
How to Measure Your App: A Couple of Pitfalls and Remedies in
Measuring App Performance in Online Controlled Experiments

Yuxiang Xie

Snap Inc.

Santa Monica, CA, USA

yxie@snap.com

Meng Xu

Snap Inc.

Santa Monica, CA, USA

mxu@snap.com

Evan Chow

Snap Inc.

Santa Monica, CA, USA

echow@snap.com

Xiaolin Shi

Snap Inc.

Santa Monica, CA, USA

xiaolin@snap.com

ABSTRACT
Effectively measuring, understanding, and improving mobile app

performance is of paramount importance for mobile app develop-

ers. Across the mobile Internet landscape, companies run online

controlled experiments (A/B tests) with thousands of performance

metrics in order to understand how app performance causally im-

pacts user retention and to guard against service or app regressions

that degrade user experiences. To capture certain characteristics

particular to performance metrics, such as enormous observation

volume and high skewness in distribution, an industry-standard

practice is to construct a performance metric as a quantile over all

performance events in control or treatment buckets in A/B tests. In

our experience with thousands of A/B tests provided by Snap, we

have discovered some pitfalls in this industry-standard way of calcu-

lating performance metrics that can lead to unexplainedmovements

in performance metrics and unexpected misalignment with user en-

gagement metrics. In this paper, we discuss twomajor pitfalls in this

industry-standard practice of measuring performance for mobile

apps. One arises from strong heterogeneity in both mobile devices

and user engagement, and the other arises from self-selection bias

caused by post-treatment user engagement changes. To remedy

these two pitfalls, we introduce several scalable methods includ-

ing user-level performance metric calculation and imputation and

matching for missing metric values. We have extensively evaluated

these methods on both simulation data and real A/B tests, and have

deployed them into Snap’s in-house experimentation platform.

KEYWORDS
performance metrics, online controlled experiment, self-selection

bias, sample ratio mismatch

ACM Reference Format:
Yuxiang Xie, Meng Xu, Evan Chow, and Xiaolin Shi. 2021. How to Mea-

sure Your App: A Couple of Pitfalls and Remedies in Measuring App Per-

formance in Online Controlled Experiments. In Jerusalem ’21: The 14th
ACM International Conference on Web Search And Data Mining, March
8–12, 2021, Jerusalem, Israel. ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Jerusalem ’21, March 8–12, 2021, Jerusalem, Israel
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
As mobile applications (apps) gain increasing use in everyday life,

the question of how to measure, understand, and improve app

performance has become ever more important for mobile app devel-

opers. In contrast to most traditional online service companies who

primarily use performance metrics as guardrails for fundamental

reliability and business constraints, mobile app developers aim to

improve performance in order to boost user retention and engage-

ment. For instance, from late 2017 there was a large engineering

initiative to rewrite the Android version of Snapchat for faster

performance, aligning with that of the iOS version, as a means to

retain and attract more Snapchat users
1
. Hence, finding accurate

methods to measure app performance, such as tracking how long

it takes to open the app or how long it takes to send a message, is

of foundational importance for mobile business growth.

There are three major difficulties in measuring mobile app per-

formance. First, due to the snowballing growth of the mobile device

industry, there are tens of thousands of distinct mobile devices and

models available on the market. Within the Snapchat userbase, for

instance, we have seen several thousand different Android mobile

devices. This vast heterogeneity in mobile devices, ranging from

different hardware configurations to disparate Wi-Fi conditions,

makes measuring the performance of even a single mobile app

such as Snapchat an extremely complex task. Second, mobile users

are not typically evenly distributed across the performance spec-

trum from lower-end to higher-end devices. For instance, there are

substantially more Snapchat users on lower-end Android devices

than on higher-end ones, which means lower-end devices often end

up in the spotlight for performance improvements
1
. Third, mobile

apps have become increasingly multi-functional, challenging how

developers prioritize different parts of a single app.

One of the current industry-standard methods to construct per-

formance metrics in online controlled experiments is to compute

a quantile, such as the median or the 90th percentile, over all per-

formance events in a single experiment bucket [34]. At Snap, for

example, the in-house experimentation platform runs hundreds of

concurrent A/B experiments at any given time, and each experiment

in turn reports hundreds of performance metrics calculated in this

industry-standard way. In our work improving app performance

and investigating the causal relationship between performance

and user engagement metrics, we have encountered some puzzling

phenomena. In many cases, we observe apparent contradictions be-

tween these performance metrics and what user-level engagement

metrics show. This motivates us to do investigations and reveal the

first pitfall: that industry-standard performance metrics overweight

1
https://www.androidauthority.com/snapchat-redesign-android-jerry-hunter-

gustavo-moura-jacob-andreou-interview-971385

ar
X

iv
:2

01
1.

14
43

7v
1

 [
st

at
.A

P]
 2

9
N

ov
 2

02
0

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Jerusalem ’21, March 8–12, 2021, Jerusalem, Israel Xie, et al.

heavily engaged users who are usually also on higher-end mobile

devices. In many other cases, we observe performance metrics show

significant results in an A/B experiment even though, by design,

there should exist no treatment effects on them. We find these false

positives arise from a second pitfall: treatment effects on user en-

gagement changes sometimes can lead to a gap in distributions of

performance event counts per user between treatment and control.

This gap can cause self-selection bias in performancemetrics, which

can lead to misleading results. Self-selection bias arises from user

behavior changes due to treatment effects, and cannot be avoided

by careful experiment design or perfect randomization. Unlike most

user engagement metrics which can be imputed by zero when users

do not have any events, we cannot do the same for performance

metrics [15].

The goal of this paper is to raise industry awareness of these

pitfalls in calculating performance metrics and provide practical

guidelines for remedying the problems they cause. Here is a sum-

mary of our contributions in this paper:

• To the best of our knowledge, this is the first work to (1)

quantitatively present and explain the difference between

industry-standard event-level performance metrics and user-

level performance metrics, and (2) demonstrate the impor-

tance of using user-level performancemetrics tomeasuremo-

bile apps and how they remedy the issue of over-representing

heavy users by event-level.

• We propose a self-selection Sample Ratio Mismatch (SRM)

check for testing whether a performance metric has self-

selection bias. We establish the self-selection bias problem

as a missing data problem, and apply two methods based

on imputation and matching to reduce bias and correct for

misleading conclusions.

• We share discussions on several critical lessons we learned,

regarding (1) the scalability and performance of other self-

selection bias reduction methods, and (2) the difficulty in

computing user-level high percentile performance metrics.

