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ABSTRACT

Given an undirected graph, theDensest-:-Subgraph problem (DkS)

seeks to find a subset of : vertices such that the sum of the edge

weights in the corresponding subgraph is maximized. The problem

is known to beNP-hard, and is also very difficult to approximate, in

the worst-case. In this paper, we present a new convex relaxation

for the problem. Our key idea is to reformulate DkS as minimizing

a submodular function subject to a cardinality constraint. Exploit-

ing the fact that submodular functions possess a convex, contin-

uous extension (known as the Lovász extension), we propose to

minimize the Lovász extension over the convex hull of the cardi-

nality constraints. Although the Lovász extension of a submodular

function does not admit an analytical form in general, for DkS we

show that it does. We leverage this result to develop a highly scal-

able algorithm based on the Alternating Direction Method of Mul-

tipliers (ADMM) for solving the relaxed problem. Coupled with a

pair of fortuitously simple rounding schemes, we demonstrate that

our approach outperforms existing baselines on real-world graphs

and can yield high quality sub-optimal solutions which typically

are a posteriori no worse than 65 − 80% of the optimal density.

CCS CONCEPTS

• Mathematics of computing → Graph algorithms; Contin-

uous optimization; Submodular optimization and polyma-

troids.

KEYWORDS

Dense subgraphs; submodularity; Lovász extension; convex opti-

mization; Alternating Direction Method of Multipliers

ACM Reference Format:

Aritra Konar and Nicholas D. Sidiropoulos. 2021. Exploring the Subgraph

Density-Size Trade-off via the Lovász Extension. In Proceedings of the Four-

teenth ACM International Conference onWeb Search andDataMining (WSDM

’21), March 8–12, 2021, Virtual Event, Israel.ACM,NewYork, NY, USA, 10 pages.

https://doi.org/10.1145/3437963.3441756

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM ’21, March 8–12, 2021, Virtual Event, Israel

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8297-7/21/03. . . $15.00
https://doi.org/10.1145/3437963.3441756

1 INTRODUCTION

Motivation and Overview: Dense subgraph discovery is a key

primitive in graph mining that finds application in diverse disci-

plines ranging from computational biology [34], chemical infor-

matics [32], network science [9, 17, 41] and fraud detection [20, 40].

Given an unweighted, undirected graph on = vertices, the classical

DensestSubgraph problem [18] seeks to determine the subgraph

with the largest average degree. The problem can be solved exactly

in polynomial-time and approximately (but quasi-optimally) via a

greedy algorithm [8]. Recent work has extended these ideas to take

into account higher-order structure in graphs [28, 37].

A drawback of the aforementioned approaches is that they do

not feature a means of explicitly controlling the size of the desired

subgraph. Hence, if one is interested in computing the densest sub-

graph as a function of the size : with the aim of exploring the opti-

mal density-size trade-off, an additional cardinality constraint on

the subgraph size has to be imposed in the formulation of Densest-

Subgraph. Unfortunately, this simple modification renders the re-

sulting problem, known as Densest-:-Subgraph (DkS), NP-hard.

Furthermore, the problem is known to be notoriously difficult to

approximate in the worst-case [5, 21, 27].

Prior Art: The state-of-the-art approximation algorithm [4] for

the DkS problem provides a worst-case approximation guarantee

of $ (=1/4+n) (for some n > 0) in time =$ (1/n) for every choice of

: , which is a very pessimistic result in general. Restricted cases

of the problem are known to enjoy better approximation guaran-

tees. For dense graphs, where the number of edges < = Ω(=2)
and for linear subgraph sizes : = Ω(=), a 1 + n approximation al-

gorithm was presented in [1]. However, the result has limited im-

plications for real-world networks since they are sparse in edges

(with < = $ (=)) [38]. For general sizes : , a $ (=/:) approxima-

tion can be achieved by applying a greedy algorithm [13] or via

semidefinite relaxation [12, 36]. Note that in the linear size regime

: = Ω(=), this yields a constant-factor approximation. That be-

ing said, in practice, for large graphs one is more interested in the

sublinear size regime : = > (=), where the bounds again become

very pessimistic. Recently, a new semidefinite relaxation approach

for DkS has been proposed in [6] that guarantees exact recovery

in planted dense subgraph models with high probability. However,

real world graphs are not known to obey such synthetic models.

Additionally, the high complexity incurred in solving the semidef-

inite program is a limitation of the approach.

In a departure from such worst-case results, the recent work

of [30] approaches the problem via the lens of low-rank matrix

factorization. Specifically, it is shown that if the graph adjacency

matrix has constant rank (in=), then the DkS problem is solvable in

polynomial-time. When the adjacency matrix is not constant rank,
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solving the problem using low-rank approximation still yields an a

posteriori graph-dependent upper bound on the optimal density for

a given : . Through experiments on real-world graphs, it is shown

that the approach yields high-quality solutions that can come close

to attaining the upper bound in certain cases.

Approach and Contributions: In this paper, we propose a new

convex relaxation of the DkS problem for obtaining high-quality,

sub-optimal solutions. Our contributions can be summarized as fol-

lows:

• We reformulate the DkS problem as minimizing a submodu-

lar function subject to a cardinality constraint. Leveraging

the fact that submodular functions are endowed with a con-

vex, continuous extension (i.e., the Lovász extension), we

devise a new convex formulation for DkS that minimizes

the Lovász extension over the convex hull of the cardinality

constraints.

