2011.05061v1 [cs.IR] 10 Nov 2020

arxXiv

Alleviating Cold-Start Problems in Recommendation
through Pseudo-Labelling over Knowledge Graph

Riku Togashi
CyberAgent, Inc.
Tokyo, Japan
rtogashi@acm.org

ABSTRACT

Solving cold-start problems is indispensable to provide meaningful
recommendation results for new users and items. Under sparsely
observed data, unobserved user-item pairs are also a vital source
for distilling latent users’ information needs. Most present works
leverage unobserved samples for extracting negative signals. How-
ever, such an optimisation strategy can lead to biased results toward
already popular items by frequently handling new items as negative
instances. In this study, we tackle the cold-start problems for new
users/items by appropriately leveraging unobserved samples. We
propose a knowledge graph (KG)-aware recommender based on
graph neural networks, which augments labelled samples through
pseudo-labelling. Our approach aggressively employs unobserved
samples as positive instances and brings new items into the spot-
light. To avoid exhaustive label assignments to all possible pairs
of users and items, we exploit a KG for selecting probably positive
items for each user. We also utilise an improved negative sampling
strategy and thereby suppress the exacerbation of popularity biases.
Through experiments, we demonstrate that our approach achieves
improvements over the state-of-the-art KG-aware recommenders in
a variety of scenarios; in particular, our methodology successfully
improves recommendation performance for cold-start users/items.

KEYWORDS

knowledge graph; cold-start recommendation; knowledge-aware
recommendation; graph neural networks; semi-supervised learning

ACM Reference Format:

Riku Togashi, Mayu Otani, and Shin’ichi Satoh. 2020. Alleviating Cold-Start
Problems in Recommendation through Pseudo-Labelling over Knowledge
Graph. In Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 10 pages. https://doi.org/x

1 INTRODUCTION

Recommendation systems aim to capture users’ interests based
on various kinds of clues and help users discover new items. The
primary source in personalised recommendation tasks is implicit
user feedback (e.g. clicking, watching, and purchasing), which is
routinely logged and reflects users’ interests. However, even with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00

https://doi.org/x

Mayu Otani
CyberAgent, Inc.
Tokyo, Japan
otani_mayu@cyberagent.co.jp

Shin’ichi Satoh
CyberAgent, Inc.
Tokyo, Japan
satoh@nii.ac.jp

such abundant users’ feedback, recommender systems still suf-
fer from the cold-start problem; for new users who have not yet
interacted with enough items, recommender systems inevitably
experience a lack of information. The problem is severe in appli-
cations where the user and item databases are frequently updated,
such as e-commerce, social news media, and online advertisement.
New items are also a typical cause of the cold-start problem, partic-
ularly in social networking services where user-generated contents
continuously come in. In such applications, recommender systems
are required to handle new items associated with few interactions.

One option to mitigate this problem is to introduce knowledge
graphs (KGs), which provide side-information about items [14, 17,
36, 44-46]. KGs are heterogeneous graphs of entities and relations
between entities. The nodes represent entities (e.g. items and their
properties), and the edges represent the relations between entities.

The problems due to lack of information remain challenging even
with KGs. Interactions observed in the form of implicit feedback
provide only positive signals, and this causes the fundamental obsta-
cle in recommendation tasks, called the one-class problem [16, 26].
For handling this only-positive setting, unobserved samples are the
key resources, particularly for the sake of optimisation. Conven-
tional methods leverage unobserved samples to extract negative
signals, relying on the assumption that the unobserved samples
can be utilised as negative instances [13, 26, 29]. However, as this
strategy distils only negative signals from unobserved samples, it
may lead to biased and sub-optimal results; recommender systems
may underestimate the chance of positive feedback of users or items
rarely observed, namely, cold-start users and items [10].

KG-aware recommender systems that utilise graph neural net-
works (GNNs) [39, 40] are promising directions. GNNs leverage a
KG in an end-to-end manner and involve unobserved samples in
the training phase by propagating features from labelled nodes to
unlabelled nodes over a KG. This nature of GNNss is suitable for
the transductive setting of recommendation problems wherein the
goal is to predict labels for unlabelled nodes that are known in
the training phase. Nevertheless, conventional methods leverage
unobserved samples mainly as negative instances based on the
aforementioned assumption.

In this paper, we address to improve recommendation for new
items and users without compromising overall performance by
appropriately leveraging unobserved samples. We propose a KG-
aware recommender based on GNNs and pseudo-labelling, namely,
KGPL. Instead of handling unobserved samples only as negative,
we assign pseudo-labels to unobserved samples by model predic-
tions that reflect the knowledge learnt from the observed data
and KG. Hence, in KGPL, unobserved samples can be handled as
weak-positive instances in contrast to the conventional methods.

https://doi.org/x
https://doi.org/x

Conference’17, July 2017, Washington, DC, USA

To ensure the reliability of pseudo-labels, we carefully select the
unobserved items to be labelled through two sampling strategies;
(1) KG-aware sampling of items for pseudo-labelling based on the
graph structures rooted at users and observed items in a KG; and
(2) popularity-aware sampling of items for negative instances. Our
KG-aware sampling for pseudo-labelling selects probably positive
items for a given user while ensuring the reliability of pseudo-labels.
We also introduce a negative sampling strategy for enhancing the
stability of training. Besides, to achieve further robust optimisation,
we propose a co-training approach that utilises a pair of GNNs.
Experimental results demonstrate that our method is effective for a
wide range of users with different levels of data sparsity.

As overall average measures cannot describe the detailed differ-
ence between methods, we showcase a series of experiments to ex-
tensively compare the behaviour of KG-aware recommenders with
assuming user-side and item-side cold-start situations. Our experi-
ments provide more detailed insights on recommenders’ behaviours
which conventional evaluation methodology roughly abstracts.

2 RELATED WORK

2.1 Recommendations with Knowledge Graphs

For leveraging a KG as additional side-information about items,
various approaches are examined, such as embedding-based meth-
ods [17, 36, 38, 45], path-based methods [15, 22, 44, 46], and hybrid
methods [33, 35, 37, 40]. Embedding-based methods alleviate cold-
start problems by extracting semantic knowledge from a KG. Path-
based methods manually design patterns of connectivity among
items (i.e. meta-paths or meta-graph) to extract user-specific re-
latedness. Recent hybrid methods adopt graph neural networks
(GNNs) to learn representations of entities and user-specific relat-
edness without labour-intensive meta-paths [37, 39, 40]. However,
as in traditional recommender systems such as collaborative fil-
tering [16], these methods leverage unobserved samples only as
negative instances during training. Wang et al. proposed a nega-
tive sampling strategy based on reinforcement learning [41]. Their
method mainly focuses on finding informative negative samples
and does not concern the problem of cold-start items that are rarely
observed but can be relevant to certain users. Our method utilises
unobserved samples as both positive and negative instances to
alleviate the cold-start problem. To pull up cold-start items, our KG-
aware sampling and pseudo-labelling approach extract probably
positive instances from unobserved samples.