These insights should help practitioners avoid pitfalls and

problems alike.

2 PRELIMINARIES
2.1 Performance Metrics and Online

Controlled Experiments
Long app loading and execution times on mobile devices hurt user

experiences, drive away user traffic, lower revenue, and cause en-

ergy drain [7]. It is thus imperative to construct proper metrics for

mobile performance to safeguard against these potential issues. For

instance, when a user opens a mobile camera app (e.g. Snapchat),

we automatically track how quickly the app opens and how fast one

can take photos within the app. These latency values are logged

as performance events and uploaded to a central data collection

system, resulting in a multitude of individual performance events

collected across millions of different mobile devices.

Online controlled experiments ([28]) have been used as the

mantra for data-driven decision making on feature changes and

product launches in many mobile and Internet companies. In an

A/B test, we randomly split users into a treatment group and a

control group and observe how metrics of interest move. The Rubin

Causal Model [21] is commonly used in A/B testing as a statistical

framework for causal inference. Let 𝑌𝑖 (𝑇𝑖) be the potential outcome

for 𝑖-th user, where 𝑇𝑖 = 1 if the 𝑖-th user is in the treatment group

and 𝑇𝑖 = 0 if the 𝑖-th user is in the control group. The Average

Treatment Effect (ATE) is defined to be the average of 𝑌𝑖 (1) −𝑌𝑖 (0),
a quantity which is not observable due to the "fundamental problem

of causal inference"[21]: we cannot observe 𝑌𝑖 (1) and 𝑌𝑖 (0) at the
same time. However, an unbiased estimate of ATE can be obtained

in the A/B test by calculating the mean difference 𝑌𝑖 (1) − 𝑌𝑖 (0).
Performance metrics play an important role in online controlled

experiments for evaluating and improving new product ideas across

mobile and internet companies. Unlike user engagement which is

typically measured on the user-level and summarized as a count or

a sum in metrics, mobile or website performance is usually mea-

sured on the event-level. That is, the current industry standard

is to construct event-level performance metrics by tracking a rep-

resentative percentile such as the 50th percentile (the median) or

90th percentile over all performance events. LinkedIn, for instance,

monitors the 90th percentile of page loading times for their web-

site [34]. To complement event-level performance metrics, some

online services companies like Microsoft also adopt user-level per-
formance metrics [31]: compute a quantile value for each user over

all their events. For example, to obtain a user-level 50th percentile

performance metric, we first aggregate performance events of each

individual user and calculate the median over each user, and then

average these values over all users in treatment and control to

calculate ATE.

2.2 Sample Ratio Mismatch (SRM) and
Selection Bias

Sample Ratio Mismatch (SRM) is one of the major pitfalls of in-

terpreting metrics in online controlled experiments [9]. Sample

Ratio Mismatch (SRM), sometimes also referred as Sample Size Pro-

portion Mismatch (SSPM), is a data quality check that indicates a

significant difference between the expected proportions of users

between the treatment group and the control group before the ex-

periment and the actual proportions of users observed in the two

groups during the experiment. SRMs are common in large scale

experimentation [8, 48] and are symptomatic of a variety of data

quality issues. For example, SRM issues can be caused by incorrect

treatment assignment and lost telemetry [48], and can happen in the

data processing phase [11]. Researchers have provided a taxonomy

and rules of thumb for practitioners to diagnose, root cause, and

prevent SRMs in online controlled experiments [12]. SRM check is a

practical way to detect a selection bias that arises when a rule other

than simple random sampling is used to sample the underlying

population [18], which invalidates any inference drawn from the

experiment [2]

2.3 Self-Selection Bias
Among all types of selection bias, "self-selection bias" is the one in

performance metrics that arises from user behavior changes due

to treatment effects [9]. For example, during an A/B experiment,

if a user does not use the camera to create images with Snapchat,

then for this user, we observe no performance metric value for

camera image creation delay, and thus this user is missing from this

How to Measure Your App: A Couple of Pitfalls and Remedies in Measuring App Performance in Online Controlled ExperimentsJerusalem ’21, March 8–12, 2021, Jerusalem, Israel

performance metric calculation. If between control and treatment

groups, there are statistically different proportions of users not

having that performance metric, then we have self-selection bias

for that performance metric. Self-selection bias in performance

metrics is determined by users, and thus cannot be avoided by

having careful experiment design, perfect randomization, or proper

counterfactual logging in the data. Unlike most user engagement

metrics which can be imputed by zero when users do not have any

events, we cannot do the same for performance metrics [15].

3 USER-LEVEL VS. EVENT-LEVEL
Unlike traditional online services companies which use perfor-

mance metrics mainly as guardrail metrics [44], as a mobile app

company Snap strives to improve app performance to enhance user

experience and engagement.
1
Therefore, understanding the corre-

lation between performance metrics and user engagement metrics

is crucial for daily decision making at Snap. However, we have

observed puzzling results from some A/B experiments: treatment

effects on engagement metrics are negative or insignificant while

event-level performance metrics improve. In such contradictory

cases, experiment designers always struggle to decide whether to

deploy feature changes or not. We later discover that this kind of

puzzling result only occurs in event-level performance metrics but

not in user-level performance metrics. We empirically compare

event-level and user-level performance metrics on 152 A/B tests at

Snapchat. Table 1 shows that approximately 10% of the A/B test-

ing results are inconsistent in event-level performance metrics and

user-level performancemetrics in terms of significance or treatment

effect direction.

Event vs. User Significant (+) Significant (−) Insignificant
Significant (+) 39 (0.47%) 1 (0.01%) 178 (2.13%)

Significant (−) 12 (0.14%) 41 (0.49%) 214 (2.57%)

Insignificant 213 (2.55%) 221 (2.65%) 7419 (88.98%)
Table 1: Result comparison of the event-level (rows) vs. the user-level
(columns), for 8, 338 performance metrics in 152 A/B tests. Significant (+)
means 𝑝-value < 0.05 with positive estimated ATE. Significant (−) means 𝑝-
value < 0.05with negative estimated ATE. About 10% of performance metrics
are inconsistent between their event-level and user-level.

