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ABSTRACT
Top-𝑁 recommendation is a challenging problem because com-
plex and sparse user-item interactions should be adequately ad-
dressed to achieve high-quality recommendation results. The local
latent factor approach has been successfully used with multiple
local models to capture diverse user preferences with different sub-
communities. However, previous studies have not fully explored
the potential of local models, and failed to identify many small
and coherent sub-communities. In this paper, we present Local
Collaborative Autoencoders (LOCA), a generalized local latent fac-
tor framework. Specifically, LOCA adopts different neighborhood
ranges at the training and inference stages. Besides, LOCA uses
a novel sub-community discovery method, maximizing the cover-
age of a union of local models and employing a large number of
diverse local models. By adopting autoencoders as the base model,
LOCA captures latent non-linear patterns representing meaningful
user-item interactions within sub-communities. Our experimental
results demonstrate that LOCA is scalable and outperforms state-
of-the-art models on several public benchmarks, by 2.99–4.70% in
Recall and 1.02–7.95% in NDCG, respectively.
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1 INTRODUCTION
Neural recommender models [2, 3, 6, 12, 13, 16, 18, 22, 23, 28, 33, 34,
37, 39–41, 44] have been actively studied for representing complex
and non-linear factors across user-item interactions. Although deep
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Figure 1: Illustration of the local low-rank assumption. Two
sub-matrices are locally low-rank, inwhich one can discover
different sub-communities.

neural networks (DNNs) are generally capable of identifying the
complex patterns of user-item interactions, recent studies [8, 29]
reported that the performance gain in the recommendation problem
is less path-breaking than in other domains such as computer vision,
speech recognition, or natural language processing. There may be
multiple reasons, such as extreme data sparsity, data ambiguity
for missing feedback, and noisy user feedback. However, it is still
an open question as to why DNNs have achieved less satisfactory
improvements in the recommendation problem.

In this paper, we hypothesize the reason for the above as follows:
DNNs adopt a deep network architecture and non-linear activation
layers, and hence, are generally more potent than traditional mod-
els; however, neural recommender models usually employ shallow
networks owing to the sparsity of training data. Such a shallow
architecture with traditional training schemes alone is limited in
identifying diverse local patterns of user-item interactions and are
mostly biased to the global pattern.

To address this problem, we revisit the underlying assumption
that the rating matrix is globally low-rank. Lee et al. [25, 26] pro-
posed a local low-rank assumption (Figure 1), significantly relaxing
the global counterpart, according to which: “A rating matrix is not
necessarily decomposed by global low-rank matrices, and it is a
union of multiple local low-rank matrices composed of a subset of
users/items that share local interests.” For example, in the movie
domain, a sub-group of users preferring romantic comedy movies is
in low-rank; another sub-group of users who prefer science fiction
films in the 2010s is also in low-rank; however, a union of these may
not be in low-rank. We can thus presume that the dominant factors
determining the preference of each group are quite different in
these two sub-groups, e.g., the quality of computer graphics, which
may matter only in the latter. Based on this intuition, the local
low-rank assumption has been successfully applied to the rating
prediction [25, 26] and the ranking problem [24], with WMF [38],
SLIM [4], and SVD [5] as its base models.
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However, the existing local models did not fully explore the po-
tential of the local low-rank assumption for the following three
aspects. First, the existing studies [4, 5, 24, 25, 38] did not fully dis-
cover diverse locality. Adopting a relatively broad coverage of users
in the local model [24, 25, 38], the size of the local models is close
to that of the global model, thereby violating the intuition of local
models. Although Christakopoulou and Karypis [4, 5] employed the
local models with small sub-communities, their performance was
often worse than that of the global model owing to the lack of train-
ing data. Second, existing local models did not attempt to train and
combine a large number of local models (i.e., at most 100 models)
to capture smaller and more coherent sub-communities. Thus, the
previous studies can be regarded as developing a small number of
relatively similar models; their performance improvement is most
likely due to the ensemble effect, similar to bagging [26]. Lastly,
the base models for learning the local models were often limited
to linear latent factor models, which made it difficult to identify
meaningful non-linear patterns in local models.

In this paper, we propose a novel local recommender framework,
called Local Collaborative Autoencoders (LOCA). The key novelty
of LOCA is as follows: (i) It provides a generalized architecture
for learning a variety of local models by identifying various sub-
communities for training and inference; most of the previous work
on local models can be considered to be the special cases of LOCA.
(ii) LOCA can handle a large number of small and coherent sub-
communities for the local model; thus, its performance is improved
with more local models beyond the level explored in the previous
studies. (iii) Although the architecture of LOCA is model-agnostic
for base models, we utilize the autoencoder-based model as its
base model. Autoencoder-based models have non-linear activation
layers to represent the meaningful non-linear patterns in the local
model. To the best of our knowledge, it is the first attempt that
adopts the local low-rank assumption using neural recommender
models. In experimental results, LOCA achieves ground-breaking
performance, significantly outperforming state-of-the-art global
and local models on five public benchmark datasets.