• In general, the Lovász extension of a submodular function

does not admit an analytical form. In this case however, by

judiciously exploiting the structure inherent in the problem,

we establish a simple closed-form expression for the Lovász

extension. We utilize this result to develop an efficient and

scalable algorithm for solving the convex relaxation via an

inexact variant of the popularAlternating DirectionMethod

of Multipliers (ADMM) [7, 24], which features computation-

ally lightweight updates and guaranteed convergence.

• The solution of our relaxed problem is not guaranteed to be

integral in general. Hence, we perform post-processing via

two simple rounding schemes to obtain final integral solu-

tions for DkS. While we do not possess a priori guarantees

on the quality of the obtained solution at present, via exper-

iments on real-world graphs we demonstrate that our ap-

proach can consistently outperform prominent baselines. In

fact, utilizing the upper bound on the optimal edge-density

developed in [30], we demonstrate that a posteriori our ap-

proach can discover dense subgraphs that are typically no

worse than 65 − 80% of the optimal density.

On a final note, to put our contributions into perspective, we note

that the prevailing approach to convex relaxation for combinato-

rial quadratic programming problems has been semidefinite relax-

ation [26], which is the Lagrangian bi-dual of the original problem,

and hence is the closest convex problem to DkS, in a certain sense.

Since the Lovász extension is the convex envelope of a submodular

function [25], our convex relaxation can be viewed as an alterna-

tive which is the closest convex problem to DkS in a different sense

(this notion is made precise in Section 4).

2 PRIMER ON SUBMODULARITY

We provide an overview of basic concepts regarding submodular

functions [2, 15, 25]. Given a set of = objectsV = {1, · · · , =}, a set
function � : 2V → R assigns a real value to any subset S ⊆ V.

Definition 1. [Submodularity] A set function � (.) is said to be

submodular if and only if for all subsets A,B ⊆ V , it holds that

� (A ∪ B) + � (A ∩ B) ≤ � (A) + � (B). (1)

The above definition can be equivalently, and more conveniently,

restated in the following form.

Definition 2. For all A ⊆ B ⊆ V \ {E}, it holds that
� (A ∪ {E}) − � (A) ≥ � (B ∪ {E}) − � (B). (2)

That is, for such functions, given subsets A ⊆ B ⊆ V \ {E},
the marginal improvement obtained by adding an element E to the

larger set B never exceeds that obtained by adding E to its subset

A. Simply stated, equation (2) asserts that submodular functions

exhibit a diminishing returns property.

Definition 3. [The Lovász extension] A remarkable feature of

submodular functions is that they possess a continuous, convex ex-

tension known as the Lovász extension, which extends their do-

main from 2V to the unit interval [0, 1]= (recall = = |V|). Formally,

the Lovász extension 5! : [0, 1]= → R of a submodular function

� (.) is defined as

5! (x) := max
g∈B�

g) x, (3)

where the set B� is the base polytope associated with � (.) and is

defined as

B� := {g ∈ R= : g) 1= = � (V); g) 1S ≤ � (S),∀ S ⊆ V}. (4)

From equation (3), it is evident that the Lovász extension corre-

sponds to the support function of the base polytope B� , and is

thus convex. In fact, it can be shown that 5! (.) is convex if and

only if � (.) is submodular. Furthermore, when evaluated at a bi-

nary vector x ∈ {0, 1}= , the Lovász extension equals the value of

the submodular function � (.).

3 PROBLEM STATEMENT

In this section, we formally describe theDensest-:-Subgraph (DkS)

problem.Consider aweighted, undirected, simple graphG := (V, E, F)
on = vertices, with vertex set V := {1, · · · , =} and edge set E ⊆
V × V consisting of< := |E| edges. The function F : E → R++
assigns each edge with a positive weight, and we collect these

weights in a vector w ∈ R<++. In the special case that w is the

vector of all-ones, we say that the graph G is unweighted.

Given a positive integer 1 < : < =, we consider the problem

of computing the subset of vertices S ⊂ V of size : such that the

sum of the edge weights in the induced subgraph GS is as larges

as possible. The DkS problem can be expressed in quadratic pro-

gramming form as

max
x∈{0,1}=

x)Wx

s.to 1) x = :,

(5)

where W represents the = × = (weighted) adjacency matrix of the

graph G. Note that each binary vector x ∈ {0, 1}= corresponds to

the indicator vector of a vertex subset S ⊆ V , i.e., we have

G8 =

{
1, if 8 ∈ S
0, otherwise.

(6)

Hence, for a given subset of vertices S ⊂ V , the objective function

counts the total weight of the edges in the subgraph GS induced by
S, while the constraints ensure thatS contains precisely : vertices.

Regarding computational complexity, problem (5) is known to

be NP–hard in its general form (it contains the MaximumCliqe

problem as a special case [13]). Additionally, the problem also has

a documented history of resistance to efficient approximation in



polynomial-time [5, 21, 27]. Notwithstanding such pessimistic worst-

case results, in this paper we devise a new polynomial-time approx-

imation algorithm for the DkS problem that relies on exploiting

the combinatorial structure of (5) in a principled manner. Our ap-

proach is outlined in the following section.

4 PROPOSED APPROACH

Consider the following equivalent reformulation of problem (5) in

subset selection form

min
|S |=:

{
� (S) : −1)SW1S

}
, (7)

where 1S denotes the binary indicator vector of subset S ⊂ V.

We now make the following crucial observation regarding the cost

function.

Theorem 4.1. The cost function � (.) is submodular.