After investigation, we find the root cause of the puzzling rela-

tionship between user-level metrics and event-level performance

metrics is that event-level performance metrics tend to bias towards

heavily engaged users while user-level performance metrics weight

all users in an experiment equally. Mobile devices are highly het-

erogeneous, and thus heterogeneous treatment effects are common

to be seen in A/B experiments [47]. For example, as Figure 1 shows,

the estimated average treatment effects vary across different user

groups in an experiment "X" and only the users with higher-end

mobile devices benefit from the treatment. In addition, users with

better mobile devices are likely to engage more with the app and

thus have more events as illustrated in Figure 2, indicating that

the heavily engaged users almost overlap the higher-end device

users. However, since the majority of users use lower-end devices

(as shown in Figure 3), if we were to simply focus on event-level

performance metrics, we would overlook the majority of those

users in our experiments. Product launch decisions based only on

event-level performance metrics are likely to overlook needs of non-

heavy users, which is undesirable for expanding into developing or

under-developed markets.

Figure 1: ATE across different user groups segmented by device clusters. Users
with higher-end devices (right side) benefit from the treatment, while users
with mid-end to lower-end devices (left side) do not. In this experiment, the
event-level performance metric has a positive ATE = 5.48 with a significant
𝑝-value = 0.007 while the user-level performance metric has an insignificant
𝑝-value = 0.432.

Event-level performance metrics overweight heavily engaged

users who are usually higher-end device users. Given the strong

heterogeneity among mobile devices, treatment effects on higher-

end devices can be very different from lower-end ones. However,

since majority of mobile users use lower-end devices, event-level

performance metrics put these users into our blind spot during

experiments. Therefore, to complement event-level performance

metrics and to correlate performance improvement with user en-

gagement, we recommend computing both event-level performance

metrics and user-level performance metrics to obtain a comprehen-

sive understanding of app performance change in A/B experiments.

Event-level performance metrics make sure products maintain good

performance on the majority of events, while user-level perfor-

mance metrics equally weight all users, thus safeguarding the ma-

jority of user experiences and better correlating with engagement

metrics.

Figure 2: Histogram of relative average event counts per user across different
user groups, averaged over 187 experiments. Users with higher-end mobile
devices systematically have more events.

4 SELF-SELECTION BIAS REDUCTION
In an A/B experiment whose treatment is about app notification,

we see another puzzling case: the treatment has nothing to do with

app performance according to the experiment design but many

performance metrics move significantly on both user-level and

event-level. After investigation, we discover that the proportion

of users who open the app (i.e. who have values for performance

metrics such as app open delay) significantly differs between control

Jerusalem ’21, March 8–12, 2021, Jerusalem, Israel Xie, et al.

Figure 3: Histogramof relative average user count across different device clus-
ters. There are much more users with lower-end mobile devices (left side)
than users with higher-end mobile devices (right side) on market.

and treatment, which leads to self-selection bias in performance

metrics, causing false positives as we have mentioned in Section 2.3.

Similar to detecting selection bias by using the SRM check [9],

we propose to detect the self-selection bias of a performance metric

by using the self-selection SRM check, which is a proportion test

to compare the proportion of users who have the performance

event(s) in the treatment group and the corresponding proportion

of users in the control group. Let 𝑝𝑇 = 𝑃𝑟 (𝑀 |𝑋1 = treatment)
and 𝑝𝐶 = 𝑃𝑟 (𝑀 |𝑋1 = control) where 𝑀 is an indicator variable

for whether the user has any performance event, and 𝑋1 is the

treatment bucket. We use a two-sample proportion test in this

self-selection SRM check to test the null hypothesis 𝐻0 : 𝑝𝑇 =

𝑝𝐶 against the alternative hypothesis 𝐻1 : 𝑝𝑇 ≠ 𝑝𝐶 . A rejection

on the null hypothesis indicates self-selection bias in the given

performance metric. We conduct this self-selection SRM check

for 11 performance metrics across 61 A/B experiments showing

significant treatment effects on users’ active days of using Snapchat,

and in more than 20% of these A/B experiments, most performance

metrics fail the self-selection SRM check.

Since self-selection bias issue is essentially a missing data prob-

lem, in this section, we first introduce differentmissing data patterns

in the literature and discuss the missingness assumption in the sce-

nario of self-selection in performance metrics. We then present

two methods, based on imputation and matching, to reduce self-

selection bias. These two methods are implemented on user-level

performance metrics. In addition, we also list some other methods

we have considered for addressing self-selection bias in perfor-

mance metrics.

4.1 Assumptions on Missingness
The self-selection bias problem in performancemetrics is equivalent

to a missing data problem, as we only observe performance metric

values of users with certain events who are usually a subset of all

users exposed in an experiment.

Missing data is a recurring topic of study in data science and

it can significantly impact conclusions drawn from data. There

are three classical types of missing data patterns. Missing com-

pletely at random (MCAR) assumes the values in a data set are

missing entirely at random, ensuring subsequent data analysis is

valid and unbiased [14]. However, MCAR is usually too strong an

assumption to be true in practice. Missing at random (MAR) as-

sumes missingness can be fully accounted for by variables with

complete information [38]. It is a weaker assumption than MCAR,

though uncheckable, and thus requires reasonable justification. Un-

der the assumption of MAR, many methods are able to produce

asymptotically unbiased estimates of parameters estimated from

data (e.g. mean of the data). Another type of missingness is missing

not at random (MNAR), where the data is neither MAR nor MCAR.

MNAR requires more conditions than MAR does for consistent

parameter estimation.

Based on our experience with missing data in performance met-

rics, we have three observations about the likelihood of a user not

having any event for a given performance metric:

(I) A treatment in an online controlled experiment may affect

how many users use the app. For example, the treatment

causes a system bug which prevents Android users from log-

ging into the app, causing more missingness in the treatment

group than in the control group. This assumption may or

may not hold depending on the experiment design.

(II) Missing rates differ statistically among different device mod-

els. We have checked in real data to see that users with lower-

end devices and worse mobile app experience are more likely

to have no performance events in experiments.

(III) Historically less engaged users are more likely to have no

performance events in an experiment. We have checked this

assumption in real data to ensure that the missing rate of

high-engaged user groups is much lower than the missing

rate of low-engaged user groups.

These observations ensure the missingness is not MCAR. Instead,

based on these observations it is reasonable to assume that the

missingness is close to MAR and can be mostly accounted for by

three key factors: the treatment bucket, the device model, and the

pre-treatment engagement level of users, i.e.