2 PRELIMINARIES
Given a setU of𝑚 users and a set I of 𝑛 items, we have a binary
ratingmatrixR ∈ {0, 1}𝑚×𝑛 . An entry 𝑟𝑢𝑖 ∈ R represents an implicit
feedback by user 𝑢 ∈ U on item 𝑖 ∈ I. If 𝑟𝑢𝑖 = 1, it indicates a
positive feedback; otherwise, it indicates a missing (or unobserved)
feedback. Given a user 𝑢, I+

𝑢 = {𝑖 ∈ I|𝑟𝑢𝑖 = 1} and I−
𝑢 = I − I+

𝑢

are a set of items with positive and missing feedback, respectively.
Our goal is to retrieve a ranked list of the top-N items that the

user 𝑢 prefers the most. Given a rating matrix R, we first learn a
recommendation model𝑀 (R;𝜃 ) : {0, 1}𝑚×𝑛 → R𝑚×𝑛 with param-
eter 𝜃 to infer a preference score 𝑟𝑢𝑖 for user 𝑢 on item 𝑖 ∈ I−

𝑢 . We
use the same notation for a single user, i.e.,𝑀 (r;𝜃 ) : {0, 1}𝑛 → R𝑛 ,
where r is a row of R.

2.1 Local Latent Factor Models
When user preferences are locally coherent but globally diverse,
the global model is insufficient to represent different local factors
of the users. To address this problem, Lee et al. [25] proposed the
local low-rank assumption, where the global matrix may be in high

rank but is a union of multiple low-rank sub-matrices composed
of rows and columns with similar taste. It significantly relaxes
the previous assumption that the matrix is globally at low-rank.
Subsequent to the pioneering work, namely local low-rank matrix
approximation (LLORMA) for rating prediction [25, 26], the local
low-rank assumption was applied to follow-up works, either by
allowing overlaps between local sub-matrices [24, 38] or by splitting
the entire matrix into disjoint multiple sub-matrices [4, 5].

A local model𝑀 local (R;𝜃 ( 𝑗) ) is trained with its corresponding
weight. Formally, each local model has the corresponding weight
T = {T(1) , . . . ,T(𝑞) }, where T( 𝑗) ∈ R𝑚×𝑛 (for 𝑗 = 1, ..., 𝑞) rep-
resents the importance (or weights) of each (user, item) pair to
the rating matrix R. After all the local models are trained, R is
approximated by aggregating the multiple local models:

R̂ =

𝑞∑︁
𝑗=1

T( 𝑗) ⊙ 𝑀 local (R;𝜃 ( 𝑗) ) ⊘ T, (1)

where, T =
∑𝑞

𝑗=1 T
( 𝑗) , and ⊙ and ⊘ are the element-wise product

and division, respectively.
Christakopoulou and Karypis [4, 5] proposed a method which

integrates the global model with multiple local models on top
of SLIM [30] and SVD [7]. Let 𝑀global (R;𝜃 (𝑔) ) denote the global
model.

R̂ = 𝛼𝑀global (R;𝜃 (𝑔) ) + (1−𝛼)
𝑞∑︁
𝑗=1

T( 𝑗) ⊙ 𝑀 local (R;𝜃 ( 𝑗) ) ⊘ T, (2)

where 𝛼 is a hyper-parameter to control the importance of the
global model.

2.2 Autoencoder-based Models
Recently, autoencoders (AEs) have been adopted as a neural item-
to-item recommender models [9, 27, 33, 35, 41]. The goal of an AE is
to minimize the reconstruction error for a set of user rating vectors:

argmin
𝜃

𝑚∑︁
𝑢=1

L (r𝑢 , 𝑀 (r𝑢 ;𝜃 )) + 𝜆Ω(𝜃 ), (3)

where r𝑢 = (𝑟𝑢1, . . . , 𝑟𝑢𝑛) is the 𝑢-th user vector of R, 𝜆 is the
regularization coefficient, and Ω(·) is a regularization function.
Conventional AE-based models [33, 41] have been widely used the
cross-entropy loss function L𝐶𝐸 as the surrogate function for the
top-N recommendation problem:

L𝐶𝐸 (r𝑢 , r̂𝑢 ) = −
𝑛∑︁
𝑖=1

𝑟𝑢𝑖 log 𝑟𝑢𝑖 + (1 − 𝑟𝑢𝑖 ) log(1 − 𝑟𝑢𝑖 ), (4)

where r𝑢 , r̂𝑢 ∈ R𝑛 are the input rating vector and the predicted
rating vector of user 𝑢, respectively.

