bound of R𝑙𝑟 . We dismiss

the constant coefficient and minimize R̃𝑙𝑟 as the low-rank con-
straint.

5 EXPERIMENTAL STUDY
In this section, we empirically evaluate the robustness and effective-
ness of PTDNet with both synthetic and benchmark datasets. First,
we apply PTDNet to popular GNNmodels for node classification on
benchmark datasets. Second, we evaluate the robustness of PTDNet
by injecting additional noise. Moreover, we also provide insight into
the denoising process by checking the edges removed by PTDNet.
We also conduct comprehensive experiments to uncover insights
of PTDNet, including empirically demonstrating the effects of reg-
ularizers, parameter study, analyzing the over-smoothing problem
inherent in GNNs, and applying PTDNet to another downstream
task, i.e., link prediction.

Table 2: Dataset statistics

Dataset Cora Citeseer Pubmed PPI
Nodes 2,708 3,327 19,717 56,944
Edge 5,429 4,732 44,338 818,716
Fea. 1,433 3,703 500 50

Classes 7 6 3 121
Train. 140 120 100 44,906
Val. 500 500 500 6,514
Test. 1,000 1,000 1,000 5,524

5.1 Experimental setup
Datasets. Four benchmark datasets are adopted in our experiments.
Cora, Citeseer, and Pubmed are citation graphs where each node
is a document and edges describe the citation relationship. A doc-
ument is assigned with a unique label based on its topic. Node
features are bag-of-words representations of the documents. We
follow the standard train/val/test splits in [25, 43] with very scarce
labelled nodes, which are different from the full-supervised setting
in DropEdge [38]. PPI contains graphs describing protein-protein
interaction in different human tissues. Positional gene sets, motif
gene sets, and immunological signatures are used as node features.
Gene ontology sets are used as labels. The statistics of these datasets
are listed in Table 2.
Implementations & metrics. We consider three representative
GNNs as backbones, including GCN [25], GraphSage [17], GAT [43].
Note that our model is a general framework that is compatible
with diverse GNN models. Recent sophisticated models can also be
combined with our framework to improve their performances and
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robustness. Achieving SOTA performances by using a complex ar-
chitecture is not the main research point of this paper. We compare
with most recent state-of-the-art sampling and sparsification meth-
ods, DropEdge [38] and NeuralSparse [56]. For GraphSage, we use
the mean aggregation. We follow the experimental setting in [38]
to perform a random hyper-parameter search for each model. For
each setting, we run 10 times and report the average results. Param-
eters are tuned via cross-validation. We also include a variant of
PTDNet by removing the low-rank constraint as the ablation study.
For single-label classification datasets, including Cora, Citeseer, and
Pubmed, we evaluate the performance with accuracy [25]. For PPI,
we evaluate with micro-F1 scores [17].

All experiments are conducted on a Linuxmachinewith 8NVIDIA
Tesla V100 GPUs, each with 32GB memory. CUDA version is 9.0
and Driver Version is 384.183. All methods are implemented with
Tensorflow 1.12.

5.2 Effectiveness evaluation

Table 3: Node classification.

Backbone Method Cora Citeseer Pubmed PPI

GCN

Basic 0.811 ± 0.015 0.703 ± 0.012 0.790 ± 0.020 0.660 ± 0.024
DropEdge 0.809 ± 0.035 0.722 ± 0.032 0.785 ± 0.043 0.606 ± 0.041

NeuralSparse 0.821 ± 0.014 0.715 ± 0.014 0.788 ± 0.018 0.651 ± 0.014
PTDNet-wl 0.824 ± 0.018 0.717 ± 0.170 0.791 ± 0.012 0.752 ± 0.017
PTDNet 0.828 ± 0.026 0.727 ± 0.018 0.798 ± 0.024 0.803 ± 0.008

GraghSage

Basic 0.792 ± 0.027 0.676 ± 0.023 0.767 ± 0.020 0.618 ± 0.014
DropEdge 0.787 ± 0.023 0.670 ± 0.031 0.748 ± 0.026 0.610 ± 0.035

NeuralSparse 0.793 ± 0.021 0.674 ± 0.011 0.751 ± 0.021 0.626 ± 0.023
PTDNet-wl 0.794 ± 0.026 0.678 ± 0.022 0.770 ± 0.024 0.645 ± 0.020
PTDNet 0.803 ± 0.019 0.679 ± 0.018 0.771 ± 0.010 0.648 ± 0.025