2.2 Graph-Based Semi-Supervised Learning
and Pseudo-Labelling

Semi-supervised learning (SSL) aims to correctly label all samples
when a small fraction of samples are labelled. A recommendation
task with implicit feedback can be considered as an SSL problem; in
particular, the setting can be regarded as a transductive learning task
wherein the unlabelled samples (i.e. user-item pairs) for inference
are known in the training phase. GNNs handle such a transductive
setting by propagating features over a graph [4, 7, 9, 11, 20, 25]. The
recent success of GNN-based recommenders also demonstrates the
effectiveness of GNNs [1, 24, 37, 40, 43].

Graph-based SSL has been extensively explored in various fields.
Existing methods often rely on assumptions on the distribution

of labels over a graph, such as label smoothness [19, 34, 37]. By
adopting such assumptions, label propagation is widely utilised in a
transductive setup [8, 18, 42]. However, applying label propagation
techniques to KG-aware personalised recommendation is not trivial
for three reasons; (1) only positive instances can be observed in im-
plicit feedback settings; (2) labels and edge weights depend on users’
taste, and therefore, edges may not indicate similarity between their
connecting nodes; and (3) labelled nodes (i.e. the source of label
propagation) for a single user are scarce. Wang et al. proposed a
KG-aware recommender based on GNNs with a regularisation tech-
nique that induces label smoothness in model predictions, namely,
KGNN-LS [37]. Their proposed regularisation technique realises
label propagation on a KG through the leave-one-out loss optimi-
sation that holds out an observed item for a user and leverages it
as an unlabelled instance. However, as they utilise only observed
samples for their regularisation technique, and unobserved samples
are still not leveraged explicitly as positive.

Pseudo-labelling has been adopted particularly by deep learning-
based methods [21, 31, 32]. It reuses repeatedly updated model
predictions as true labels for training, and thereby directly lever-
ages unobserved samples as training data. However, pseudo-labels
generated by a model may be noisy, and leveraging all samples
is infeasible in the context of recommendation problems as the
number of all possible pairs of users and items can easily reach
billion-scale.

Our method employs pseudo-labelling but inherits the spirit
of label propagation. To avoid exhaustively labelling unobserved
samples, we exploit graph structures for selecting candidates that
can be labelled reliably. In contrast to KGNN-LS, our loss function
involves unobserved samples also as positive instances.

3 PROPOSED METHOD
3.1 Problem Formulation

We now explain the primary setting of the problem discussed in
this paper. In a scenario of personalised recommendation, we have
a set of users U and a set of items 7. The user-item interaction
matrix Y can be obtained as the users’ implicit feedback; we let y,, ;
be the (u, i)-entry of Y, and then y,,; = 1 indicates that user u has
engaged with item i. Unfortunately, we cannot observe Y ; for all
user-item pairs (u, i) € U X I in realistic situations; thus, Y;; can
be missing for the majority of (v, i). Hence, we let Z,} denote the set
of observed items for u, and 7 \ 7;} indicates the set of unobserved
items for u. We also let O = {(u,i)|lu € U, i € I,}} denote the set
of observed user-item pairs. Moreover, in the knowledge-aware
recommendation problem, we have aKG G = {(h,r,t)|h,t € E,r €
R}, where each triplet (h, r,t) describes that there is a relationship
r between head entity h and tail entity t; & and R denote the sets
of entities and relations, respectively. Here, & comprises items
I (I € &) and non-item entities & \ 7 (e.g. nodes corresponding
to the attributes of items).

The focus of this paper is predicting the y,, ; for each unobserved
sample (u,i) € (U x I') \ O based on the observed interactions
yu,i corresponding to O. To this end, we aim to obtain a prediction
function g,,; = ¥ (1, i|©,Y, G), where g, ; denotes the probability
that user u will engage with item i, and © are model parameters of
function ¥.

Alleviating Cold-Start Problems in Recommendation
through Pseudo-Labelling over Knowledge Graph

3.2 Knowledge-Aware Graph Neural Networks

This section describes our GNN architecture for capturing users’
preferences by exploiting a KG. The architecture of our GNN is
almost the same as KGNN-LS [37].

We first model the user-specific relation scoring function that
measures the importance of each relation for a user. The (j, k)-th
entry of a user-specific adjacency matrix A, € RIEIXIEl can be
obtained as follows:

(AH)Jk = exp(uTrej’ek) (1)

where re; ¢, is the relation between entities e; and e, in G. We
set (Ay) jx = 0 if there is no relation between e; and ex. Then, the
layer-wise forward propagation can be written by:

Hp = o) (D;”2 (Ay+1) D;l/QHlWl), 1=0,1,....L-1, (2)

where H;j is the matrix of the hidden representations of entities
in the I-th layer, and Hy is a trainable parameter E. Here, A,, ag-
gregates the representation vectors of neighbouring entities, and
we introduce a self-connection loop by A, + I. We also let D,, de-
note a diagonal degree matrix with entries (Dy)jj = Xk (Aw)jk
to normalise A,,. Here, W; € R4*41+1 s the layer-wise trainable
weight matrix, and L is the number of layers. oy is the activation
function for the I-th layer, and we adopt LeakyReLU [23] for the
intermediate layers (I < L) and tanh(-) for the last output layer.

The predicted engagement probability of user u with item i is
computed by §,; = o(u'iy), where iy, (i.e. the row corresponding
to item i in Hy) is the final personalised representation vector of
i, and o(-) is a sigmoid function. In the training phase, we aim to
optimise model parameters © = {U,E, R, Wy, ..., W }. We apply
dropout to U and H; (I = 1,...,L) with a same ratio instead of L2
regularisation.

3.3 Semi-Supervised Learning Based on
Pseudo-Labelling

Our method leverages a high coverage of unobserved user-item
pairs to optimise the model without assuming all unobserved pairs
as negative instances. Our approach comprises mainly three tech-
niques; (1) pseudo-labelling framework for one-class settings (de-
scribed in this section); (2) sampling strategies for pseudo-labelled
and negative instances (described in Section 3.4); and (3) co-training
for robust optimisation with noisy pseudo-labels as in Section 3.5.