As the variants of AE, denoising autoencoders (DAEs) [36] and
variational autoencoders (VAEs) [20] were used for top-N recom-
mendation. CDAE [41] utilizes a DAE by corrupting the input vec-
tor randomly. MultVAE [27] and RecVAE [34] applied the VAE for
top-N recommendation. As the simplified version of SLIM [30],
EASE𝑅 [35] showed state-of-the-art results. However, the existing
AE-based models focused only on developing a single global model
without taking the locality in the data into account.
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Figure 2: A motivating example showing superior perfor-
mance of local models trained on a larger (top 5–50%) neigh-
borhood than that for inference (top 1%). (This result is an
average of 100 local models centered on a random anchor
user, trained on MovieLens 10M.)

3 PROPOSED MODEL
3.1 Motivation
Our primary goal is to build multiple local models that represent
small and coherent sub-communities. The existing studies [4, 5, 24,
25, 38] developed local models for this purpose; however, they have
limited potential. LLORMA and its variants [24, 25, 38] showed
superior performance over a global model, but their local models
covered a broad range of an entire matrix, where the local mod-
els with the wide coverage were comparable to the global model.
As discussed in [26], the improvement of LLORMA is statistically
significant over an ensemble method; however, it is also true that
the improvement mostly comes from the ensemble effect, not just
from the characteristics of local models. Moreover, training local
models with small sub-matrices in [4, 5] suffers from the lack of
training data, resulting in low accuracy; The global model largely
compensates for the lack of training data issues in local models,
which does not adhere to the effect of local models.

To address this problem, we hypothesize that the optimal size
of the neighborhood can be different in the training and inference
stages. This is because training, by nature, tends to benefit from
more extensive data, whereas relevancemay play amore critical role
in inference. In accordance with the conventional nearest-neighbor
approaches [11, 15, 32], we utilize more neighbors for training
and focus on a smaller neighborhood with strongly connected
target users for inference. This strategy can be regarded as data
augmentation to improve the training of local models, representing
small and coherent sub-communities. However, unlike existing data
augmentation that synthetically generates virtual users, we choose
real users from the neighborhood in the entire matrix.

We explore it with an empirical study shown in Figure 2. Suppose
that we train a local model centered on a particular anchor user,
considering the top-1% of its closest neighbors. When we infer the
basis of the same neighborhood as in previous works [24, 25, 38],
the accuracy of the local model (the diamond point at the bottom
left) is much worse than that of the global model, implying that the
training data is insufficient to learn the local model. Then, main-
taining the same neighborhood in the inference step, we expand
the neighborhood in the training step to 5%, 10%, 20%, and so on.
We observe that the accuracy of the local model improves as the
size of the training data increases up to 20%, even if the augmented
users are less similar to the anchor user. From this pilot study, it

Local 1

Local 2

Local q

Global

(1) Discovering local communities (divide)

(2) Training local models (conquer)

...

(3) Combining local models (aggregation)

... ...

Figure 3: Model architecture of LOCA. We used T andW to
train and infer local models. Both the weights are calculated
on the basis of each user’s similarity with an anchor user.

is clear that the number of neighbors in the training step tends
to appreciate at the cost of reduced similarity, whereas the infer-
ence step maintains a small number of neighbors for the small and
coherent sub-community.

This empirical study motivates us to adopt different schemes for
training and inferring local models; That is, when training local
models, it is necessary to utilize a broader range of the sub-matrix.
By contrast, each local model covers only a small user subset that
represents coherent sub-communities during inference, effectively
reflecting the intuition of local models.

3.2 The LOCA Framework
Figure 3 illustrates the proposed framework, namely Local Col-
laborative Autoencoders (LOCA). It should be noted that we have
described our framework by focusing on users only, although the
same logic can be applied to the item-side as in [25]. Because we ad-
dress the top-𝑁 item recommendation problem, it is of less practical
interest to choose the top-𝑁 users per item.

Similar to LLORMA [25, 26], our model is based on a divide-
and-conquer approach with three steps: (i) discovering a set of
local communities (divide), (ii) training a local model per each
sub-community (conquer), and (iii) inferring user preferences by
combining the global model and multiple local models (aggregation).

3.2.1 Discovering Local Communities. We discover a local commu-
nity of users with similar interests in a bottom-up manner. Given
an entire user set U, we first select 𝑞 anchor users who are the
centers of each local model, denoted by A = {𝑎 (1) , . . . , 𝑎 (𝑞) }. (See
Section 3.3 for the selection of anchor users.)