GAT

Basic 0.830 ± 0.007 0.721 ± 0.009 0.790 ± 0.008 0.973 ± 0.012
DropEdge 0.832 ± 0.040 0.709 ± 0.020 0.779 ± 0.019 0.850 ± 0.038

NeuralSparse 0.834 ± 0.015 0.724 ± 0.026 0.780 ± 0.017 0.921 ± 0.018
PTDNet-wl 0.837 ± 0.022 0.723 ± 0.014 0.792 ± 0.014 0.978 ± 0.018
PTDNet 0.844 ± 0.023 0.737 ± 0.031 0.793 ± 0.015 0.980 ± 0.022

Table 3 summarizes the results on different datasets. PTDNet-wl
is the variant of PTDNet by removing the low-rank constraint for ab-
lation study. The comparison results demonstrate that by including
the denoising part, PTDNet achieves the state-of-the-art or matched
performance across different benchmarks. Specifically, 1) compar-
ing to basic GNNs, PTDNet-wl can improve the performance and
generalization capacity by including denoising process to GNNs. 2)
In PTDNet, we further include the low-rank constraint to denoise
the input graph from the global perspective. As discussed in Sec. 4.3,
graphs with low ranks are more robust to complex structures. It
encourages to remove the edges across different clusters and helps
to alleviate the over-smoothing problem. 3) PTDNet utilizes a pa-
rameterized method to actively remove task-irrelevant edges or
decrease their weights. The denoising networks can also be used
in the testing phase, which shows a better generalization capacity.
While DropEdge only works in the training phase to randomly
remove edges. These explain the reason why PTDNet outperforms
DropEdge. 4) PTDNet outperforms recent work – NeuralSparse
because NeuralSparse constrains the extracted subgraphs to be 𝑘-
neighbor graphs. The 𝑘-neighbor assumption however limits its
learning power and may lead to suboptimal performance in gener-
alization. Moreover, NeuralSparse does not consider the low-rank
constraints on the resulting sparsified graph, thus achieves worse
generalization performance.

5.3 Robustness evaluation
In this part, we evaluate the robustness of PTDNet by manually
including noisy edges. We use the Cora dataset and randomly con-
nect 𝑁 pairs of previously unlinked nodes with 𝑁 ranging from
1000 to 20,000. We compare the proposed method to baselines with
all there backbones. Performances are shown in Fig. 3. We have
the following observations. 1) PTDNet consistently outperforms
DropEdge, NeuralSparse and the basic backbones with various num-
bers of noisy edges. The comparison demonstrates the robustness
of PTDNet. 2) DropEdge randomly samples a subgraph for GNN
layers. In most cases, DropEdge reports worse performances than
the original backbones. The comparison demonstrates that a ran-
dom sampling strategy used in DropEdge is vulnerable to noisy
edges. 3) NeuralSparse selects noise edges guided by task signals
thus achieves better results than basic backbones. However, it se-
lects at most 𝑘 edges for each nodes, which may lead to suboptimal
performance. 4) The margins between results of PTDNet and basic
backbones become large when more noise are injected. Specifically,
PTDNet relatively improves the accuracy scores by 37.37% for GCN,
13.4% for GraphSage, and 16.1% for GAT with 20,000 noisy edges.

5.4 On denoising process
In this section, we use controllable synthetic datasets to analyze the
denoising process of PTDNet, which has 5 labels and 30 features
per node. We first randomly sample five 30-dimensional vectors as
the centroids, one for each label. Then, for each label, we sample
nodes from a Gaussian distribution with the centroid as the mean.
The variance, which controls the quality of content information is
set to 80. The number of nodes for each label is drawn from another
Gaussian distribution N(200, 25).

To validate GNNs on fusing node content and topology, we build
a graph containing complementary information with node features.
Specifically, we use the distance between a node and the centroid
node of its label as the metric to evaluate the quality of the node
feature. The probability that it connects to another node with a
different label is positively proportional to the feature quality. The
resulting graph contains 1,018 nodes and 4,945 edges. We randomly
select 60/20/20% nodes for training/validation/testing, respectively.