To alleviate the sparsity issues of observed interactions, we aug-
ment positive and negative labelled data by predicting the labels of
unobserved samples. Our label function for user u and item i can
be written as follows:

1, fueUNiel],
L(i) = gu; ifueUnieclZ ®3)
0, fueUniel,

where Iu+, I, , and [ui denote the sets of positive, negative, and

pseudo-labelled items for u, respectively. Then, our loss function

Conference’17, July 2017, Washington, DC, USA

can be expressed as follows:

L= 3 Y 0+ Y > it (fu() guis0)

ueliel} ueUielf
> Buit (0,943 ©))
uelUiel,

where £(yy i, Ju,i; ©) is the loss function such as squared error and
cross-entropy loss under a model with parameters ©. y,, ; and g, ;
denote a target label and a predicted label, respectively. f, ; and
ay,; are the weight for the (u, i)-entry as a negative or pseudo-
labelled instance, respectively. We adopt the cross-entropy loss
function as £(-). As model prediction g, ; can be considered as the
probability that i is positive for u, the loss for a pseudo-labelled
sample can be considered as an expected loss for the unobserved
label; £(1y (i), §u,i; ©) = —lu (i) log (Ju,i) — (1 — 1y (i) log (1 — Gui) =
Ey[£(y, Gui; ©)].

There are two main challenges in the minimisation of £; (1)
computing L is generally infeasible as |T X I'| can easily reach the
scale of billions in real applications; and (2) training a model relying
on probably noisy pseudo-labels may lead to poor optimisation.
To solve these obstacles, we propose a sampling-based learning
framework for optimising L. As the unobserved samples dominate
the whole of the user-item pairs, we aim to efficiently select I,
and ZF for each user u through two sampling strategies.

The expectation of loss function on a mini-batch, £Lg, can be
expressed as follows:

E[LB] = Ey-vni(,) Ei, P+ (-u) [£(1 Gui,; ©)]

+ Ei_~p7(_‘u)[f(O,gu,L;@)]
+ Biops (o [£0u(is), Guis; ©)] | (5)

where Pt (iy|u), P~ (i—|u) and P*(i.|u) are the conditional distri-
butions of the observed, unobserved, and pseudo-labelled items for
u, respectively. We set the distribution of users in the loss function
to a uniform distribution so that each user contributes equally. For
observed data, we also utilise a uniform distribution as P* (i,|u) to
sample an observed item for a user. The density of P~ (i-|u) and
P*(i4|u) are corresponding to weights f,,; and ay;, , respectively.

3.4 Sampling Based on Knowledge Graph and
Popularity

3.4.1 KG-Aware Item Sampling for Pseudo-Labelling. To augment
accurately labelled items for cold-start users through pseudo-labelling,
we sample items based on the graph structure centred on the ob-
served user-item pairs. The key idea to sample the items for pseudo-
labelling is that, for the items that can be reached through meta-
paths (i.e. the paths rooted at a user’s interacted items in a KG), we
can assign reliable pseudo-labels to the items for the user based on
the knowledge learnt from observed samples; moreover, such items
are probably positive items as they share entities with the positive
items for the user.

To find items which we can assign reliable personalised pseudo-
labels, we count the number of paths to an item from the positive

Conference’17, July 2017, Washington, DC, USA

items for a user. Suppose that 7, is the set of observed items that
u has interacted with. We list a set of item-to-item paths from an
observed item iy € 7} to an unobserved item iy € 7 \ I} as Ty, ;, .
We employ the h-hop breadth-first search (BFS) for searching the
paths rooted at the observed items for a user. Based on these paths,
we sample an unobserved item i for u according to the sampling
distribution P% (i |u) that has the following probability density:
a

n-.
. Uu,i
Qlisl) = = —=am i, = D Tl ©)
IET\L} My it

where ny,;, is the number of paths, and a € R is a hyper-parameter
to control the skewness of the sampling distribution; P* (i, |u) be-
comes close to a uniform distribution with small a. To ensure the
coverage of item candidates to be labelled, we set n,; = 0.5 for
item i that is unreachable through the h-hop BFS.

3.4.2 Popularity-Aware Negative Sampling. Uniformly sampling
negative items as in conventional works [35, 37, 38, 40] can reinforce
biases toward the popularity in practical settings. Because negative
sampling extracts unobserved items as a negative instance for a user,
cold-start items, i.e., items with few interactions, are unobserved
items for most users. Thus, cold-start items are more likely to be
selected by negative sampling than popular items. This bias toward
popularity can hurt performance, particularly for cold-start items
and, thus, the quality of pseudo-labels for cold-start items. In light of
this consideration, we adopt a frequency-based strategy for negative
sampling distribution P~ (i_|u), as in conventional methods [13, 28].
We sample negative items from 7 \ 7} according to the following
probability:
. ;.
pli-lu) = -———— (7
IS AVARLCTS

where my, ;_ is the number of observed interactions for item i_, and
b controls the importance of frequency.

3.4.3 Mini-Batch Sampling Strategy. In the training phase, we con-
struct mini-batches by utilising the aforementioned sampling distri-
butions. It should be noted that we sample an unobserved pair and
determine its pseudo-label on the fly; each set of unobserved sam-
ples for pseudo-labelling is generated after sampling a mini-batch
from the observed data Z,;. Moreover, we ensure that a mini-batch
contains three samples for a user, namely, positive, negative, and
pseudo-labelled samples to ensure the class balance in a mini-batch
for a user. Algorithm 1 describes our mini-batch sampling strategy.

3.5 Co-training for Noisy Pseudo-Labels

Training a model on pseudo-labels that were generated by the
model itself can make the optimisation unstable. To realise more
robust optimisation, we introduce a co-training approach [2, 12, 27].
In our co-training approach, we train two models, f and g, while
ensuring that each of them is trained on the samples labelled by the
other model. This technique empirically improves the robustness
of optimisation using pseudo-labelling in our experiments. A brief
explanation of the learning algorithm is as follows.

(1) Sample two mini-batches 8¢ and By. Pseudo-labels of B
and B, are given by f and g, respectively.

Algorithm 1 Mini-batch sampling algorithm

Input: Interaction matrix Y, KG G, Model f
Output: Mini-batch 8
: B0
2: for 1/2 number of samples in a mini-batch do
3. Sample a user by u ~ Uni(-)
Sample an observed item by iy ~ P*(-|u)
Sample a negative item by i— ~ P~ (|u);
Sample an item for pseudo-labelling by iy ~ P*(-|u)
Compute pseudo-label g, ;,

Assign the pseudo-label as iu,ii — Yu,i,

9 B e BU{(wir, 1), (ui,0), (uis, Ly,)}
10: end for

11: return B

(2) Compute gradients of the loss functions and update f on B,
and g on By.