For each anchor user, we discover a set of neighbors by estimat-
ing the distance with respect to all other users. As in LLORMA [25],
we employ the arccos distance that is scaled in [0, 1]:

𝑠 = 𝑑𝑖𝑠𝑡 (𝑎 ( 𝑗) , 𝑢) = 𝑎𝑟𝑐𝑐𝑜𝑠
(

a( 𝑗) · u
∥a( 𝑗) ∥ · ∥u∥

)
, (5)

where a( 𝑗) and u are the embedding vectors for the anchor user
𝑎 ( 𝑗) and the user 𝑢. The embedding vectors are computed by a
pre-trained model. (We employ an autoencoder-based model in our
experiment, but any other embedding vectors can be used.)



We then apply a smoothing kernel function 𝐾ℎ (𝑠) to adjust the
similarity between the users. The kernel is a symmetric uni-modal
function, returning a non-negative weight when the distance is
within a bandwidth ℎ; it covers a broader range with larger ℎ and
a narrower range with smaller ℎ. (In our experiment, we consider
the Epanechnikov kernel function as in [25].)

In this paper, we adopt different vector sets for training and infer-
ence, to address the issues stated in Section 3.1 (Figure 2). Given a
set of anchor usersA, we build two weight sets T = {t(1) , . . . , t(𝑞) }
andW = {w(1) , . . . ,w(𝑞) }, where t( 𝑗) = (𝑡 ( 𝑗)1 , . . . , 𝑡

( 𝑗)
𝑚 ) andw( 𝑗) =

(𝑤 ( 𝑗)
1 , . . . ,𝑤

( 𝑗)
𝑚 ) are the weight vectors of𝑚 users for the 𝑗-th an-

chor user 𝑎 ( 𝑗) , for training and inference, respectively. They are
the vectors of similarities between users and the 𝑗-th anchor user
𝑎 ( 𝑗) with different bandwidths ℎ𝑇 and ℎ𝑊 :

𝐾ℎ𝑇 (𝑠) ∝ (1 − 𝑠2)1[𝑠 < ℎ𝑇 ], (6)

𝐾ℎ𝑊 (𝑠) ∝ (1 − 𝑠2)1[𝑠 < ℎ𝑊 ], (7)

where 1 is the indicator function (1 if the condition holds, and 0
otherwise).

It is critical to assign a proper weightw( 𝑗) as only a small number
of strongly-tied users in the local community benefit from the pre-
diction of the local model, i.e., w( 𝑗) should be conservative enough
to allow only for the core members to use the local model for in-
ference. When noisy predictions of weakly-related local models
are involved in aggregation, they may deteriorate the performance.
Therefore, our model selectively aggregates local models by pre-
serving coherent sub-communities. (In our experiment, we adjust
ℎ𝑊 from 0.2 to 0.8, where the average number of users in the local
model is approximately 1–10%.)

3.2.2 Training Local Models. Each local model is trained on a sub-
community with its corresponding weight t( 𝑗) . The objective func-
tion of learning a local model is formulated as follows:

argmin
𝜃 ( 𝑗 )

∑︁
r𝑢 ∈R

𝑡
( 𝑗)
𝑢 L

(
r𝑢 , 𝑀 local (r𝑢 ;𝜃 ( 𝑗) )

)
+ 𝜆Ω(𝜃 ( 𝑗) ), (8)

where r𝑢 is the user vector of R, and 𝑡 ( 𝑗)𝑢 is the scalar weight for
the user vector r𝑢 . When 𝑡 ( 𝑗)𝑢 is zero, the corresponding user 𝑢 is
ignored for training the local model. When t( 𝑗) is all ones, it is
equivalent to training the global model.

For the training, we use the bandwidth ℎ𝑇 (usually larger than
ℎ𝑊 used for inference) to cover sufficiently many users. As illus-
trated in Figure 2, considering more neighbors with a larger band-
width than ℎ𝑊 yields in capturing correlations among users. When
ℎ𝑇 is too small, most 𝑡 ( 𝑗)𝑢 becomes zero, leading to an extremely
small sub-matrix to train. This makes it difficult to capture hidden
local patterns of users, incurring a sub-optimal performance.

3.2.3 Combining Local Models. As in the existing studies [4, 5, 25,
26, 38], LOCA aggregates the final predictions from the multiple
local models by aggregating their weights, where the weight is
proportional to the strength of membership of the target user in
the local model. Unlike traditional models, however, LOCA uses a
weight setW that is different from T used for training. A tighter
(smaller) threshold ℎ𝑊 in than ℎ𝑇 in Eq. (7) ensures that the infer-
ence relies strictly on similar sets of users.