Proof. Note that for a given subset S, the cost function is lin-

early separable over the edge set ES of the induced subgraph GS ,
i.e., we have

� (S) =
∑

(8, 9) ∈ES
−F8 9 , (8)

where F8 9 denotes the weight of edge (8, 9) ∈ ES . Since submodu-

larity is preserved under summation, in order to obtain the desired

result, it suffices to show that each constituent function

�8 9 (S) :=
{
−F8 9 , if 8 and 9 ∈ S,

0, otherwise,
(9)

is submodular. Defining the pair of setsA := S∩ {8},B := S∩ { 9}
and applying Definition 1 then completes the proof. �

Although the above observation does not make the (NP–hard)

DkS problem any easier to solve, it does open the door to the fol-

lowing approximation approach. First, we define the set

P := {x ∈ [0, 1]= ; 1) x = :} (10)

to be the convex hull of the combinatorial sum-to-: constraints.

Since submodular functions are endowed with a convex, continu-

ous extension (the Lovász extension) which equals the value of � (.)
at all binary {0, 1}= vectors, the DkS problem can be equivalently

expressed as
min 5! (x)
s.to x ∈ {0, 1}= ∩ P . (11)

On dropping the combinatorial constraints, we obtain the relaxed

problem

min
x∈P

5! (x) (12)

which we refer to as the Lovász relaxation. Clearly, the above prob-

lem is convex, and can be solved in polynomial-time to obtain a

lower bound on the optimal value of (11).

We now outline our primarymotivation for employing the Lovász

extension. Before proceeding, we recall a few basics of convex anal-

ysis [33]. Given any function 5 : R= → R ∪ {+∞}, its Fenchel
conjugate is defined as 5 ∗ (y) := supx{y) x − 5 (x)}, which is al-

ways closed and convex (even if 5 (.) is not). Taking the conjugate

of 5 ∗(.) yields the biconjugate 5 ∗∗(.) of the function 5 (.), which is

also closed and convex, and an under-estimator of 5 (.), i.e., 5 ∗∗ ≤

5 . As a matter of fact, the biconjugate 5 ∗∗ (.) constitutes the convex
closure of 5 (.), and thus, is the tightest convex under-estimator of

5 (.) (in a certain sense). The link between the Lovász extension of

a submodular function and its Fenchel biconjugate is provided by

the following result, which is extracted from [2, 25].

Lemma 4.2. Given a subodular function � (.), define the function

6(x) :=
{
� (S), ∀ x = 1S,S ⊆ 2V

+∞, ∀ x ≠ {0, 1}= .
(13)

Then, the Fenchel biconjugate of 6(.) is the Lovász extension of � (.).

Hence, the Lovász extension corresponds to the convex closure,

or the tightest convex under-estimator (in the above sense) of the

submodular function � (.) on the domain [0, 1]= , which justifies

its use as a principled, continuous relaxation of the quadratic cost

function of DkS.

While the above result places the Lovász relaxation (12) on a

firm theoretical footing, from an algorithmic perspective, a notable

drawback of the approach is that the Lovász extension does not

admit an analytical form in general. This stems from the fact that

5! (.) is the support function of the base polytope B� of � (.) (see
equation (3)), which is characterized by (potentially) an exponen-

tial number of inequalities in the problem dimension =. In his sem-

inal work [11], Edmonds presented a simple greedy algorithm for

computing a subgradient of the Lovász extension at any point x ∈
[0, 1]= in time $ (= log= + =) ) 1 without explicitly constructing

B� . While this fact can be exploited to solve the Lovász relaxation

(12) via a projected subgradient algorithm, such an approach suf-

fers from slow convergence. Indeed, the primal convergence rate

(i.e., convergence to the optimal value) of subgradient methods for

convex problems is $ (1/
√
C) [29], where C is the number of itera-

tions. Hence, adopting such an approach is limited to producing

low-accuracy solutions for large-scale problems.

We now demonstrate that it is possible to solve the Lovász relax-

ation (hereafter referred to as the L-relaxation) in a substantially

more efficient manner. Our key result is that for the DkS problem,

we can explicitly characterize the base polytope of the submodu-

lar cost function � , which in turn allows us to obtain an analyti-

cal form for the Lovász extension. Finally, we apply a primal-dual

algorithm that leverages the explicit structure of the problem to

compute efficient solutions for the L-relaxation.

Before proceeding, we introduce the following notation: let d :=

W1= represent the (weighted) degree vector of the vertices of G,
and B ∈ {−1, 0, 1}=×< denote the directed vertex-edge incidence

matrix of the graph G. Note that a column of B corresponds to an

edge (8, 9) ∈ E, and is of the form (e8−e9 ), where e8 denotes the 8Cℎ
canonical basis vector in R= . We are now ready to state our main

result.

Theorem 4.3. The base polytope of � can be expressed as

B� = {g ∈ R= : g = −d + Bf,∀ |f | ≤ w}.

Proof. Once again, we exploit the fact that the function � can

be linearly decomposed as � (S) = ∑
(8, 9) ∈E �8 9 (S), where �8 9 has

been previously defined in (9). An important result [35, Theorem

1Here,) > 0 is an upper bound on the maximum time taken to evaluate � (.) for any
choice of subset S ⊆ V .



44.6] regarding such decomposable submodular functions asserts

that the base polytope can be expressed as the set-addition of the

base polytopes of the constituent functions {�8 9 } (8, 9) ∈E , i.e., we
have B� =

∑
(8, 9) ∈E B�8 9 , where B�8 9 is the base polytope of �8 9 .