Therefore, the loss functions for f on B is defined as:
N _ (9 ().
'LB - Z 4 (lu,i ’yu,i ’®f) (8)
(wil'¥))es,
ligi) is the label determined by iu(i) in Eq. (3) for user u
and item i based on the prediction of g (see also Algorithm 1). For

where

training g, we also optimise Lég) on B 7. Throughout this paper, we
utilise only f as the final model to predict Y and do not choose or
ensemble the models for a fair comparison of methods even there
are two well-trained models after the training procedure.

4 EXPERIMENTAL SETTINGS
4.1 Baselines

We select state-of-the-art KG-based recommenders as the base-
lines, namely, RippleNet, MKR, KGAT, and KGNN-LS; besides, we
introduce a naive baseline based on item popularity, TopPopular.

o RippleNet [35]: This leverages multi-hop paths rooted at each
user in a KG to enrich their representations and employs matrix
factorisation on the representations.

e MKR [38]: This introduces a multi-task learning algorithm for
recommendation and graph translation to enhance a recom-
mender with translated graph embeddings.

e KGAT [40]: This is a KG-based recommender, which employs
GNN on a KG to generate the representations of users and items.
This employs a pairwise loss function that optimises user wise
recall directly.

e KGNN-LS [37]: This is also a GNN-based recommender, which
employs a regularisation technique based on the label-smoothness
assumption. This adopts a point-wise loss function that does not
require extensive negative sampling.

e TopPopular [6]: This is a non-personalised baseline that ranks
items in the order of popularity, i.e., the number of users who
have interacted with the item, in the train and validation splits.

Throughout our experiments, we conduct model selection for
each method based on R@10 computed on the validation split.

Alleviating Cold-Start Problems in Recommendation
through Pseudo-Labelling over Knowledge Graph

Table 1: Statistics of the datasets: MovieLens1M, Last.FM,
and BookCrossing.

MovieLens1M | Last.FM | BookCrossing

users 6,036 1,872 17,860
items 2,347 3,846 14,967
interactions 376,886 21,173 69,873
sparsity 2.66% 0.294% 0.026%
entities 102,569 9,366 77,903

relations 32 60 25
KG triples 499,474 15,518 151,500

4.2 Datasets

We utilise three public datasets in our experiments; (a) Movie-
Lens1M!; (b) Last.FM?; and (c) BookCrossig>. KG data is available
in public* and built upon Satori’.

The statistics of the three datasets are listed in Table 1. The num-
ber of interactions in Table 1 indicates only those of the observed
samples. We observe that the three datasets have different levels of
sparsity: it is 2.66%, 0.294% and 0.026% for MovieLens1M, Last.FM,
and BookCrossing, respectively.

We split each dataset into training, validation and test splits at
the ratio of 6:2:2. For all datasets, we keep all the observed samples
as implicit feedback. Note that we created the negative samples for
evaluation splits (i.e. validation and test splits) while ensuring that
those examples are unobserved in the entire dataset. By contrast,
because we consider implicit settings wherein we cannot observe
true negative samples, we randomly create negative samples for
training so that the negative samples are unobserved in the training
and validation splits. Thus, some negative samples for training can
be positive in the test split.

4.3 Implementation Details

For our proposed KGPL, the number of convolutional layers L is cho-
sen from {1, 2}, and the dimensionality of latent space d is 64 for all
three datasets. The sampled neighbour size is 32, 32, and 8 for Movie-
Lens1M, Last.FM, and BookCrossing, respectively. The depth of BFS,
h, is 5, 6, and 6 for MovieLens1M, Last.FM, and BookCrossing, re-
spectively. The dropout ratio is tunedin 0.1,0.2,...,0.8. aand b are
tuned in {1072,1072,0.1,...,1.0} and {1073,1072,0.1,...,1.0}.
The learning rate is tuned in {le — 3,2¢ — 3,..., le — 2}, and the
batch size is in {3333, 6666, 9999}.

5 EXPERIMENTAL RESULTS

5.1 Overall Comparison with Baselines

We compare our method and the baseline methods in terms of
overall performance. To compare the multiple recommenders, we
carefully conducted statistical significance testing through a paired
Tukey HSD test with 95% confidence intervals for each dataset in

Ihttps://grouplens.org/datasets/movielens/
Zhttps://grouplens.org/datasets/hetrec-2011/
3http://www2.informatik.uni-freiburg.de/~cziegler/BX/
“https://github.com/hwwang55
Shttps://searchengineland.com/library/bing/bing-satori

Conference’17, July 2017, Washington, DC, USA

terms of R@10 and report the results also with effect sizes (Hedge’s
g) accordingly [3, 30].

Table 2 lists the precision and recall (k = 10, 20, 50, 100) of each
method on the three datasets. Remarkably, on BookCrossing, Top-
Popular performs better than the other methods including ours,
whereas only KGAT and MKR are statistically significantly worse
than TopPopular (p < 2e-16, g = 0.104 and p = 0.016, g = 0.070,
respectively). BookCrossing is an extremely sparse dataset, and
there are many users with only one observed interaction in the
training split. Thus, personalising recommendation may be chal-
lenging, and TopPopular is a strong baseline just by exploiting
popularity bias. We also find that RippleNet, MKR and KGNN-LS
perform similarly to TopPopular on the other datasets. We will
investigate these observations more in Section 6.2.

While KGPL outperforms the other methods on Last.FM, KGPL
performs slightly worse than KGAT for MovieLens1M; however, the
difference between KGPL and KGAT is not statistically significant
(p = 1.0, g = 0.005 and p = 0.635, g = 0.047 for MovieLens1M
and Last.FM). In BookCrossing, the performance of KGPL is rather
limited. This is because KGPL cannot take the benefits of pseudo-
labelling on the extremely sparse dataset.

Overall, KGPL can consistently achieve comparative performance
with the best model in each dataset. Our baseline TopPopular also
reveals a challenge in the personalised recommendation on severely
sparse datasets. It is also remarkable that KGPL shows significant
improvement from KGNN-LS, which has almost the same neu-
ral network architecture as KGPL, in MovieLens1M and Last.FM
(p < 2e-16,g9 = 0.343 and p < 2e-16, g = 0.354). This performance

boost validates the effectiveness of our proposed method.