We use GCN as the backbone for example. The denoising process
of the first PTDNet layer is shown in Fig. 4. Red lines represent
the mean weight, i.e., 𝑧 in Sec. 4, of positive edges (edges con-
nected nodes with the same label), and blue dotted lines are for
negative edges. Fig. 4(a), 4(b) count the edges linked with a train-
ing/testing node, respectively.We also show the results of DropEdge
to see the case of random selection. These figures demonstrate that
DropEdge, an unparameterized method, cannot actively drop the
task-irrelevant edges. While PTDNet can detect negative edges and
remove or assign them with lower weights. The denoising process
of PTDNet leads to higher accuracy with more iterations, which
is shown in Fig. 4(c). In addition, the consistent performance of
PTDNet on testing nodes shows that our parameterized method
can still learn to drop negative edges in the testing phase, demon-
strating the generalization capacity of PTDNet. Besides, we plot
the degree(volume) distribution of the input graph, subgraph sam-
pled by DropEdge and PTDNet in Fig. 4(d). We observe that both
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Figure 3: Accuracy performance with noisy edges in Cora.
PTDNet and DropEdge can keep the distribution property of the
input graph.
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Figure 4: Denoising on a synthetic dataset.

5.5 Effects of regularizers
In this part, we adopt GCN as the backbone to analyze the effects
of regularizers. We first show the accuracy performance of PTDNet
w.r.t coefficients for regularizers in Fig. 5. For each choice, we fix
that value for the coefficient and use the genetic algorithm to search
other hyper-parameters. The best performances are reported here.
In general, the performance first increases and then drops as coeffi-
cients increase. Since the benchmark datasets are relatively clean.
To better show the effects of the proposed two regularizers: R𝑐 and
R𝑙𝑤 . We synthesize datasets with controllable properties instead.
We introduce two hyper-parameters 𝛽1 and 𝛽2 for regularizers R𝑐 ,
and R𝑙𝑤 , respectively. These two hyper-parameters affect the ratio
of edges to be removed. We first dismiss the low-rank constraint by
setting 𝛽2 = 0. With different choices of 𝛽1 (0, 0.05, 0.075, 0.9), we
show mean weights (i.e., 𝑧) of edges during iterations in Fig. 6(a).
The figure shows that with a larger hyper-parameter for R𝑐 , PTD-
Net achieves a more sparse subgraph. Similar observations can be
found in Fig. 6(b), where 𝛽1 = 0 and only the low-rank constraint
is considered.

To demonstrate the effects of including regularizers on the gen-
eralization capacity of PTDNet. We synthesize four datasets with
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Figure 5: Effects of R𝑐 and R𝑙𝑤 on the accuracy.
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Figure 6: Effects of R𝑐 and R𝑙𝑤 on the denoising process.

various topology properties. The percentages of positive edges in
these four datasets range from 0.5 to 0.85. We tune the 𝛽1 and 𝛽2
separately by setting the other one to 0. The best options of 𝛽1 and
𝛽2 for these four datasets are shown in Table 4. The table shows
that for datasets with poor topological qualities, regularizers should
be assigned with higher weights, such that PTDNet can denoise
more task-irrelevant edges. On the other hand, for datasets with
good structure, i.e., the ratio of positive edges is over 0.85, 𝛽1 or 𝛽2
should be with relatively small values to keep more edges.
Table 4: The optimal hyper-parameters for graphs with dif-
ferent qualities.

#pos edge/#all edges Best 𝛽1 Best 𝛽2
0.85 0.01 0.05
0.7 0.04 0.07
0.6 0.08 0.08
0.5 1.0 0.1

Low-rank constraint R𝑙𝑤 is introduced to enhance the gener-
alization of PTDNet by setting a constraint on edges connecting
nodes from different communities. We use a synthetic dataset to
show the influence of R𝑙𝑤 . We adopt the spectral clustering to
group nodes into 5 communities. As shown in Table 5, the ratio
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Table 5: Ratio of cross-community edges in the original
graph and subgraphs generated by PTDNets with different
settings.

original 𝛽1 = 0.05
𝛽2 = 0

𝛽1 = 0
𝛽2 = 0.05

𝛽1 = 0.05
𝛽2 = 0.05

#cross comm. eges
#all edges 0.211 0.206 0.189 0.190

of cross-community edges is 0.211 in the original graph. We fist
adopt PTDNet with 𝛽1 = 0.05, 𝛽2 = 0 on the dataset. The ratio
in the subgraph generated by the first layer is 0.206. By consider-
ing low-rank constraint and setting 𝛽1 = 0, 𝛽2 = 0.05, the ratio
drops to 0.189, showing the effectiveness of low-rank constraint on
removing cross-community edges.

5.6 Impacts of approximate factor 𝐾
In Sec. 4.3, 𝐾 is the approximate factor in the low-rank constraint.
In this part, we the synthetic dataset used in Sec. 5.4. We do not
utilize the early stop strategies and fix the number of epochs to 300.
We range 𝐾 from 1 to 32 and adopt 2 layer GCN with 256 hidden
units as the backbone. The accuracy and running time are shown
in Fig. 7.