This suggests that if we can find a simple expression for each con-

stituent base polytope B�8 9 , then we can possibly characterize the

full polytope B� .
To this end, consider a component function �8 9 . Applying the

definition (4), its base polytope can be expressed as

B�8 9 = {g ∈ R= : 68 ≤ 0, 6 9 ≤ 0, 68 + 6 9 ≤ −F8 9 , 68 + 6 9 = −F8 9 },
(14)

which in turn can be re-expressed as

B�8 9 = −F8 9conv(e8 , e9 ),
= −F8 9 [U8 9 (e8 − e9 ) + e9 ],∀ U8 9 ∈ [0, 1] .

(15)

Introducing the change of variable V8 9 := 1 − 2U8 9 , we obtain

B�8 9 =
−F8 9

2
[(e8 + e9 ) − V8 9 (e8 − e9 )],

=
1

2
[F8 9 V8 9 (e8 − e9 ) −F8 9 (e8 + e9 )], ∀ V8 9 ∈ [−1, 1] .

(16)

This allows us to obtain the complete representation

B� = − 1
2

∑

(8, 9) ∈E
F8 9 (e8 + e9 ) +

1

2

∑

(8, 9) ∈E
F8 9 V8 9 (e8 − e9 ). (17)

Note that the first summand is precisely the (weighted) degree vec-

tor d (as the contribution of each vertex 8 ∈ V is
∑

9 :(8, 9) ∈E F8 9e8 ),

while the second summand can be expressed as Bf , where f ∈ R<
is a vector with entries 58 9 := F8 9V8 9 . Since |V8 9 | ≤ 1, by construc-

tion, we have | 58 9 | ≤ F8 9 , and thus |f | ≤ w. Putting everything

together, we finally obtain the following characterization of the

base polytope

B� =
1

2
[−d + Bf],∀ |f | ≤ w, (18)

which yields the desired result up to the global scaling factor 1/2.
�

As an immediate consequence of the above result, we obtain the

following analytical form for the Lovász extension.

Corollary 4.4. The Lovász extension of � is

5! (x) = −d) x +
∑

(8, 9) ∈E
F8 9 |G8 − G 9 |.

Proof. Utilizing the form of the base polytope, we can express

the Lovász extension as

5! (x) = max
|f |≤w

(−d + Bf)) x

= −d) x + max
|f |≤w

(B) x)) f

= −d) x +
∑

(8, 9) ∈E
F8 9 |G8 − G 9 |,

(19)

where in going from the second to the third step we have utilized

the fact that the vector B) x generates pair-wise differences be-

tween entries of x that are connected by an edge in G. �

The above result allows us to express the L-relaxation (in maxi-

mization form) as

max
x∈P

{
d) x −

∑

(8, 9) ∈E
F8 9 |G8 − G 9 |

}
. (20)

An intuitive explanation of the above formulation is as follows. For

any binary vector x ∈ P that represents an induced subgraph G( ,
the first term in the above objective function is a measure of the

volume of G( , i.e., it is the sum of the degrees of all the vertices

in the induced subgraph. Meanwhile, the second term, which cor-

responds to graph total variation, counts the weighted sum of all

edges crossing the boundary ofG( , i.e., it measures the cut. The dif-

ference of these two terms is then (twice) the sum of all edges in

G( , which is precisely the objective function that the DkS problem
seeks to maximize. Equivalently stated, we wish to find an induced

subgraph on : vertices with high volume and small cut.

When solving the L-relaxation, we allow for non-binary vectors

x ∈ P . In this case, the value of each entry of x is a soft “member-

ship” score that reflects the “likelihood” of a vertex belonging to

the :-densest subgraph. The objective function then places higher

emphasis on those likelihood profiles where the membership val-

ues are largest for those vertices that have large degree and are si-

multaneously “smooth” (in the total-variation sense) with respect

to their one-hop neighbors, which is an intuitive proxy for dense

subgraphs of size : .

Hence, the L-relaxation constitutes a meaningful relaxation of

the DkS problem. That being said, the form of the Lovász extension

reveals that problem (11) is neither differentiable, nor strongly con-

cave, which constitutes a computational impediment in solving it

efficiently at scale. In the next section, we show that by exploiting

the structure of the problem in an intelligent fashion, it is in fact

possible to develop an efficient and scalable algorithm.

5 ALGORITHMS

In order to motivate our algorithmic approach, we express the L-

relaxation in the following manner. First, we define the functions

6(x) :=
{
−d) x, x ∈ P,
+∞, otherwise

(21)

and

ℎ(x) :=
∑

(8, 9) ∈E
F8 9 |G8 − G 9 | = ‖DB) x‖1, (22)

where D := diag(w) denotes a diagonal matrix containing the

edge-weights w. We can now express problem (12) as

min
x∈R=

6(x) + ℎ(x), (23)

which in turn is equivalent to

min
x,z∈R=

6(x) + ℎ(z)

s.to x − z = 0.
(24)

The above problem is now in a form suitable for the application

of the Alternating Direction Method of Multipliers (ADMM) [7,

24] - a flexible framework for solving convex optimization prob-

lems that fuses the benefits of dual decomposition and augmented

Lagrangian techniques into a simple primal-dual algorithm. The



main utility of ADMM is that it decomposes complicated cost func-

tions into simpler components (these can be non-smooth or even

represent embedded constraints) via variable splitting and allows

them to be handled separately, while featuring guaranteed conver-

gence to the optimal solution of the problem under very mild as-

sumptions. While being a very general framework for solving con-

vex optimization problems, ADMM is most efficient when its sub-

problems admit an analytical or simple computational solution.