5.2 Analysis on Users with Different Sparsity

For a more detailed comparison of the methods, we created four
groups of users with different sparsity levels according to the num-
ber of observed samples for each user in the training split with
thresholds of 25%, 50%, 75%, and 100% as in the previous work [40].
Figure 1 (a)—(c) demonstrate R@10 of each method for each user
group for the datasets of (a) MovieLens1M, (b) Last.FM and (c)
BookCrossing. Each bin corresponds to a group of users whose
interactions is less than x. We set the threshold x to 25%, 50%,
75%, and 100% percentile. Therefore, the most left groups are cold-
start users, and the most right ones show the performance on the
whole users. In Figure 1 (a), we can observe that KGAT and KGPL
achieve consistently higher R@10 than the other methods for each
user group. Although KGPL performs slightly worse than KGAT
in terms of overall performance (|Z}| < 717), it achieves higher
R@10 in the user group with the severe sparsity level (|Z;[| < 15,
|Z}F] < 32, and |Z| < 66). In Figure 1 (b), KGPL performs best
for three user groups (|Zf| < 7, |Zf| < 9, and |Z]| < 24), and
there is substantial improvement particularly for cold-start users
(IZ;71 < 7). Figure 1 (c) shows a similar trend. It is remarkable that
TopPopular shows extremely high performance for cold-start users
and performs poorly for non-cold-start users in BookCrossing. This
result implies that the observed data for cold-start users (i.e. less
frequent users in the observed dataset) is biased toward popularity.

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/hetrec-2011/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/

Conference’17, July 2017, Washington, DC, USA

Table 2: Results of Precision@K and RecallQK in top-K recommendation.

Model MovieLens1M Last.FM BookCrossing
Measure Precision@K Recall@K Precision@K Recall@K Precision@K Recall@dK
K 10 20 50 100| 10 20 50 100| 10 20 50 100| 10 20 50 100| 10 20 50 100| 10 20 50 100
TOpPOpular 125 .102 .070 .051|.113 .186 .310 .430(.029 .023 .014 .010|.122 .194 .288 .386.017 .011 .006 .005|.083 .101 .143 .186
RippleNet [35](.125 .100 .070 .052|.113 .183 .307 .434|.030 .023 .014 .009|.125 .195 .291 .391|.014 .009 .005 .004|.069 .086 .117 .150
MKR [38] |.123 .100 .069 .051|.110 .182 .303 .425|.029 .022 .014 .010(.121 .181 .293 .397|.013 .008 .004 .003|.067 .080 .100 .118
KGAT [40] |.188 .148 .100 .069(.184 .280 .452 .603|.046 .034 .020 .013|.186 .272 .398 .506|.008 .006 .004 .003|.044 .059 .093 .132
KGNN-LS [37]|.139 .113 .080 .058|.121 .195 .335 .475|.029 .022 .014 .009|.122 .182 .289 .386|.015 .010 .006 .004|.072 .090 .130 .166
KGPL 177 144 .099 .069|.183 .282 .454 .602|.054 .039 .023 .014|.221 .314 .452 .557|.015 .010 .006 .004|.074 .092 .125 .168
—— TopPopular —— RippleNet MKR —— KGAT KGNN-LS +— KGPL
(a) MovieLens1M 024 (b) Last.FM (c) BookCrossing
020 P — - 100% : - 100% - 100%
T 0.22 —_— 0.100
o016 . —. - 80% e — —. - 80% e - 80% .
S o016 -60% 3 So1s -60% 3 9 - 60% 3
@ 2 @ 2 Qo 2
10_14 - 40% & “ 0.6 -40% & e 01080 P - 40% &
014 0.070 . —
012 -\ﬁ\\ - 20% - 20%) ——— - 20%
| | 1 0.12 5 i — 0.060
IIH1<15 |1i|<32 |1j]<e6 |17]<717 °% IIFl<7 |Iil<9 |rfl<11 |ri|<24 °% IIfl<2 |1il<3 |1f|<9 |17|<585 °%
User group User group User group

Figure 1: R@10 for Four User Groups with Different Sparsity Levels in (a) MovieLens1M, (b) Last.FM, and (c) BookCrossing.

As a summary, KGPL can successfully adapt to various sparsity
levels of datasets and shows improvements in performance, partic-
ularly for cold-start users. The improvement of KGPL is relatively
large for Last.FM, whereas those for MovieLens1M and BookCross-
ing are mild. The results suggest the advantage and limitation of
KGPL; it can prove its merits for real-world datasets, yet the gain is
rather mild for dense or highly sparse datasets (e.g. MovieLens1M
and BookCrossing) in terms of overall performance.

6 IN-DEPTH ANALYSES

As our main concern is the performance for cold-start users or
items, we investigate the behaviours of the baseline recommenders
and KGPL for users and items with different frequencies (i.e. the
number of observed data) from different angles in this section.

6.1 User-Side Performance Analysis

We analyse how many users can benefit from each recommender
rather than the overall average of R@10. To this end, for each user
in the test split, we record a winner system which achieves the
highest R@10. If there are ties, we choose all of the tied systems
as winners while we do not choose any systems when the R@10
of all systems is 0.0. Then, for each system, we count the number
of wins for all users. As we hypothesised that our pseudo-labelling
is effective for alleviating user-side cold-start problems, we also
consider a variant of KGPL, KGPLy,;, which does not augment
labels through pseudo-labelling.

Figure 2 shows the number of wins for each method when the
upper bound of the number of observed interactions for a user is var-
ied. The x- and y-axes in the figure indicate the number of observed
interactions in the training split and the cumulative number of wins

for the set of users with, at most, x interactions, respectively. The
inset shown in each part shows the result for users with less than
10 interactions, and the y-axis is shown with a logarithmic scale. In
Figure 2 (a), KGAT and KGPL outperform the other methods as in
the results of Section 5, while KGPL can achieve better performance
for more cold-start users than KGAT (see the small figure in Figure 2
(a)). Figure 2 (b) also demonstrates the advantage of KGPL; in addi-
tion to cold-start users, KGPL shows substantial improvement also
in users with more than ten interactions. This result is intuitive be-
cause KGPL can augment pseudo-positive samples more precisely
for heavy users. The comparison between KGPL and KGPL,,,,;
in MovieLens1M and Last.FM demonstrates the effectiveness of
our pseudo-labelling approach. In BookCrossing, KGPL achieves
slightly better performance particularly for cold-start users than
the other KG-aware methods, whereas TopPopular performs best
among all of the methods.

Based on these results, we conclude that our KGPL can provide
better recommendation results for a wide range of users through
the proposed pseudo-labelling approach. However, the results on
BookCrossing reveals that developing a recommender for extremely
sparse datasets is still challenging even with KGs.