Also, we train the global model and combine it and multiple local
models. The global model is used to learn global correlations among
all the users, which is equivalent to assigning equal weights to all
the users. As each local model discovers relatively small coherent
sub-communities, combining them may not ensure coverage of the
entire set of users. To overcome this problem, we employ a global
model that is trained by:

argmin
𝜃 (𝑔)

∑︁
r𝑢 ∈R

L
(
r𝑢 , 𝑀global (r𝑢 ;𝜃 (𝑔) )

)
+ 𝜆Ω(𝜃 (𝑔) ), (9)

where r𝑢 is the user vector of user 𝑢 in R, and 𝜃 (𝑔) is the parameter
for the global model.

Finally, we aggregate the global model and multiple local models
using a non-parametric regression method:

R̂ = 𝛼𝑀global (R;𝜃 (𝑔) ) + (1 − 𝛼)
𝑞∑︁
𝑗=1

w( 𝑗) ⊙ 𝑀 local (R;𝜃 ( 𝑗) ) ⊘ w,

where w( 𝑗) is the aggregation weight for the 𝑗-th local model,
w =

∑𝑞

𝑗=1w
( 𝑗) , and ⊙ and ⊘ means the element-wise product and

division, respectively. When multiple local models do not cover
some of the users, the global model can still compensate for this
by considering only the global correlations among the users, i.e.,
𝛼 = 1 − 1[∃w( 𝑗) |w( 𝑗) > 0].

3.3 Coverage-based Anchor Selection
To select the anchor users, we adopt a greedy method to maximize
the coverage of local models, instead of random selection as in [25].
We define an unweighted undirected graph G = (U, 𝐸) of users,
where the edges represent the relationships between the users. As
the weight W directly affects the performance of our model, we
assign an edge between two users only when the similarity between
them is within the kernel bandwidth 𝑘ℎ𝑊 , i.e., edge 𝐸𝑖 𝑗 = 1 if
𝐾ℎ𝑊 (𝑑𝑖𝑠𝑡 (𝑖, 𝑗)) > 0, otherwise 𝐸𝑖 𝑗 = 0.

The overall procedure of our anchor selection is as follows. We
define a set of anchors A and a set of covered nodes C, both initial-
ized as empty sets. At the 𝑗-th step ( 𝑗 = 1, ..., 𝑞), among the nodes
in U −A, we choose one that is connected to the highest number
of uncovered nodes (i.e., nodes not in C). This node becomes the
next anchor 𝑎 ( 𝑗) . We add this new anchor to A, and the newly
covered nodes by 𝑎 ( 𝑗) to C. We repeat the process until 𝑞 anchors
are chosen. If all the nodes are already covered before having 𝑞
anchors, we have removed all the nodes from C and continued the
procedure, so that most of the users were covered twice, and so on.
(As we usually use a narrow ℎ𝑊 , this case does not happen in our
experiment.) It is beneficial for improving the performance of our
model as the number of local models increases.

The time complexity of the greedy method is 𝑂 (𝑞 ·𝑚2), where
the worst case occurs with a densely connected graph. In practice,
edges are only sparsely connected (|𝐸 | ≈ 𝑂 (𝑚)), especially with a
narrow kernel bandwidth 𝐾ℎ𝑊 , leading to an average time com-
plexity of𝑂 (𝑞 ·𝑚). Some of the previous studies [4, 5, 26] developed
a clustering-based or a distance-based anchor selection. Although
they help to maximize the coverage of local models, these methods
incur high computational overhead and low performance. By con-
trast, our coverage-based anchor selection chooses anchor users
progressively at a low computational cost.



Table 1: Statistics of five public benchmark datasets. Concen-
tration is the ratio of the ratings of the top 5% of the most
popular items.

Dataset #Users #Items #Ratings Sparsity Concentration

ML10M 69,878 10,677 10,000,054 98.66% 48.04%
ML20M 138,493 26,744 20,000,263 99.46% 66.43%
AMusic 4,964 11,797 97,439 99.83% 14.93%
AGames 13,063 17,408 236,415 99.90% 16.40%
Yelp 25,677 25,815 731,671 99.89% 22.78%

4 EXPERIMENTAL SETUP
4.1 Datasets and Baselines
Table 1 summarizes the statistics of the datasets used in this paper.
We used five public benchmark datasets: MovieLens 10M (ML10M),
MovieLens 20M (ML20M), Amazon Digital Music (AMusic), Ama-
zon Video Games (AGames), and Yelp 2015 (Yelp). They were se-
lected to span various data sparsity levels and sizes of the rating
matrix. We converted all the explicit ratings to binary values and re-
moved the users with ratings less than 10. Detailed pre-processing
and all source codes can be found on our website1.