𝑃𝑟 (𝑀 |𝑌,𝑋1, 𝑋2, 𝑋3) ≈ 𝑃𝑟 (𝑀 |𝑋1, 𝑋2, 𝑋3) , (1)

where𝑀 is an indicator variable for whether a user has any event

for the performance metric, 𝑌 is the performance value, 𝑋1 is the

treatment bucket, 𝑋2 is the device model type, and 𝑋3 is the pre-

treatment engagement level. The interpretation of (1) is: the prob-

ability of missing performance metric data primarily depends on

users’ treatment buckets, device model types, and pre-treatment

engagement levels. Within a cluster of users having the same treat-

ment id, device model and pre-treatment engagement level, the

probability of missing data on the performance metric is almost

unrelated to the performance values.

Although MAR cannot be verified statistically against MNAR

[33], it is a practical assumption to be made given the observations

(I) – (III). In theory it is possible for many other variables to also

partially account for the missingness of performance metrics, but

in practice we recommend considering only a small number of

main factors out of scalability concerns. We find no significant

improvement in results for most experiments at Snap by adding

more variables. Practitioners in different companies may vary on

their choices of variables. Based on the assumption of missingness,

we propose the following two methods to reduce self-selection bias

in user-level performance metrics.

4.2 Method 1: Imputation
The first method we propose is based on imputation. Imputation

has always played an important role in the study of missing data

How to Measure Your App: A Couple of Pitfalls and Remedies in Measuring App Performance in Online Controlled ExperimentsJerusalem ’21, March 8–12, 2021, Jerusalem, Israel

and so researchers have developed many methods. ‘Mean substi-

tution’ is one of the easiest and fastest ways of imputation [32],

which simply uses the mean to fill in missing values. Random im-

putation is another scalable imputation method which replaces

missing values of a variable with some randomly sampled values

of that same variable from another sample [1, 29]. Moreover, a

commonly used imputation method is to replace missing values by

the predicted values from a regression model using other predic-

tor variables [13, 43]. In addition, many researchers also use EM

algorithms for imputation [33]. Simulation studies in [10] suggest

that EM algorithms may perform better than the mean substitution

and the random imputation methods. However, these iterative algo-

rithms are computationally expensive. As deep learning and neural

networks have achieved star status in the popular press, imputation

methods using deep learning and neural networks have also been

developed recently [3, 4, 35, 45]. A common major drawback of

these methods is that they can be very slow when datasets are large.

Besides the aforementioned single imputation methods, multiple

imputation [41] is also popular. However, multiple imputation does

not scale to large datasets as well as single imputation does.

At Snap, we have thousands of A/B experiments running every

day and most experiments involve tens of millions of users. For the

scale of this data, a good imputation method requires not only high

accuracy but also high scalability. Considering this along with the

missingness assumption on our data (1), we propose to implement

the following user-level imputation method:

Algorithm 1 Imputation

Input: The original user-level performance metric (𝑌origin); Treat-

ment indicator variable (𝑋1); Device model type variable (𝑋2);

Pre-treatment engagement level variable (𝑋3).

Output: The user-level performance metric with imputed values

(𝑌impute)

1: function Imputation(Input)

2: Split users into 𝐺 subgroups based on 𝑋1, 𝑋2, and 𝑋3.

3: for 𝑔← 1 to 𝐺 do
4: In the 𝑔-th subgroup, use the 𝑌origin values of the non-

missing users to construct an empirical distribution 𝐹𝑔 .

5: Randomly sample values with replacement from 𝐹𝑔 to

fill in the missing values of 𝑌origin in the 𝑔-th subgroup.

6: end for
7: return The user-level performance metric after imputation

8: end function

In Algorithm 1, the number of subgroups depends on the number

of device models and the number of pre-treatment engagement

levels. On one hand, given the heterogeneity of device models as

shown in Section 3, having more specific subgroups may increase

the accuracy of imputed values. On the other hand, splitting users

into too many subgroups decreases the scalability of our method

and may result in many groups with very few non-missing users,

thus decreasing the accuracy of imputation. Hence, we keep only

device models with at least 10,000 users and classify all other models

as "Other." As for the pre-treatment engagement level, we first count

each user’s number of performance events in one week before the

experiment start, and then divide the users into a high-engagement

group (count > mean of counts) and low-engagement group (count

≤ mean of counts).

In addition to its easy and straightforward implementation, we

choose to use random imputation in our algorithm because, un-

like mean substitution, it yields variance in imputed values which

is useful for hypothesis testing. It is also much faster than other

imputation methods for large datasets.

If the equality in (1) holds exactly, then imputed values will be

generated from the correct distributions and asymptotic unbiased-

ness in parameters (e.g. mean, median, etc.) is achieved. Moreover,

we impute missing values in control group and treatment group sep-

arately, which preserves any treatment effects on performance met-

rics. In reality, we do not expect the equality in (1) to always hold,

so we cannot claim to completely correct self-selection bias. But

as long as (1) is close to the truth, our imputation method reduces

self-selection bias. We evaluate the performance of our methods

via simulations and empirical studies in Sections 4.5 and 4.6.

4.3 Method 2: Matching
The second method is based on matching. The idea of matching is to

balance the distributions of observed variables between treatment

and control groups. It is widely used for selection bias problems in

observational studies across diverse disciplines such as statistics

[39, 42], economics [25], political science [20], sociology [36], and

epidemiology [6]. Among all well-developed matching methods,

"Exact Matching" matches treatment units with control units who

share exactly the same values in all observed variables. Exact match-

ing is ideal in many aspects [20], yet finding an identical twin for

each treated unit is difficult in high-dimensional or continuous-

valued data. To deal with this, "Coarsened Exact Matching" [23]

allows for close matching of continuous variables, while approaches

based on propensity scores [40] work for high-dimensional data

[24]. "Entropy Balancing" is another recent matching method [16]

that directly estimates weights to balance observed variables be-

tween treatment and control groups.

In order to ensure good scalability and accuracy, we implement

"Exact Matching" based on users’ device models and pre-treatment

engagement levels as shown in Algorithm 2. After calculating

weights for matching, we use weighted t-tests to compare the user-

level performance metrics between the treatment group and the

control group.

In our practice, both device models and pre-treatment engage-

ment levels are categorical. We have also tried matching based on

some continuous variables which might affect app performance

such as app versions and OS versions, by using propensity score

matching [40] to handle these continuous variables. None of them

significantly reduces bias in the cases we have examined. Practition-

ers in other companies may choose different variables or matching

methods for their own needs.

4.4 Imputation versus Matching
The above imputation and matching methods are based on the same

assumption, which is described in Equation (1): for a cluster of users

with the same experiment bucket, device model, and pre-treatment

engagement level, the distribution of a performance metric’s miss-

ing values should match that of its observed ones. If this equation

Jerusalem ’21, March 8–12, 2021, Jerusalem, Israel Xie, et al.