For the particular form of variable splitting employed in prob-

lem (24), it can be shown that the ADMM updates are given by

xC+1 = proxd6 (zC − uC ) (25a)

zC+1 = proxdℎ (xC+1 + uC ) (25b)

uC+1 = uC + xC+1 − zC+1 (25c)

where u ∈ R= is the normalized dual variable associated with the

consensus constraint, d > 0 is a tuning parameter, and

proxd 5 (v) := arg min
x∈R=

5 (x) + d

2
‖x − v‖22 (26)

denotes the proximal operator [31] of a closed, proper, convex func-

tion 5 . It has been shown [19] that the algorithm converges at a rate

of $ (1/C), which represents an order of magnitude improvement

over subgradient methods. However, since ADMM accesses the

functions 6, ℎ via their proximal operators, the overall efficiency

of the algorithm depends on the complexity of evaluating these

operators.

First, we focus on the complexity of the x- update, i.e., comput-

ing the proximal operator of the function 6. Our next result shows

that it admits a simple solution.

Lemma 5.1. The optimal solution x∗ := proxd6 (v) is character-
ized by the pair of conditions

G∗8 = max

{
min

(
E8 + (1/d)(38 − a∗), 1

)
, 0

}
,∀ 8 ∈ [=],

=∑

8=1

G∗8 = :,

where a∗ ∈ R is the optimal dual variable associated with the sum-

to-: constraint.

Proof. Define the function

5̃ (x) :=
{
−d) x + d

2
‖x − v‖2

2
, 0 ≤ x ≤ 1,

+∞, otherwise.
(27)

Then, the proximal operator of 6 is given by

proxd6 (v) = arg min
1) x=:

5̃ (x). (28)

The Lagrangian of the above problem is

!(x, a) :=
{
−d) x + (d/2)‖x − v‖2

2
+ a (1) x − :), 0 ≤ x ≤ 1,

+∞, otherwise

(29)

where a ∈ R is the dual variable associated with the equality con-

straint. Let (x∗, a∗) denote the primal-dual optimal pair of (28). The

Karush-Kuhn-Tucker (KKT) conditions (which are necessary and

sufficient for optimality in this case) assert that the pair (x∗, a∗)
satisfy

x∗ = arg min
0≤x≤1

!(x, a∗), 1) x∗ = :. (30a)

Since the Lagrangian is linearly separable in x, the first condition

simplifies to

G∗8 = arg min
0≤G8 ≤1

{
(a∗ − 38)G8 + (d/2)(G8 − E8 )2

}
,∀ 8 ∈ [=] . (31)

The solution of each sub-problem can be computed in closed form

as

G∗8 =




0, E8 < −(1/d)(38 − a∗)
E8 + (1/d)(38 − a∗), E8 ∈ [−(1/d)(38 − a∗), 1 − (1/d)(38 − a∗)]
1, E8 > 1 − (1/d)(38 − a∗)

(32)

which can be compactly represented as

G∗8 = max

{
min

(
E8 + (1/d)(38 − a∗), 1

)
, 0

}
,∀ 8 ∈ [=] . (33)

�

The above observation suggests a very simple approach to comput-

ing (x∗, a∗). Define the non-linear equation

q (a) :=
=∑

8=1

max

{
min

(
E8 + (1/d)(38 − a), 1

)
, 0

}
− :, (34)

which is monotone, non-increasing in a . Since q (a∗) = 0, in order

to solve for a∗ (and hence, x∗), we can resort to bisection search.We

choose the lower and upper limits of the initial bisection interval

to be a; := min
8 ∈[= ]
{38 +dE8 }−1 and aD := max

8 ∈[= ]
{38 +dE8 } respectively,

which yields the initial value interval [q (a; ), q (aD )] = [= − :,−:].
Pseudocode for the bisection algorithm is provided in Algorithm

1.

Algorithm 1: Bisection(v, d, :, d, n)

1 Input: v ∈ R= , degree vector d ∈ R= , subgraph size : , parameter d > 0,

exit tolerance n > 0.

2 Output: The solution x∗ := proxd6 (v) .
3 Initialize: a; = min

8∈[= ]
{38 + dE8 } − 1, aD = max

8∈[= ]
{38 + dE8 }

4 repeat
5 a< = (a; + aD )/2
6 if q (a<)q (aD ) < 0 then
7 a; = a<
8 else
9 aD = a<

10 end

11 until q (a; ) − q (aD ) ≤ n

12 Return: G∗8 = max

{
min

(
E8 + (1/d) (38 − a<), 1

)
, 0

}
, ∀ 8 ∈ [= ] .

Note that for a prescribed exit tolerance n, the maximum num-

ber of bisection steps is $ (log[q (a; ) − q (aD )]), which, for our

choice of initial intervals {a; , aD }, is only$ (log=). Hence, the max-

imum number of steps required by the bisection algorithm to ter-

minate grows only logarithmically with the problem dimension

=. We conclude that the above algorithm is an efficient means for

evaluating the proximal operator of the function 6.