We adopted MutlVAE [27] and EASE𝑅 [35] as the base models of
LOCA, i.e., LOCA𝑉𝐴𝐸 and LOCA𝐸𝐴𝑆𝐸 . We compared our models
with the global models such as WMF [17], SLIM [30], CDAE [41],
MultVAE [27], EASE𝑅 [35], and RecVAE [34], the latter two being
the state-of-the-art models exhibiting the best performance on
large-scale datasets. We compare our models with the local models
such as LLORMA [25, 26], and sGLSVD [5], where MF [21] and
SVD [7] were the base models, respectively.

There are more neural recommender models with different archi-
tectures such as NeuMF [14], NAIS [13], and NGCF [39]. As reported
by Liang et al. [27], MultVAE [27] outperforms NeuMF [14]; hence,
we excluded NeuMF from our baselines. Moreover, as LOCA is built
upon the autoencoder-based models, we mainly employed them as
the competing models.

4.2 Evaluation Protocol and Metrics
We adopted timestamp-based leave-k-out evaluation method [12,
14, 43]. For each user, we held-out the last 𝑘 feedback for evaluation
and used the rest for training. In the existing work, 𝑘 was usually
set to 1. However, we observed that when 𝑘 was too small, the
variance in the results was large, i.e., the local models were subject
to overfitting (potentially more than a global model as they were
trained on smaller subsets). Thus, local models tend to achieve
much higher accuracy when 𝑘 = 1. For a fair comparison, we thus
set 𝑘 = 5, indicating more stable accuracy.

For testing, we regarded all unrated items as candidates. Some
previous studies [12, 14, 43] employed a sampling-based evaluation
that randomly chose 100 items out of all unrated items for efficient
evaluation. As our evaluation considered all unrated items as test
items, we believe that it provides more realistic use cases.

We employed two metrics, Recall@N and Normalized Discounted
Cumulative Gain (NDCG), for evaluating the accuracy of the top-N

1https://github.com/jin530/LOCA

recommendation [12, 14, 43]. Recall@𝑁 checks the number of test
items included in the top-N list. The score is defined as

∑𝑁
𝑖=1 𝑟𝑒𝑙𝑖
𝑘

,
where 𝑖 is the position in the list, 𝑘 is the number of test items
and 𝑟𝑒𝑙𝑖 ∈ {0, 1} indicates whether the 𝑖-th item is relevant to the
user or not. NDCG@𝑁 takes into account the order of retrieved
items in the list. DCG@𝑁 is defined as

∑𝑁
𝑖=1

2𝑟𝑒𝑙𝑖 −1
𝑙𝑜𝑔2 (𝑖+1) . NDCG is the

ratio of DCG to the maximum possible DCG for that user, which
occurs when the recommended items are presented in decreasing
order of user preference. We chose 𝑁 = {50, 100} for the top-N
recommendation.

4.3 Implementation Details
For all the gradient-learning-based models, we initialized the pa-
rameters from a normal distribution N(0, 0.01) and trained them
using an Adam optimizer [19]. By default, the batch size was 512.
We conducted the grid search over the hyperparameters of all the
models, and tuned the learning rate among {0.1, 0.01, 0.001} and the
𝐿2-regularization term among {0.001, 0.01, 0.1}. As an early stopping
condition, we used 50 epochs of patience.

For WMF [17], LLORMA [25, 26], and sGLSVD [5], we tuned
the 𝜆𝑢 and 𝜆𝑖 among {1, 10, 100} and chose the 𝛼 among {2, 5, 10}.
For AE-based models, we set the dimension of the latent repre-
sentation to 200 and tuned the dropout ratio among {0, 0.2, 0.5}.
For MultVAE [27], we did not apply the 𝐿2-norm regularization
and used either 0 or 1 additional MLP layers, as discussed in [27].
For EASE𝑅 [35], we tuned the 𝐿2-norm regularization parameter 𝜆
among {1, 10, 100, 1000}. For RecVAE [34], we tuned the 𝛽 among
{0.1, 0.01, 0.001}. For LLORMA [25, 26], we set the number of local
models as 100 and tuned the kernel bandwidth ℎ = {0.8, 1.0, 2.0, 4.0,
5.0}. For sGLSVD [5], we tuned the number of local models using
the clustering algorithm among {2, 3, 5, 10, 20, 50, 100}, as discussed
in [4]. For LOCA, we tuned the training kernel bandwidth ℎ𝑇 in
[0.8, 2.0] and aggregating bandwidth ℎ𝑊 in [0.2, 0.8].

We conducted all the experiments on a desktop with 2 Nvidia
TITAN RTX, 256 GB memory, and 2 Intel Xeon Processor E5-2695
v4 (2.10 GHz, 45M cache). We used a public package2 for SLIM. In
addition, we implemented all the gradient-learning-based models
using PyTorch3.