Algorithm 2Matching

Input: The original user-level performance metric (𝑌origin); Treat-

ment indicator variable (𝑋1); Device model type variable (𝑋2);

Pre-treatment engagement level variable (𝑋3).

Output: The weighted user-level performance metric (𝑌
match

)

1: functionMatching(Input)

2: Extract the non-missing values 𝑌NM out from 𝑌origin.

3: Split users with 𝑌NM into 𝐺 group based on 𝑋2 and 𝑋3.

4: for 𝑔← 1 to 𝐺 do
5: In the 𝑔-th subgroup, denote the number of treated

users (i.e. 𝑋1 = 1) to be 𝑁𝑇
𝑔 and the number of control users

(i.e. 𝑋1 = 0) to be 𝑁𝐶
𝑔 , and compute the ratio

𝑁𝑇
𝑔

𝑁𝐶
𝑔

.

6: Assign weights {1, 𝑁
𝑇
𝑔

𝑁𝐶
𝑔

} to the 𝑌NM values of

{𝑡𝑟𝑒𝑎𝑡𝑒𝑑, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙} users.
7: end for
8: return The weighted performance metric after matching

9: end function

holds exactly, both methods can achieve asymptotically unbiased

estimates of the parameters such as the mean and median. In Sec-

tion 4.5, we show via simulations that both methods are able to

obtain close-to-truth estimated ATEs under the assumption of this

equation. However, these two methods focus on different popula-

tions, which affects how well estimated treatment effects can gen-

eralize to different user groups. In an A/B experiment, imputation

targets all users exposed in this experiment, while matching targets

only users who have the performance metric values observed in

the experiment.

The Equation (1) may not always hold in real datasets, as the

MAR assumption is untestable in general unless additional distribu-

tional assumptions or instrumental variables are given ([5, 26]). So

bothmethods do not completely correct self-selection bias. Since we

usually do not know the ground truth treatment effects in real A/B

experiments, we recommend using both methods to cross-check

results after self-selection bias reduction.

4.5 Simulation Studies
We first conduct simulation studies to evaluate the performance of

our proposed methods. To mimic real distributions of the user-level

performance metrics at Snap, we randomly select 3 millions users

and use their performance metric data in our simulation studies. We

randomly split the users into treatment and control groups so that

initially there is no treatment effect. To generate treatment effects

for some of our simulation scenarios, we assume that different

device models have different treatment effects. Therefore, we first

generate a value of 𝜇 ∼ Uniform(𝑎, 𝑏) for each device model, where

𝑎 and 𝑏 are chosen to control the sizes of treatment effects. Then,

we add values sampled from a Gaussian distribution 𝑁 (𝜇, 𝜎) to
users in the treatment group based on their device models, where

we set 𝜎 = 0.3 in the following simulation studies. This establishes

a ground truth for the average treatment effect (ATE).

The self-selection bias in our simulated datasets is generated

according to the Equation (1) in Section 4.1. The probability of a

given user not having a value of the performance metric𝑌 is defined

to be

𝑃𝑟 (𝑀 |𝑋1, 𝑋2, 𝑋3) = 𝑒𝑥𝑝𝑖𝑡 (𝛼0 + 𝛼1𝑋1 + 𝛼2𝑋2 + 𝛼3𝑋3) , (2)

where𝑀 is an indicator variable for whether a user is missing the

performance metric 𝑌 , 𝑋1 is the indicator variable of the treatment

bucket, 𝑋2 is some dummy variable for the device model type, 𝑋3

is the pre-treatment engagement level. Increasing 𝛼0 decreases

the overall missing rate, increasing 𝛼1 amplifies the difference in

missing rates between the treatment group and the control group,

and the final parameters 𝛼2, 𝛼3 are set to adjust the effect of device

model type and pre-treatment engagement level on the missingness.

We denote the level of self-selection SRM to be

Δmiss = %missing in treatment − %missing in control.

We consider three simulation setups where all results are averaged

over 100 iterations of the data. In the first setup, we fix the true ATE

introduced into the treatment group to be 3, set 𝛼0, 𝛼2, 𝛼3 constant,

and only adjust 𝛼1 in (2) to vary Δmiss. As the Figure 4(𝐴1) shows,

as Δmiss increases, the ATE estimated directly from the original

data grows further away from the true ATE, while both imputation

and matching obtain estimated ATE values close to the truth at all

Δmiss’s. Since the true ATE is positive, if hypothesis testing gives

either an insignificant 𝑝-value (i.e. 𝑝-value≥ 0.05) or a significant

𝑝-value with a negative estimated ATE, we would consider this a

false conclusion. We define the false conclusion rate (FCR) to be

𝐹𝐶𝑅 =
Number of false conclusions made

Total number of hypotheses tested

.

Figure 4(𝐴2) shows that both imputation and matching make no

false conclusions in this simulation setup. Without a correction

method, we see the 𝐹𝐶𝑅 equal 1 when Δmiss reaches a certain level.

In the second simulation setup, we introduce no treatment effect

to the treatment group, setting the true ATE equal to 0. In this case,

any significant 𝑝-value indicates a false positive and we compute

the false positive rate (FPR) for each method. As Figure 4(𝐵1) and

Figure 4(𝐵2) show, both imputation and matching consistently esti-

mate the ATE around zero and almost never yield false positives. In

contrast, hypothesis testing without a correction method performs

very poorly.

In the third simulation setup, we fix𝛼0, 𝛼1, 𝛼2, 𝛼3 to makeΔmiss =

2%, and vary the size of the true ATE. We see from the Figure 4(𝐶1)

that our proposed methods again perform very well in estimating

the ATE, with imputation slightly outperforming matching in re-

ducing bias. Given that all estimated ATE values here are positive,

any insignificant 𝑝-values indicate a false negative. The Figure 4(𝐶2)

shows that our proposed methods have low false negative rates

(FNR) even when the true ATE is very small. It is not surprising to

see that the FNR from using the missing data without a correction

method decreases as the true ATE grows, because if the true ATE is

significantly large, a 2% self-selection SRM level may not be pow-

erful enough for self-selection bias to produce wrong conclusions,

especially with a sample size in only the low millions.