6.2 Item-Side Performance Analysis

The effectiveness of the popularity-based method (i.e. TopPopular)
indicates that the popularity of items is a strong clue in recom-
mendation problems. Nevertheless, a method heavily relying on
popularity may impede the collection of informative users’ feed-
back by narrowing the coverage of exposed items. Therefore, we
examine the coverage of items in the ranked lists by each method.

Alleviating Cold-Start Problems in Recommendation
through Pseudo-Labelling over Knowledge Graph

10 20
Interactions

Conference’17, July 2017, Washington, DC, USA

KGNN-LS

—— KGPL KGPL_nopl

(c) BookCrossing

400 =

300

W e
30 0 100 200 300 . 400 500 600
Interactions

Figure 2: Cumulative number of wins for users with different number of observed interactions.

—— TopPopular —— RippleNet MKR — KGAT
«» 2000 00
£ (a) MovieLens1M (b) Last.FM
2z
O 1500
9]
Qo
€
> 1000
c
[
=
® 500
S
€
=
O o
0 100 200 300 400 500 600 700 800 0
Interactions
=— TopPopular +— RippleNet MKR +— KGAT KGNN-LS

(a) Coverage of ranked items

s] 1200
'J,'glsoo i 3 T
g = " 800 — S
g 1000 — — ‘»' e
3 £ s i R —
S S — A - ——
= 3z 0 — o

g 3000 "
ze ¥ 400 ¥
s = 2000 E
- O A
8 a_ _ o -
— -2 1000 ¢+ e 200 gemmEE

=) e ¥

* I 4 % o —
oo @ 8000 "
£ E ==
2 8 —4= 400
© 2 4000 - e
L x -~
5 £ i i t
=) :
o 0 = »

10 20 50 100

(b) Coverage of ranked relevant items

KGPL KGPL_nopl «~ KGPL_uns
(c) Med. frequency of ranked items (d) Med. frequency of ranked relevant items
103 ——nx 103 b=
E Ce—

= =
CL %

,_.
o

Y
CZ,

Med. frequency Med. frequency Med. frequency

,ﬂ
=3

Figure 3: Analysis of item coverage in the ranked lists. Each row from the top shows the results on MovieLens1M, Last.FM and

BookCrossing, respectively.

To this end, we calculate the number of unique items ranked at
least once in a top-K ranking for a user as relevant items. We also
check the number of unique items in the top-K rankings regardless
of relevance. Figure 3 shows the results in the three datasets, and
each row from the top is corresponding to MovieLens1M, Last.FM,
and BookCrossing, respectively. Columns from the left side in each
row indicate (a) the number of ranked unique items; (b) the number
of unique items that are ranked as relevant at least once; (c) the
median frequency of ranked unique items; and (d) the median
frequency of relevant items. A large number of unique items in the
ranked lists indicates that the method provides highly personalised
results. TopPopular shows the lowest coverage and highest median
frequency of items as it provides identical results for all users based
on popularity. To examine the proposed negative sampling strategy,
we test another variant of KGPL, KGPL,,,s, which samples negative
instances according to a uniform distribution.

In MovieLens1M, the coverage of items of KGPL is higher than
those of the other methods with/without regard to the relevance of
items (see the first row and columns (a) and (b)). KGPL also show
lower values for the median frequency of ranked items (the first
row in columns (c) and (d)). This suggests that KGPL tries to pull
up less popular but relevant items. In Last.FM (the second row of
Figure 3), KGAT and KGPL show a similar coverage of ranked items
(column (a)); however, KGPL achieves clearly a higher coverage
for relevant items than that of KGAT (column (b)). In terms of

the median frequency of items, KGPL exhibits a lower median
frequency of the relevant items as in MovieLens1M. These results
indicate that KGPL successfully adjust recommendation results for
users, whereas it slightly underperforms KGAT in MovieLens1M
(discussed in Section 5).

The results of BookCrossing show a different trend. Based on
columns (a) and (b) in the third row, KGAT shows the highest
coverage, and the median frequency of ranked relevant items is
consistently smaller than those of the other methods. However,
it should be noted that KGAT compromises the overall accuracy
in BookCrossing (Section 5) and ranks nonrelevant items more in its
top-K results. KGPL shows a higher coverage of relevant/nonrelevant
items than RippleNet, MKR, and KGNN-LS (column (a)), but for
relevant items, the coverage of KGPL is almost the same as those of
the other three methods. These results imply that KGPL captures
the popularity bias in BookCrossing and compromises the coverage
of items. This result is reasonable because the relevant items in
BookCrossing are extremely biased by their popularity.

Comparison of KGPL and its variants show some positive effects
of the popularity-aware negative sampling and pseudo-labelling
on the coverage of items. By comparing KGPL,;,p; and KGPL, we
observe that pseudo-labelling improves the coverage of items in
MovieLens1M and Last.fm. In MovieLens1M, KGPL,,,,; shows a
drop in coverage. Without adjusting the distribution for negative

Conference’17, July 2017, Washington, DC, USA

sampling, KGPL relies on popularity biases and thus loses the per-
sonalised results. For BookCrossing, due to its extreme sparsity,
KGPL and its variants fail to personalise the recommendation re-
sults. BookCrossing also has a strong popularity bias; thus the
diversity of items and the accuracy of recommendation are in a
relation of a trade-off to some extent. This prevents KGPL from
improving the coverage of items.

For BookCrossing and Last.FM, the item coverage of RippleNet,
MKR and KGNN-L is relatively low (see columns (a) and (b)), and
the median frequency of items is high. In particular, for Last.FM,
these three methods show extremely low coverage and high median
frequency of relevant items, and the overall performance of these
methods is similar to that of TopPopular (Section 5). These results
imply these methods collapse to TopPopular and excessively exploit
the popularity bias when a dataset is sparse.

7 ABLATION ANALYSIS

KGPL comprises three main components: (1) mini-batch augmenta-
tion through pseudo-labelling; (2) knowledge-aware item sampling
for pseudo-labelling; and (3) co-training approach for stable training.
To demonstrate the effectiveness of each component, we conduct
ablation studies by comparing KGPL with its variants:

KGPL;;,p1: KGPL without the pseudo-labelling.
KGPL;4ng seif: KGPL without the knowledge-aware sam-
pling strategy and co-training technique.

KGPLggpi seif: KGPL without the co-training technique.
KGPL, 44, cor: KGPL without the knowledge-aware sampling,
KGPLggpi,cor: The full model of KGPL.