We now turn our attention towards assessing the complexity of

computing the proximal operator of the graph total-variation func-

tion ℎ. Unfortunately, this problem does not admit a simple analyt-

ical or computational solution. While its solution can be obtained

via solving a sequence of maximum-flow problems [16], this incurs



complexity$ (<= log(=2/<)), which, even for sparse graphs (with

< = $ (=)) is$ (=2 log=). Hence, owing to the high computational

complexity of the z-update, the ADMM framework applied to (24)

is not scalable to large instances.

In hindsight, the above difficulty appears to stem from the fact

that our choice of variable splitting was not effective in yielding

simple ADMM updates. Consequently, with the aim of obtaining

efficient updates, we introduce a different type of variable splitting.

With some abuse of notation, we redefine the function ℎ as

ℎ(z) := ‖Dz‖1. (35)

Then, the L-relaxation (12) can be equivalently expressed as

min
x∈R=,z∈R<

6(x) + ℎ(z)

s.to B) x − z = 0.
(36)

The ADMM updates for this problem can be shown to be

xC+1 = argmin
x

{
6(x) + (d/2)‖B) x − zC + uC ‖22

}
(37a)

zC+1 = proxdℎ (B) xC+1 + uC ) (37b)

uC+1 = uC + B) xC+1 − zC+1 (37c)

where u ∈ R= is the normalized dual variable associated with the

coupling constraint and d > 0 is a tuning parameter. Note that

in this variant of ADMM, the proximal operator of the function ℎ

admits an analytical solution given by [31, Section 6.5.2]

Shrinkage(v,w, d) := max(0,v−w/d) −max(0,−v−w/d). (38)

However, the downside is that the simplicity of the x-update does

not carry over from the previous incarnation of ADMM (it is no

longer the proximal operator of 6), which again hinders the scala-

bility of the algorithm.

The lesson to be learned is that the although the functions 6 and

ℎ have proximal operators which can be evaluated efficiently, the

matrix B is the “troublesome” component as it complicates the pri-

mal updates in ADMM, nomatter howwe elect to perform variable

splitting.While this seems like a major drawback of ADMM for our

problem, it turns out that there is an inexact version of ADMM,

which can provide the desired solution. To be precise, we invoke

the framework of Linearized-ADMM (L-ADMM) [10]. In order to

motivate the approach, we denote the augmented Lagrangian as-

sociated with problem (36) as

!d (x, z, y) := 6(x) + ℎ(z) + y) (B) x − z) + (d/2)‖B) x − z‖22, (39)

where y ∈ R< is the dual variable corresponding to the coupling

constraint. In standard ADMM, the x-update is computed by mini-

mizing !d (x, z, y) with respect to (w.r.t.) x while keeping the other

variables fixed. In L-ADMM, this update is modified by linearizing

the quadratic term in the augmented Lagrangian and adding a new

proximal regularization, i.e., replacing (d/2)‖B) x− zC ‖22 in (39) by

d (BB) xC − BzC )) x + (`/2)‖x − xC ‖22,

where 0 < ` ≤ 1/(d ‖B‖22) is a regularization parameter. After

working out the updates, the algorithm takes the following form

xC+1 = prox6/` (xC − `dB(B) xC − zC + uC )) (40a)

zC+1 = proxdℎ (B) xC+1 + u: ) (40b)

uC+1 = uC + B) xC+1 − zC+1 . (40c)

It is evident that L-ADMM accesses both of the functions 6 and

ℎ via their proximal operators only, in contrast to the variants of

ADMM considered previously. Hence, each round of ADMM up-

dates can be carried out efficiently, as we have already demon-

strated that the proximal operators are easy to compute. We point

out that although L-ADMM employs inexact updates, it is still guar-

anteed to converge to the optimal solution of (36). An even more

remarkable feature of L-ADMM is that its convergence does not

degrade compared to standard ADMM [19], i.e., it enjoys the same

$ (1/C) convergence rate. Hence, the L-ADMM algorithm features

both lightweight updates and fast convergence. Pseudocode for the

algorithm is summarized in Algorithm 2. In practice, we employ an

over-relaxation technique [7, Section 3.4], i.e., we replace the term

B) xC in the z, u updates by UB) xC+1 + (1 − U)zC , where U > 1

is an over-relaxation parameter. We observed that utilizing such

a technique improves the empirical convergence of the L-ADMM

algorithm.

Algorithm 2: L-ADMM

1 Input: degree vector d ∈ R= , edge weight vector w ∈ R< , directed

vertex-edge incidence matrix B ∈ {−1, 0, 1}=×< , subgraph size : , penalty
parameter d > 0, regularization parameter ` > 0, over-relaxation
parameter U ∈ [1.5, 1.8], bisection exit tolerance n > 0.

2 Output: A solution of the L-relaxation.

3 Initialize: x0 = supp(top: (d)), z0 = B) x0, u0 = 0, ` = 1/(d ‖B ‖2
2
) ,

C ← 0

4 repeat

5 xC+1 = Bisection(xC − `dB(B) xC − zC + uC ), d, :, d, n)
6 zC+1 = Shrinkage(UB) xC+1 + (1 − U )zC + uC ,w, d)
7 uC+1 = uC + UB) xC+1 + (1 − U )zC − zC+1
8 C ← C + 1
9 until convergence criterion is met

10 Return: x! = (1/C)∑C
8=1 x

8

Finally, since the solution x̄ computed by L-ADMM is not guar-

anteed to be integral in general, we require a post-processing step

into order to “round” the solution of the L-relaxation into a binary

indicator vector. One such step is to simply project the solution

onto the discrete sum-to-: constraints, i.e., we compute

x ∈ arg min
x∈{0,1}=,
1) x=:

‖x − x! ‖22 = supp(top: (x!)) (41)

which is tantamount to identifying the support of the :-largest en-

tries in x! , and can be performed in $ (=:) time.