4.6 Empirical Results
In addition to simulation studies, we also evaluate the performance

of our proposed methods extensively on real A/B experiments at

Snap. The difficulty of evaluating methods on a real A/B experiment

is that we usually can neither confirm the existence of treatment

How to Measure Your App: A Couple of Pitfalls and Remedies in Measuring App Performance in Online Controlled ExperimentsJerusalem ’21, March 8–12, 2021, Jerusalem, Israel

Figure 4: Simulation results for imputation, matching, and without correction on user-level performance metrics. For (𝐴1) and (𝐴2), we fix the true ATE to be 3
and vary Δmiss. For (𝐵1) and (𝐵2), we fix the true ATE to be 0 and vary Δmiss. For (𝐶1) and (𝐶2), we fix Δmiss = 2%, and vary the size of true ATE.

effects nor ascertain the ground truth treatment effects to perfor-

mance metrics in an experimental context. Fortunately, we can

exploit experiments that by design, should show no treatment ef-

fects to performance metrics. These experiments essentially serve

as A/A tests, as it is reasonable to assume that true treatment ef-

fects are close to 0. If performance metrics in these experiments

exhibit self-selection bias and indicate statistically significant mean

differences between treatment and control groups, then we can test

whether our methods can successfully correct these false positives.

We look at the A/B experiment 1 where the volume of notifi-

cations changes in the treatment group. According to those who

designed the experiment, there should be no treatment effect to the

performance metric 𝑋 . However, we observe a significant 𝑝-value

for this metric. In this A/B experiment, 67.79% of users in the treat-

ment group have values of𝑋 while the corresponding proportion in

the control group is 68.24%. This fails our self-selection SRM check

with a 𝑝-value< 0.001. We compute the user-level performance

metric 𝑋 and the test result turns out to be significantly negative,

as shown in A/B experiment 1 of Table 2 . This is an example of

a false positive in user-level performance metrics. After applying

imputation and matching methods described earlier, we obtain in-

significant p-values from both methods, thereby correcting this

false positive.

In the A/B experiment 2 where treatment uses a different ma-

chine learning algorithm for notifications, and where we expect no

impact on performance metric 𝑌 . Here, 54.25% of users in the treat-

ment group have values of 𝑌 while the proportion of users having

𝑌 in the control group is 54.35%. This fails our self-selection SRM

check with a 𝑝-value< 0.001. We see from the A/B experiment 2 of

Table 2 that our proposed methods again correct the false positive

in this A/B experiment.

These two examples have demonstrated that our proposed meth-

ods are able to correct false positives in real A/B experiments. In the

A/B experiment 3 the treatment should not affect the performance

metric 𝑍 by design, while 𝑍 fails our self-selection SRM check with

a 𝑝-value< 0.001 (85.24% of users non-missing in treatment vs.

85.05% in control). Although there is still self-selection bias, the

user-level 𝑝-value for this performance metric 𝑍 is insignificant

and so does not produce misleading conclusions. As shown in A/B

experiment 3 of Table 2, our methods also yield insignificant 𝑝-

values, indicating neither method over-corrects for self-selection

bias.

As mentioned in Section 4.1, our proposed methods rely on

the missingness assumption (1). Since the Equation (1) does not

always hold in practice, our methods do not completely correct

self-selection bias. Therefore, in some A/B experiments our meth-

ods may not be able to correct false positives. In the A/B experi-

ment 4, treatment touches chat notifications and the experiment

owner confirms no treatment effect on the performance metric𝑊 .

This performance metric fails our self-selection SRM check with

a 𝑝-value< 0.001 (89.32% of users having performance events in

treatment vs. 89.39% in control). The user-level 𝑝-value without a

correction method is significant, and both our methods fail to cor-

rect this false positive. However, as shown in A/B experiment 4 of

Table 2, both methods still reduce bias term by over 20%, assuming

a true treatment effect of 0.

5 DISCUSSION
5.1 Guidelines for Practitioners
Based on our experience at Snap, we recommend the following

guidelines to mobile app developers on measuring performance

metrics in their online controlled experiments:

Jerusalem ’21, March 8–12, 2021, Jerusalem, Israel Xie, et al.

A/B experiment 1 (Δmiss = 0.45%, self-selection SRM 𝑝-value< 0.001)

Without Correction Imputation Matching

mean difference -2.11 0.7 -0.11

p-value 0.03 0.428 0.912

A/B experiment 2 (Δmiss = −0.1%, self-selection SRM 𝑝-value< 0.001)

Without Correction Imputation Matching

mean difference 1.87 0.94 0.26

p-value 0.022 0.167 0.748

A/B experiment 3 (Δmiss = −0.19%, self-selection SRM 𝑝-value< 0.001)

Without Correction Imputation Matching

mean difference -0.77 -0.3 -0.31

p-value 0.594 0.825 0.828

A/B experiment 4 (Δmiss = −0.07%, self-selection SRM 𝑝-value< 0.001)

Without Correction Imputation Matching

mean difference 2.32 1.89 1.53

p-value <0.001 <0.001 0.001

Table 2: Mean differences and 𝑝-values from using perfor-
mance metrics in several A/B experiments without correct-
ing self-selection bias (left), after imputation (middle), and
after matching (right).

• Step 1: For a given performance metric, compute both user-

level and event-level.

• Step 2: Detect whether there is self-selection bias in the

performance metric by using self-selection SRM check. Alert

if 𝑝−value < 0.001.

• Step 3: If there is a self-selection SRM alert in this perfor-

mance metric, then apply both imputation and matching

methods to reduce the self-selection bias.

5.2 Scalability
We have tested the scalability of our methods with different combi-

nations of 𝑁 = number of users and𝐺 = number of subgroups. We

implemented our methods in a toolkit at Snap and ran this toolkit

on a data set with 𝑁 = 6 million and𝐺 = 100 for 100 iterations. For

both methods, the tasks have been finished under one hour on an

Apple 15" MacBook Pro 2.6GHz Intel Core i7. We believe that more

computation power would speed this up even further.

5.3 Other Methods
We have also tried several other methods to reduce self-selection

bias for performance metrics. When analyzing the full user pop-

ulation in an A/B experiment, post-stratification and calibration

weighting [28], which are widely used to adjust survey attrition,

yield levels of performance and scalability similar to those of im-

putation. When analyzing only users with observed performance

metric values in an A/B experiment, regression adjustment [17] and

double robustness [27] are two alternatives to matching. We have

also tried the Heckman correction model [19] without the exclu-

sion restriction to reduce self-selection bias. However, it performs

poorly since it depends on a very restrictive assumption: errors of

the selection model and the outcome variable are jointly Gaussian

distributed. This assumption rarely holds empirically. Although

there are methods to relax this assumption ([37], [46], [49]), its

scalability is poor.