From the figure, we can see that the accuracy performance in-
crease with the larger 𝐾 , which is consistent with Eq. 13 that larger
𝐾 indicates tighter bound. At the same time, it leads tomore running
time. Besides, PTDNet can achieve a relatively high performance
even when 𝐾 is small.

5.7 On over-smoothing
The over-smoothing problem exists when multiple GNN layers are
stacked [27]. DropEdge alleviates this problem by random drop
edges during the training phase. Removing certain edges makes the
graph more sparse and reduces messages passing along edges [38].
However, As an unparameterized method, DropEdge is not utilized
during the testing phase, which limits its power on preventing the
over-smoothing problem, especially on very dense graphs. On the
other hand, our PTDNet is a parameterized method, which learns
to drop in both training and testing phases.
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In this part, we experimentally demonstrate the effectiveness of
PTDNet on alleviating the over-smoothing problem in GNNmodels
with a very dense graph. We adjust the synthetic datasets used in
the above section by addingmore edges.With GCN as the backbone,
we compare our PTDNet with DropEdge and the basic backbone.
Since stacking multiple GNN also involves the overfitting problem,
we include MLP as another baseline, which uses the identity matrix
as the adjacency matrix. For DropEdge, we choose three dropedge

rates, 0.1, 0.8, and 0.99. We range the number of GCN from 2 to 16
and show the results in Fig 8.

From the figure, we have the following observations. First, the
performances of MLP w.r.t the number of layers show that the
overfitting problem appears when 16 layers are stacked. Thus, for
models with 8 or fewer layers, we can dismiss the overfitting prob-
lem and focus on the over-smoothing merely. Second, GCN models
with 4 layers or more suffer from the over-smoothing problem,
which makes the basic GCN model performance even worse than
MLP. Third, DropEdge can only alleviate the over-smoothing prob-
lem to some degree due to its limitation on the testing phase. Last
but not least, our PTDNet consistently outperforms all baselines.
The reason is that our method is parameterized and can learn to
drop edges during the training phase. The learned strategies can
also be utilized in the testing phase to further reduce the effects of
the over-smoothing.

Table 6: Performances of Link Prediction

Method
Cora Citeseer Pubmed

AUC AP AUC AP AUC AP
GCN(GAE) 0.910 0.920 0.895 0.899 0.964 0.965
DropEdge 0.881 0.903 0.862 0.880 0.859 0.877

NeuralSparse 0.901 0.917 0.899 0.910 0.926 0.953
PTDNet 0.916 0.931 0.918 0.922 0.963 0.966

5.8 Link prediction
In this section, we apply our PTDNet to another downstream task,
link prediction. We adopt the Cora, Citeseer, and Pubmed datasets
and follow the same experimental settings in GAE, which applies
GCN for link prediction [26]. PPI dataset is not used because it con-
tains multiple graphs and not suitable for link prediction. Specifi-
cally, we randomly remove 10% and 5% edges for positive samples in
the testing and validation sets. The left edges and all node features
are used for training. We include the same number of negative sam-
ples as positive edges by randomly sampling unconnected nodes
in validation and testing sets. We adopt area under the ROC curve,
denoted by AUC, and average precision, denoted by AP, scores to
evaluate their ability to correctly predict the removed edges. GCN is
used as the backbone. We compare our PTDNet with the basic GCN,
DropEdge and NeuralSparse. Performances are shown in Table 6.

The table shows that our PTDNet can also improve the accu-
racy performance of link prediction. The denoising networks in
PTDNet are optimized by the downstream task loss and can re-
move task-irrelevant edges. On the other hand, the performance
between DropEdge and the original backbone shows that DropEdge
is suitable for the link prediction task.

6 CONCLUSION
In this paper, we propose a Parameterized Topological Denoising
Network (PTDNet) to filter out task-specific noisy edges to enhance
the robustness and generalization power of GNNs. We directly limit
the number of edges in the input graph with parameterized net-
works. To further improve the generalization capacity, we introduce
the nuclear norm regularization to impose the low-rank constraint
on the resulting sparsified graphs. PTDNet is compatible with vari-
ous GNN models, such as GCN, GraphSage, and GAT to improve
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performance on various tasks. Our experiments demonstrate the
effectiveness of PTDNet on both synthetic and benchmark datasets.
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