5 EXPERIMENTAL RESULTS
In this section, we compare the accuracies of LOCA and the com-
peting models. Through the extensive experiments, we provide the
following meaningful insights:

• [Sec. 5.1] LOCA𝑉𝐴𝐸 and LOCA𝐸𝐴𝑆𝐸 achieve state-of-the-art
results with an improvement of up to 4.70% (Recall) and 7.95%
(NDCG) over the existing models, irrespective of whether they
are global or local models.

• [Sec. 5.2] As the number of local models increases, LOCA𝑉𝐴𝐸

shows better performance. With up to 300 local models, it
achieves up to 8.63% improvement gain in NDCG@100 as com-
pared to MultVAE [27].

2https://github.com/KarypisLab/SLIM
3https://pytorch.org/



Table 2: Comparison of the performance of LOCA (LOCA𝑉𝐴𝐸 and LOCA𝐸𝐴𝑆𝐸 ) and competing models. Gain indicates the ac-
curacy improvement of LOCA is over the best baseline model. The best model is marked in bold and the best baseline is
underlined.

Dataset Metric WMF SLIM CDAE MultVAE EASE𝑅 RecVAE LLORMA sGLSVD LOCA𝑉𝐴𝐸 LOCA𝐸𝐴𝑆𝐸 Gain

ML10M

Recall@50 0.3035 0.3069 0.3222 0.3141 0.3258 0.3168 0.3282 0.3131 0.3367 0.3335 2.59%
Recall@100 0.4333 0.4381 0.4685 0.4653 0.4648 0.4705 0.4692 0.4468 0.4865 0.4798 3.40%
NDCG@50 0.1492 0.1544 0.1580 0.1529 0.1617 0.1544 0.1655 0.1586 0.1661 0.1647 0.36%
NDCG@100 0.1848 0.1904 0.1982 0.1945 0.2000 0.1966 0.2042 0.1953 0.2073 0.2049 1.52%

ML20M

Recall@50 0.2934 0.2912 0.2958 0.3003 0.3132 0.2975 0.2291 0.3047 0.3032 0.3258 4.02%
Recall@100 0.4277 0.4169 0.4324 0.4397 0.4468 0.4417 0.3355 0.4342 0.4419 0.4654 4.16%
NDCG@50 0.1443 0.1486 0.1469 0.1477 0.1581 0.1461 0.1153 0.1564 0.1503 0.1641 3.80%
NDCG@100 0.1812 0.1831 0.1844 0.1860 0.1948 0.1857 0.1446 0.1919 0.1884 0.2024 3.90%

AMusic

Recall@50 0.1118 0.0860 0.1005 0.1177 0.1129 0.1050 0.0925 0.0899 0.1235 0.1138 4.93%
Recall@100 0.1555 0.1234 0.1456 0.1689 0.1506 0.1516 0.1366 0.1257 0.1764 0.1539 4.44%
NDCG@50 0.0663 0.0553 0.0588 0.0681 0.0717 0.0582 0.0517 0.0515 0.0748 0.0717 4.32%
NDCG@100 0.0783 0.0656 0.0712 0.0822 0.0821 0.0710 0.0638 0.0613 0.0893 0.0826 8.64%

AGames

Recall@50 0.1429 0.1182 0.1240 0.1402 0.1394 0.1300 0.0806 0.1167 0.1473 0.1400 3.08%
Recall@100 0.2012 0.1631 0.1825 0.2081 0.1913 0.1920 0.1223 0.1669 0.2147 0.1947 3.17%
NDCG@50 0.0763 0.0666 0.0647 0.0733 0.0773 0.0679 0.0425 0.0638 0.0781 0.0772 1.03%
NDCG@100 0.0923 0.0789 0.0808 0.0920 0.0915 0.0849 0.0539 0.0777 0.0966 0.0922 4.66%

Yelp

Recall@50 0.1483 0.1222 0.1382 0.1499 0.1459 0.1480 0.0651 0.1291 0.1560 0.1472 4.07%
Recall@100 0.2247 0.1804 0.2094 0.2276 0.2187 0.2262 0.1013 0.1965 0.2354 0.2205 3.43%
NDCG@50 0.0774 0.0649 0.0725 0.0769 0.0772 0.0761 0.0330 0.0672 0.0812 0.0780 4.91%
NDCG@100 0.0984 0.0809 0.0920 0.0982 0.0972 0.0975 0.0429 0.0857 0.1030 0.0981 4.67%
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Figure 4: NDCG@100 with the different number of ratings
per user (𝑋 ) for two benchmark datasets.

• [Sec. 5.3] The coverage-based anchor selection in LOCA𝑉𝐴𝐸

outperforms the other anchor selection methods (an improve-
ment of up to 1.70% in NDCG@100 over the random selection).