In addition to the aforementioned point estimation methods,

Horowitz-Manski bounds [22] and Lee bounds [30] are commonly

used to bound a treatment effect with an interval. However, both

methods are of limited use for our particular analysis since they

either yield bounds toowide to be informative, or carry assumptions

too restrictive for industry settings.

Self-selection bias affects performance metrics on both the user-

level and the event-level. We have considered methods to reduce

self-selection bias in event-level performance metrics, but their

scalability becomes challenging. We leave this to future research.

5.4 User-Level High Percentile Performance
Metrics

It is critical for mobile apps to guard against bad performance, so

high percentiles (e.g. P75, P90) are commonly used in performance

metrics [44]. In addition to the major pitfalls we have discussed in

Section 3 and Section 4, there is another challenge in computing

user-level high percentile performance metrics. For example, when

a user only records two events for a P90 performance metric, it is

difficult to derive an accurate value of this user’s P90 performance

metric from only two data points. From our simulations, user-level

high percentile performance metrics get underestimated for users

with very few events.

If an experiment does not modify the distribution of performance

event counts between treatment and control groups, then this issue

would not affect A/B test results and our proposed methods would

still work in reducing self-selection bias. However, if the treatment

changes how many events users record, then this issue of underesti-

mation in user-level high percentile performance metrics may lead

to misleading results. One possible solution is to impute more ac-

curate values of user-level P90 performance metrics for users with

very few events, though this introduces additional assumptions.

6 SUMMARY
In this paper, we discuss a couple of major pitfalls in the current

industry-standard method of calculating performance metrics of

mobile apps in online controlled experiments: one is caused by

the high heterogeneity of both mobile devices on the market and

user engagement with mobile apps, and the other is caused by the

user self-selection bias happening during the treatment of experi-

ments. In order to evaluate and remedy the biases caused by these

pitfalls, we quantitatively compare the user-level vs. event-level

of thousands performance metrics, introduce self-selection SRM

alert, and propose imputation and matching methods to remedy

the self-selection bias. As shown through both simulation and real

A/B experiments, our proposed methods provide robust, scalable

ways to reduce biases and remedy misleading results. A general

guideline for industry practitioners is also provided.

7 ACKNOWLEDGEMENT
We thank the anonymous reviewers and the editor for helpful

comments on this work. We thank the engineering team at Snap for

providing valuable insights and data sets of performance metrics

in online controlled experiments.

How to Measure Your App: A Couple of Pitfalls and Remedies in Measuring App Performance in Online Controlled ExperimentsJerusalem ’21, March 8–12, 2021, Jerusalem, Israel

REFERENCES
[1] L. Altmayer. Hot-deck imputation: A simple data step approach. Proceedings of

the 2002 Northeast SAS User’s Group, pages 773–780, 2002.
[2] Joshua Angrist and Jorn-Steffen Pischke.Mostly Harmless Econometrics. Princeton

University Press, Princeton, NJ, USA, 2009.

[3] Cédric Arisdakessian, Olivier Poirion, Breck Yunits, Xun Zhu, and Lana X.

Garmire. Deepimpute: an accurate, fast, and scalable deep neural networkmethod

to impute single-cell rna-seq data. Genome Biology, 20(1):211, 2019.
[4] F. Biessmann, T. Rukat, P. Schmidt, P. Naidu, S. Schelter, A. Taptunov, D. Lange,

and D. Salinas. Datawig: Missing value imputation for tables. Journal of Machine
Learning Research, 20:1–6, 2019.

[5] C. Breunig. Testing missing at random using instrumental variables. Journal of
Business & Economic Statistics, 37:223–234, 2019.

[6] M. Alan Brookhart, Sebastian Schneeweiss, Kenneth J. Rothman, Robert J. Glynn,

Jerry Avorn, and Til Stürmer. Variable Selection for Propensity Score Models.

American Journal of Epidemiology, 163(12):1149–1156, 04 2006.
[7] Duc Hoang Bui, Yunxin Liu, Hyosu Kim, Insik Shin, and Feng Zhao. Rethinking

energy-performance trade-off in mobile web page loading. In Proceedings of the
21st Annual International Conference on Mobile Computing and Networking, page
14–26, New York, NY, USA, 2015. Association for Computing Machinery.

[8] Nanyu Chen, Min Liu, and Ya Xu. Automatic Detection and Diagnosis of Biased

Online Experiments. arXiv e-prints, page arXiv:1808.00114, Jul 2018.
[9] Pavel Dmitriev, Somit Gupta, Dong Woo Kim, and Garnet Vaz. A dirty dozen:

Twelve common metric interpretation pitfalls in online controlled experiments.

In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’17, page 1427–1436, 2017.

[10] Craig Enders. The impact of nonnormality on full information maximum-

likelihood estimation for structural equation models with missing data. Psycho-
logical methods, 6:352–70, 01 2002.

[11] Aleksander Fabijan, Pavel Dmitriev, Colin McFarland, Lukas Vermeer, Helena

Holmström Olsson, and Jan Bosch. Experimentation growth: Evolving trustwor-

thy a/b testing capabilities in online software companies. Journal of Software:
Evolution and Process, 30(12):e2113, 2018. e2113 JSME-17-0210.R2.

[12] Aleksander Fabijan, Jayant Gupchup, Somit Gupta, Jeff Omhover, Wen Qin,

Lukas Vermeer, and Pavel Dmitriev. Diagnosing sample ratio mismatch in online

controlled experiments: A taxonomy and rules of thumb for practitioners. In

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’19, page 2156–2164, 2019.

[13] J.J. Faraway. Linear Models with R. Chapman & Hall, 2005.

[14] J. W. Graham. Missing Data: Analysis and Design. Springer, 2012.
[15] Somit Gupta, Ronny Kohavi, Diane Tang, Ya Xu, Reid Andersen, Eytan Bakshy,

Niall Cardin, Sumita Chandran, Nanyu Chen, Dominic Coey, and et al. Top

challenges from the first practical online controlled experiments summit. SIGKDD
Explor. Newsl., 21(1):20–35, 2019.

[16] Jens Hainmueller. Entropy balancing for causal effects: A multivariate reweight-

ing method to produce balanced samples in observational studies. Political
Analysis, 20(1):25–46, 2012.