Additionally, we also employ an algorithmic refinement scheme

where we use the solution of the L-relaxation to initialize a local-

search algorithm. In this scheme, we consider the following indef-

inite relaxation of the DkS problem

min
x∈P

{
5 (x) := −x)Wx

}
(42)



Algorithm 3: Frank-Wolfe

1 Input: Adjacency matrixW ∈ R=×= , subgraph size : , solution of L-ADMM

x! , Lipschitz constant ! = ‖W‖2 .
2 Output: An approximate solution of the indefinite relaxation (42).

3 Initialize: x0 = x! , C ← 0

4 repeat
5 gC = −WxC

6 x̄C = supp(top: (−gC ))
7 UC

= min{1, ( (x̄C − xC )) gC )/(! ‖x̄C − xC ‖2
2
) }

8 xC+1 = xC + UC (x̄C − xC )
9 C ← C + 1

10 until convergence criterion is met

11 Return: xC

Table 1: Summaryof network statistics: thenumber of vertices (=), the num-
ber of edges (<), and the network type.

Graph = < Network Type

polBlog 1,224 16,714 Social
Facebook 4,039 88,234 Social
ppi-Human 21,557 342K Biological

loc-Gowalla 196K 950K Social
web-Google 875K 5.10M Web
YouTube 1.1M 2.9M Social
as-Skitter 1.7M 12M Autonomous Systems
wiki-Talk 2.4M 5M Communications

which is not convex, and hence cannot be optimally solved in polynomial-

time in general. Consequently, we employ the Frank-Wolfe (FW) al-

gorithm [14] initialized with the solution computed by L-ADMM

in order to obtain a high-quality sub-optimal solution. This is sum-

marized in Algorithm 3. Under the prescribed step-size rule, the

algorithm is guaranteed to converge to a stationary point of prob-

lem (42) [3, p. 268].

6 EXPERIMENTS

In this section, we test the efficacy of the combined L-relaxation

and post-processing schemes in discovering :-densest subgraphs

across a diverse set of real-world graphs. We perform comparisons

against a slew of state-of-the-art benchmarks to illustrate the su-

perior performance of our approach.

6.1 Datasets

A summary of the datasets used can be found in Table 1, which

were retrieved from standard repositories [22, 23].We pre-processed

the datasets (which are unweighted) by symmetrizing the arcs if

the network was originally directed, removing all self-loops, and

extracting the largest connected component.

6.2 Baselines

In order to benchmark the performance of our algorithm, we em-

ployed the following baselines.

(1) Greedy: The greedy approximation algorithm proposed in

[13, Procedure 2]. Given an unweighted graph G and a de-

sired subgraph size : , the algorithm first constructs a set

H of the :/2 vertices with the largest degree, followed by

adding another :/2 vertices from V \ H which have the

largest number of one-hop neighbors inH .

(2) Truncated Power Method (TPM):A variant of the classic

power method applied to the DkS formulation (5) [39, Al-

gorithm 2]. At each step, the algorithm performs standard

power-method iterations followed by projecting the result

onto the discrete sum-to-: set to ensure iterate feasibility.

(3) Low-rankBinaryPrincipal Component: In this approach

[30], a low rank decomposition of the adjacency matrixW is

first performed, followed by solving the DkS problem with

the low-rank approximation in place ofW. It turns out that

in the the rank-1 approximation case, the resulting problem

admits a simple solution in$ (=) time, whereas for constant

ranks (i.e., A = $ (1)), instead of checking all
(=
:

)
possible

subsets in the worst-case, the problem can be surprisingly

solved in polynomial-time$ (=A+1). In practice, it is only fea-
sible to run the algorithm for ranks A ≤ 5, owing to its high

complexity. In fact, we were only able to run the algorithm

with rank-1 approximation for all the datasets considered

herein, as even the rank-2 case proved too expensive for all

but the two smallest datasets.

(4) Edge-density upper bound: An important feature of the

above approach is that the solution of the DkS problemwith

rank-A approximation yields an a posteriori, data-dependent

upper bound on the optimal value of the DkS problem. In

formal terms, let f1 ≥ f2 ≥ · · · ≥ f3 denote the 3 ≤ =

non-zero singular values ofW. IfWA denotes the rank-A ap-

proximation ofW, with ‖W−WA ‖2 = fA+1, and S∗A denotes

the optimal solution of the rank-A approximation problem

for a given : , then the quantity

min{1, (1)S∗AWA1S∗A + fA+1)/: − 1, f1/: − 1}

constitutes an upper bound on the edge-density of the op-

timal :-densest subgraph (see [30, Lemma 3]). The utility

of the above result is that it provides a benchmark for as-

sessing the sub-optimality of a solution generated by any

algorithm that aims to solve the DkS problem. Although

the upper-bound is not attainable in general for every : , we

demonstrate that the subgraphs computed by our approach

can come close to attaining it on real-world graphs for a

large range of : .

6.3 Implementation

We performed all our experiments in Matlab on a Windows work-

station equipped with 16GB RAM and an Intel i7 processor. We

used Matlab code for the low-rank principal component approxi-

mation approach and TPM [30].