Figure 4 shows the curve of the validation R@10 of each KGPL
variants in the training process in the Last.FM dataset. Table 3 lists
the precision and recall results for k = 10, 20, 50, 100 of each KGPL
variants in the Last.FM dataset.

7.1 Effects of the Co-Training

Comparison between KGPL, 4,4 sei¢ (blue line in Figure 4) and
KGPL, 44 cor (grey line) demonstrate that only the co-training tech-
nique achieves substantial performance gain. The same trend can
be observed between KGPLygp1,se1f (purple line) and KGPLygpj,cor
(yellow line). Therefore, the co-training technique consistently im-
proves performance.

7.2 Effects of the Knowledge-Aware Item
Sampling
Pseudo-labelling without knowledge-aware sampling KGPL; 4 g se1

(blue line) performs poorly and even worse than the model without
pseudo-labelling KGPL,,, ; (red line). Solely introducing knowledge-

aware sampling does not make full use of pseudo-labelling. KGPLygpj sel

(purple line) still does not outperform KGPL,,,,;. By contrast, when
the co-training technique is used, knowledge-aware sampling pro-
vides a substantial performance lift as KGPL, 4,4 co¢ (grey line) and
KGPLigpi,cor (yellow line) show. The knowledge-aware sampling
enhances the stability of the training on pseudo-labels, and the
performance gain is substantial particularly when used with the
co-training approach.

Table 3: Comparison of KGPL and its ablated variants.

Measure Precision@K Recall@K
K 10 20 50 100| 10 20 50 100
KGPLnopl .048 .033 .016 .006|.209 .304 .437 .522
KGPL;and seif |-050 .037 .022 .013|.204 .298 .436 .531
KGPLiapiself |-051 037 .022 .013|.208 .303 .436 .537
KGPL,gnd.cor |-052 036 .018 .009|.216 317 .448 .545
KGPLiaplcor | 054 039 .023 014|221 314 452 .557

0.24 N
0.22
o 0.20
3 KGPLnops
®o0.18
o — KG PLrand, self
0.16 | KG Pl—kapl, self
0.14 / KG PLrand, cot
KGPL
0.12 kapi, cot
0 20 40 60 80 100 120

training epoch

Figure 4: Training process of KGPL and its variants.

7.3 Hyper-Parameter Sensitivity

KGPL has two hyper-parameters a and b, which control the skew-
ness of sampling distributions for pseudo-labelling and negative
sampling, respectively. Figure 5 shows the effect of a and b on R@10.
In the top figure, we observe that KGPL is highly stable for the value
of a; In the range from 0.7 to 0.4, KGPL consistently achieves high
R@10. The result suggests that both exploitation and exploration
are important in the sampling of items for pseudo-labelling. The
figure shows that KGPL deteriorates substantially with a large b.
Sampling negatives with a large b chooses popular items more as
negatives, and can impede the exploitation of the popularity bias.

0218 022

0216 | \ 021
r \
/ \\ | \ 0

0212

RE@10
In ——
r/’//
R@10
\
\?
~_

0208 10 05 08 07 06 05 04 03 02 01 001000

10 09 08 07 06 05 04 03 02 01 0010001
a b

Figure 5: Impact of hyper-parameter a and b.

8 CONCLUSION

We have proposed a KG-aware recommender, KGPL, for alleviating
cold-start problems for both users and items. Our method incorpo-
rates pseudo-labelling to explicitly leverage unobserved samples as
weak positive/negative instances. To enhance the training proce-
dure with pseudo-labelled samples, we have developed a KG-aware
sampling strategy and a co-training approach in which two different
models provide supervisions with each other.

Alleviating Cold-Start Problems in Recommendation
through Pseudo-Labelling over Knowledge Graph

The experimental results demonstrate that our KGPL achieves
performance comparable with state-of-the-art KG-aware recom-
menders in the multiple datasets. KGPL outperforms the other meth-
ods, particularly for cold-start users and items. Our extensive analy-
ses indicate that KGPL provides more personalised recommendation
results and discovers relevant items more from cold-start items than
the baselines without compromising overall performance.

As future work, we would like to explore an adaptive sampling
for pseudo-labelling such as that presented by Wang et al. [41]. It
would also be interesting to investigate the connectivity between
GNNs with many convolutional layers and our proposed pseudo-
labelling approach; our method may help to propagate gradients
from observed samples to unobserved ones, and therefore examin-
ing architectures such as residual networks may be insightful for
solving cold-start problems by GNNs. Combining our approach and
recent non-sampling learning methods [5] is also interesting; our
approach can provide adaptive weights for each user-item entry in
their loss function with model predictions.

REFERENCES

(1]

[2

(3]

(4]

[9

=

[10

[11

[13]

[14]

[15]

Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convolu-
tional matrix completion. arXiv preprint arXiv:1706.02263 (2017).

Avrim Blum and Tom Mitchell. 1998. Combining labeled and unlabeled data with
co-training. In Proceedings of the Eleventh Annual Conference on Computational
Learning Theory. 92-100.

Martin Braschler. 2001. CLEF 2001 - Overview of Results. In Revised Papers from
the Second Workshop of the Cross-Language Evaluation Forum on Evaluation of
Cross-Language Information Retrieval Systems. 9-26.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral net-
works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203
(2013).

Chong Chen, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. 2020. Jointly
Non-Sampling Learning for Knowledge Graph Enhanced Recommendation. In
Proceedings of SIGIR.

Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are we
really making much progress? A worrying analysis of recent neural recommen-
dation approaches. In Proceedings of the 13th ACM Conference on Recommender
Systems. 101-109.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In Advances
in Neural Information Processing Systems. 3844-3852.

Matthijs Douze, Arthur Szlam, Bharath Hariharan, and Hervé Jégou. 2018. Low-
Shot Learning With Large-Scale Diffusion. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional
networks on graphs for learning molecular fingerprints. In Advances in neural
information processing systems. 2224-2232.

Zuohui Fu, Yikun Xian, Ruoyuan Gao, Jieyu Zhao, Qiaoying Huang, Yingqiang
Ge, Shuyuan Xu, Shijie Geng, Chirag Shah, Yongfeng Zhang, and Gerard de Melo.
2020. Fairness-Aware Explainable Recommendation over Knowledge Graphs.
In Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval. 69-78.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.
1024-1034.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang,
and Masashi Sugiyama. 2018. Co-teaching: Robust training of deep neural net-
works with extremely noisy labels. In Advances in Neural Information Processing
Systems. 8527-8537.

Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast ma-
trix factorization for online recommendation with implicit feedback. In Proceed-
ings of the 39th International ACM SIGIR conference on Research and Development
in Information Retrieval. 549-558.

Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S. Yu. 2018. Leveraging Meta-
path based Context for Top- N Recommendation with A Neural Co-Attention
Model. In Proceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining. 1531-1540.

Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. 2018. Leveraging meta-
path based context for top-n recommendation with a neural co-attention model.

[16]

[17

(18

[19

[20

[21]

[22

[23

[24

[25

[26

[28

[29

[30

™
=

[32

[33

[34

(35]

[37

[38

[39

Conference’17, July 2017, Washington, DC, USA

In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 1531-1540.

Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In 2008 Eighth IEEE International Conference on Data
Mining. 263-272.

Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y Chang.
2018. Improving sequential recommendation with knowledge-enhanced mem-
ory networks. In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. 505-514.

Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. 2019. Label prop-
agation for deep semi-supervised learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 5070-5079.

Masayuki Karasuyama and Hiroshi Mamitsuka. 2013. Manifold-based similarity
adaptation for label propagation. In Advances in Neural Information Processing
Systems. 1547-1555.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Dong-Hyun Lee. 2013. Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. In Workshop On Challenges In Repre-
sentation Learning, ICML, Vol. 3.

Yuanfu Lu, Yuan Fang, and Chuan Shi. 2020. Meta-learning on heterogeneous
information networks for cold-start recommendation. (2020).

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. 2013. Rectifier nonlinearities
improve neural network acoustic models. In ICML Workshop On Deep Learning
For Audio, Speech And Language Processing.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda,
and Michael M Bronstein. 2017. Geometric deep learning on graphs and manifolds
using mixture model cnns. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 5115-5124.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In International conference on machine
learning. 2014-2023.

Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,
and Qiang Yang. 2008. One-class collaborative filtering. In 2008 Eighth IEEE
International Conference on Data Mining. 502-511.

Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan Yuille. 2018. Deep
co-training for semi-supervised image recognition. In Proceedings of the European
Conference on Computer Vision (ECCV). 135-152.

Steffen Rendle and Christoph Freudenthaler. 2014. Improving pairwise learning
for item recommendation from implicit feedback. In Proceedings of the 7th ACM
international conference on Web search and data mining. 273-282.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAL 452—
461.

Tetsuya Sakai. 2018. Laboratory Experiments in Information Retrieval: Sample
Sizes, Effect Sizes, and Statistical Power. Springer. https://link.springer.com/
book/10.1007/978-981-13-1199-4

Weiwei Shi, Yihong Gong, Chris Ding, Zhiheng MaXiaoyu Tao, and Nanning
Zheng. 2018. Transductive semi-supervised deep learning using min-max features.
In Proceedings of the European Conference on Computer Vision (ECCV). 299-315.
Ke Sun, Zhouchen Lin, and Zhanxing Zhu. 2020. Multi-Stage Self-Supervised
Learning for Graph Convolutional Networks on Graphs with Few Labeled Nodes.
Proceedings of the AAAI Conference on Artificial Intelligence 34 (2020), 5892-5899.
Zhu Sun, Jie Yang, Jie Zhang, Alessandro Bozzon, Long-Kai Huang, and Chi Xu.
2018. Recurrent knowledge graph embedding for effective recommendation. In
Proceedings of the 12th ACM Conference on Recommender Systems. 297-305.

Fei Wang and Changshui Zhang. 2007. Label propagation through linear neigh-
borhoods. IEEE Transactions on Knowledge and Data Engineering 20, 1 (2007),
55-67.

Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie,
and Minyi Guo. 2018. Ripplenet: Propagating user preferences on the knowledge
graph for recommender systems. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management. 417-426.

Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. 2018. DKN: Deep
knowledge-aware network for news recommendation. In Proceedings of the 2018
world wide web conference. 1835-1844.

Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao,
Wenjie Li, and Zhongyuan Wang. 2019. Knowledge-aware graph neural networks
with label smoothness regularization for recommender systems. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 968-977.

Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi
Guo. 2019. Multi-task feature learning for knowledge graph enhanced recom-
mendation. In The World Wide Web Conference. 2000-2010.

Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, and Minyi Guo. 2019. Knowledge
graph convolutional networks for recommender systems. In The World Wide Web
Conference. 3307-3313.

https://link.springer.com/book/10.1007/978-981-13-1199-4
https://link.springer.com/book/10.1007/978-981-13-1199-4

Conference’17, July 2017, Washington, DC, USA

[40]

[41]

[42

[43]

Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. KGAT:
Knowledge Graph Attention Network for Recommendation. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 950-958.

Xiang Wang, Yaokun Xu, Xiangnan He, Yixin Cao, Meng Wang, and Tat-Seng
Chua. 2020. Reinforced Negative Sampling over Knowledge Graph for Recom-
mendation. In Proceedings of The Web Conference 2020. 99-109.

Xiao-Ming Wu, Zhenguo Li, Anthony M So, John Wright, and Shih-Fu Chang.
2012. Learning with partially absorbing random walks. In Advances in Neural
Information Processing Systems. 3077-3085.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International

[44

[46

Conference on Knowledge Discovery & Data Mining. 974-983.

Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi Khandel-
wal, Brandon Norick, and Jiawei Han. 2014. Personalized entity recommendation:
A heterogeneous information network approach. In Proceedings of the 7th ACM
International Conference On Web Search and Data Mining. 283-292.

Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.
2016. Collaborative knowledge base embedding for recommender systems. In
Proceedings of the 22nd ACM SIGKDD ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 353-362.

Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun Lee. 2017. Meta-
graph based recommendation fusion over heterogeneous information networks.
In Proceedings of the 23th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 635-644.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Recommendations with Knowledge Graphs
	2.2 Graph-Based Semi-Supervised Learning and Pseudo-Labelling

	3 Proposed Method
	3.1 Problem Formulation
	3.2 Knowledge-Aware Graph Neural Networks
	3.3 Semi-Supervised Learning Based on Pseudo-Labelling
	3.4 Sampling Based on Knowledge Graph and Popularity
	3.5 Co-training for Noisy Pseudo-Labels

	4 Experimental Settings
	4.1 Baselines
	4.2 Datasets
	4.3 Implementation Details

	5 Experimental Results
	5.1 Overall Comparison with Baselines
	5.2 Analysis on Users with Different Sparsity

	6 In-Depth Analyses
	6.1 User-Side Performance Analysis
	6.2 Item-Side Performance Analysis

	7 Ablation Analysis
	7.1 Effects of the Co-Training
	7.2 Effects of the Knowledge-Aware Item Sampling
	7.3 Hyper-Parameter Sensitivity

	8 Conclusion
	References