[17] Sebastien Haneuse, Jonathan Schildcrout, Paul Crane, Joshua Sonnen, John Breit-

ner, and E Larson. Adjustment for selection bias in observational studies with

application to the analysis of autopsy data. Neuroepidemiology, 32:229–239, 2009.
[18] James Heckman. Selection Bias and Self-Selection, pages 242–266. Palgrave

Macmillan, London, 01 2010.

[19] James J. Heckman. Sample selection bias as a specification error. Econometrica,
47(1):153–161, 1979.

[20] Daniel E. Ho, Kosuke Imai, Gary King, and Elizabeth A. Stuart. Matching as

nonparametric preprocessing for reducing model dependence in parametric

causal inference. Political Analysis, 15(3):199–236, 2007.
[21] PaulW. Holland. Statistics and causal inference. Journal of the American Statistical

Association, 81(396):945–960, 1986.
[22] Joel L. Horowitz and Charles F. Manski. Nonparametric analysis of randomized

experiments with missing covariate and outcome data. Journal of the American
Statistical Association, 95(449):77–84, 2000.

[23] Stefano M. Iacus, Gary King, and Giuseppe Porro. Causal inference without

balance checking: Coarsened exact matching. Political Analysis, 20(1):1–24, 2012.
[24] Kosuke Imai and Marc Ratkovic. Covariate balancing propensity score. Journal

of the Royal Statistical Society: Series B, 76(1):243–263, 2014.
[25] Guido Imbens. Nonparametric estimation of average treatment effects under

exogeneity: A review. Review of Economics and Statistics, 2004.
[26] Manfred Jaeger. On testing the missing at random assumption. In Johannes

Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, Machine Learning:
ECML 2006, pages 671–678, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[27] Joseph D. Y. Kang and Joseph L. Schafer. Demystifying double robustness: A

comparison of alternative strategies for estimating a population mean from

incomplete data. Statistical Science, 22(4):523–539, 2007.
[28] Stas Kolenikov. Post-stratification or a non-response adjustment? Survey Practice,

9:1–12, 08 2016.

[29] D. Lanning and D. Berry. An alternative to proc mi for large samples. SAS Users
Group International (SUGI) 28, 2003.

[30] David S. Lee. Training, Wages, and Sample Selection: Estimating Sharp Bounds

on Treatment Effects. The Review of Economic Studies, 76(3):1071–1102, 07 2009.
[31] P. L. Li, P. Dmitriev, H. M. Hu, X. Chai, Z. Dimov, B. Paddock, Y. Li, A. Kirshen-

baum, I. Niculescu, and T. Thoresen. Experimentation in the operating system:

The windows experimentation platform. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP),
pages 21–30, May 2019.

[32] Roderick J. A. Little. Regression with missing x’s: A review. Journal of the
American Statistical Association, 87(420):1227–1237, 1992.

[33] Roderick J A Little and Donald B Rubin. Statistical Analysis with Missing Data.
John Wiley & Sons, Inc., USA, 1986.

[34] Min Liu, Xiaohui Sun, Maneesh Varshney, and Ya Xu. Large-Scale Online Experi-

mentation with Quantile Metrics. arXiv e-prints, 2019.
[35] Tapabrata Maiti, Curtis P. Miller, and Pushpal K. Mukhopadhyay. Neural network

imputation: An experience with the national resources inventory survey. Journal
of Agricultural, Biological, and Environmental Statistics, 13(3):255–269, 2008.

[36] Stephen L. Morgan and David J. Harding. Matching estimators of causal effects:

Prospects and pitfalls in theory and practice. Sociological Methods & Research,
35(1):3–60, 2006.

[37] Whitney K. Newey, James L. Powell, and James R. Walker. Semiparametric

estimation of selection models: Some empirical results. The American Economic
Review, 80(2):324–328, 1990.

[38] T. Raghunathan. Missing Data Analysis in Practice. Chapman & Hall, 2016.

[39] Paul R. Rosenbaum. Observational Studies. Springer-Verlag, 2002.
[40] Paul R. Rosenbaum and Donald B. Rubin. The central role of the propensity score

in observational studies for causal effects. Biometrika, 70(1):41–55, 1983.
[41] D. B. Rubin. Multiple Imputation for Nonresponse in Surveys. Wiley, 1987.

[42] Donald B. Rubin. Matched Sampling for Causal Effects. Cambridge University

Press, 2006.

[43] L.J. Schafer. Analysis of Incomplete Multivariate Data. Chapman & Hall, 1997.

[44] Xiaolin Shi, Pavel Dmitriev, Somit Gupta, and Xin Fu. Challenges, best practices

and pitfalls in evaluating results of online controlled experiments. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery& Data
Mining, KDD ’19, page 3189–3190, New York, NY, USA, 2019. Association for

Computing Machinery.

[45] Marek Śmieja, Ł ukasz Struski, Jacek Tabor, Bartosz Zieliński, and Przemysł aw

Spurek. Processing of missing data by neural networks. In Advances in Neural
Information Processing Systems 31, pages 2719–2729. Curran Associates, Inc., 2018.

[46] Magorzata Wojtyś, Giampiero Marra, and Rosalba Radice. Copula regression

spline sample selection models: The r package semiparsamplesel. Journal of
Statistical Software, Articles, 71(6):1–66, 2016.

[47] Yuxiang Xie, Nanyu Chen, and Xiaolin Shi. False discovery rate controlled

heterogeneous treatment effect detection for online controlled experiments. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’18, page 876–885, New York, NY, USA, 2018.

[48] Z. Zhao, M. Chen, D. Matheson, and M. Stone. Online experimentation diagnosis

and troubleshooting beyond aa validation. In 2016 IEEE International Conference
on Data Science and Advanced Analytics (DSAA), pages 498–507, Oct 2016.

[49] Mikhail Zhelonkin, Marc Genton, and Elvezio Ronchetti. Robust inference in

sample selection models. Journal of the Royal Statistical Society: Series B, 78, 2015.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Performance Metrics and Online Controlled Experiments
	2.2 Sample Ratio Mismatch (SRM) and Selection Bias
	2.3 Self-Selection Bias

	3 User-level vs. Event-level
	4 Self-Selection Bias Reduction
	4.1 Assumptions on Missingness
	4.2 Method 1: Imputation
	4.3 Method 2: Matching
	4.4 Imputation versus Matching
	4.5 Simulation Studies
	4.6 Empirical Results

	5 Discussion
	5.1 Guidelines for Practitioners
	5.2 Scalability
	5.3 Other Methods
	5.4 User-Level High Percentile Performance Metrics

	6 Summary
	7 Acknowledgement
	References