L-ADMM: Regarding the implementation of our L-ADMM algo-

rithm for solving the L-relaxation, we set the ADMM penalty pa-

rameter d = 0.1, the proximal regularization parameter ` = 1/(d ‖B‖22),
and the over-relaxation parameter U = 1.8. The exit tolerance for

the bisection subroutine was set to be n = 10−6. The termination

criterion of theADMMalgorithmwas based on a standardmeasure

[7, Section 3.3] - given a pair of absolute and relative tolerances nabs
and nrel respectively, at each iteration C of ADMM, we compute the



primal and dual tolerances

npri =
√
<nabs + nrel max{‖B) xC ‖2, ‖zC ‖2}, (43a)

ndual =
√
=nabs + nrel‖BuC ‖2. (43b)

Defining the primal and dual residuals rC := B) xC − zC and BC :=

B(zC − zC−1) respectively, we stop the algorithm when these resid-

uals are small in the sense that ‖AC ‖2 ≤ npri and ‖sC ‖2 ≤ ndual,

or a maximum of 3000 iterations have been performed. In our ex-

periments, we set nabs = nrel = 10−3 for all datasets excepting

web-Google and YouTube, for which we used the setting nabs =

nrel = 10−4.
FW and TPM:We initialized both algorithms with the solution re-

turned by the L-ADMM algorithm. Note that for TPM, the solution

of the L-relaxation is a superior initialization compared to select-

ing the support of the :-vertices with the largest degree (originally

proposed in [39]), i.e., here we give TPM the benefit of the doubt.

The algorithms are run till they attain convergence in terms of the

cost function, or a maximum of 100 iterations are reached. Finally,

while the solution of FW is not guaranteed to be integral in gen-

eral, we observed in our experiments that the algorithm returns a

solution that is integral (up to machine precision), and thus we did

not perform a rounding step at the end.

6.4 Results

The outcomes of our experiments are depicted in Figure 1 and

2, which depict the edge density of the subgraphs determined by

the methods and the runtimes versus subgraph size : , respectively.

Our main findings are as follows:

• The upper-bound on the optimal edge-density computed

from solving the low-rank approximation to the DkS prob-

lem is very useful in gauging the sub-optimality of the solu-

tions computed by the different methods. It reveals that in

contrast to pessimistic worst-case results regarding the DkS

problem, several methods (with the exception of the greedy

algorithm) can yield high quality solutions on real-world

graphs.

• Our proposed approach, the L-relaxation coupled with the

two rounding techniques (projection and iterative refine-

ment via the Frank-Wolfe algorithm) performs very well. In

particular, the latter scheme is consistently the best overall,

outperforming TPM, the low-rank approximation, and the

solution obtained by projecting the L-ADMM solution. Al-

though TPM shares the same initialization as FW, it can ex-

hibit non-monotone behavior with regard to density as the

size is varied. We attribute this to the fact that FW is guaran-

teed to converge to a stationary point of the indefinite relax-

ation (which is empirically observed to be integral), whereas

TPM simply increases the objective function of DkS. Fur-

thermore, for small values of : ≤ 100 (the regime where

one intuitively expects the densest subgraphs to be present),

L-ADMM + FW can attain the upper-bound in many cases,

which is clearly optimal; otherwise it attains the most sig-

nificant fraction of the upper-bound (typically 65 − 80% for

: ≤ 100).

• The runtime of the rank-2 approximation algorithm scales

unfavorably relative to the other methods, and hence it is
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Figure 1: Edge density vs size:We ran the rank-2 approxima-

tion only on the 2 smallest datasets owing to its complexity.

The greedy algorithm is omitted from comparison on Face-

book owing to its poor performance relative to the other

baselines. For Facebook and polBlog, the upper-bound is

computed w.r.t. the rank-2 approximation, while it is w.r.t.

the rank-1 approximation on the remaining datasets.

omitted from the larger datasets. While ADMM comes sec-

ond in terms of complexity, it is by no means unaffordable,

taking an average of 15 minutes to terminate on the largest

graphs. This is due to the simplicity of its subroutines, which

require performing bisection search and shrinkage at each

step. Additionally, compared to running ADMM, the com-

plexity of performing iterative refinement via the Frank-Wolfe

algorithm is substantially smaller.

Our investigation reveals that solving the L-relaxation via L-ADMM

followed by refining the solution via few iterations of FW consti-

tutes a potent and efficient algorithmic framework for effectively

mining dense subgraphs from real-world graphs.
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Figure 2: Runtime vs size on selected, representative

datasets, owing to space constraints.

7 CONCLUSION

We considered the Densest-:-Subgraph problem (DkS), and re-

formulated it as minimizing a submodular cost function subject to

a cardinality constraint. Adopting this viewpoint, we proposed a

convex relaxation of DkS that minimizes the Lovász extension of

the submodular cost function over the convex hull of the cardinal-

ity constraint. While the Lovász extension does not admit a closed

form expression in general, we showed that for DkS it does admit

an analytical form. We exploited this form to develop an efficient

algorithm based on an inexact variant of the Alternating Direction

Method of Multipliers (ADMM) that is capable of solving the re-

laxed problem at scale. After rounding the solution returned by

ADMM via the proposed schemes, we conducted experiments on

real-world graphs to showcase the effectiveness of our approach

compared to prevailing baselines. Contrary to pessimistic worst-

case results, our relaxation scheme is very effective at exploring

the edge-density vs size curve in real-world graphs, yielding sub-

graphs that are no worse than 65 − 80% of the optimal density.
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