• [Sec. 5.4] LOCA can be integrated with other AE-based models,
and the variant of LOCA also consistently outperforms the
base models (an improvement of up to 5.39% in NDCG@100
relative to the global model).

5.1 Effectiveness of LOCA
Table 2 reports the accuracies of LOCA and the competing mod-
els on five datasets. The key observations are: (i) LOCA shows
better accuracy than the competing models across all datasets. (ii)
LOCA consistently outperforms its base models. (iii) The state-
of-the-art AE-based models, such as MultVAE and RecVAE, tend
to be better than the existing local models such as LLORMA and
sGLSVD, implying that neural recommender models can capture
global patterns effectively. (iv) Lastly, it is interesting to observe
that EASE-based models (EASE𝑅 and LOCA𝐸𝐴𝑆𝐸 ) are relatively

stronger on larger and denser datasets, such as MovieLens 10M
and 20M, whereas VAE-based models (MultVAE and LOCA𝑉𝐴𝐸 )
are stronger on sparser datasets such as AMusics, AGames, or Yelp.
Therefore, We surmise that each base model has its own strength
and weakness, and putting into the LOCA framework still improves
overall performance.

Figure 4 depicts the breakdown results on two datasets, according
to the number of ratings per user. LOCA𝑉𝐴𝐸 shows a consistent im-
provement in performance over all intervals. This is to be expected
as LOCA𝑉𝐴𝐸 handles local correlations of users/items, whereas the
base model faces challenges in capturing local correlations. Even
when the user-item interaction is scarce, LOCA𝑉𝐴𝐸 achieves better
performance than the base model as it captures the locality of small
sub-communities, e.g., long-tail users/items.

5.2 Effect of Number of Local Models
Figure 5 depicts the extent to which the number of local models
affects the performance of LOCA𝑉𝐴𝐸 . LLORMA𝑉𝐴𝐸 builds and ag-
gregates local models based on LLORMA [25, 26]; however, it adopts
MultVAE [27] as its base model instead of MF. It was observed that
the accuracy of LOCA𝑉𝐴𝐸 improved consistently with an increase
in the number of local models. For the motivating question that we
posed in Section 3.1, is it better to use different weights for training
and aggregating local models?, our experimental results imply that
the answer is yes. The simple ensemble model that assigns the
same weight values for all local models and LLORMA𝑉𝐴𝐸 using
the same weights for training and aggregating local models show
a limited improvement, converging to the best NDCG@100 with
50 local models. By contrast, LOCA𝑉𝐴𝐸 improves beyond this level
by taking advantage of up to 300 newly added local models. From
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Figure 5: Comparison of NDCG@100 of MultVAE [27], en-
semble, LLORMA𝑉𝐴𝐸 , and LOCA𝑉𝐴𝐸 for two benchmark
datasets.

(a) ML10M (b) AMusic

Figure 6: NDCG@100 of LOCAwith various basemodels (i.e.,
DAE [41] and MultVAE [27]).

this observation, we conclude that LOCA𝑉𝐴𝐸 is more effective in
capturing local sub-communities. One might wonder whether this
conclusion would hold if we had as many local models the num-
ber of users. Developing more local models does not impair the
accuracy, but the performance gains diminish.

5.3 Effect of Anchor User Selection
Table 3 compares the different anchor selection strategies, including
random, 𝑘-means and farthest4 [26]. Although the difference in
performance between the coverage-based selection and the other
methods is not significant, the former consistently outperforms
other selection methods. As reported in [26], the cluster-based
selection shows a better performance than the random and farthest
selection methods; however, it is less effective than the coverage-
based selection. We conclude that the coverage-based selection
effectively increases the number of local models, thereby obtaining
consistent gains of LOCA.

5.4 Effect of Various Base Models
To investigate the model-agnostic property of LOCA, we employ
different base models, i.e., DAE [41] andMultVAE [27]. Compared to
the basemodels, Figure 6 shows that both LOCA𝐷𝐴𝐸 and LOCA𝑉𝐴𝐸

consistently outperform their global counterparts. Moreover, as the
number of local models increases, we observe consistent perfor-
mance gains. These results imply that a locally low-rank prior is
generally valid regardless of specific base models. Therefore, we
conclude that LOCA can be easily applied to other base models.

5.5 Effect of Hyperparameters
Figure 7 depicts the effect of the kernel bandwidth ℎ𝑇 in training
local models. When the bandwidth ℎ𝑇 is 1.0–4.0, LOCA achieves
4Originally named as “Coverage” in [26]. To avoid confusion, we rename this as
“farthest”, as this method maximizes the distance across anchor users.

(a) ML10M (b) AMusic

Figure 7: NDCG@100 vs. kernel bandwidth ℎ𝑇 in training
local models. (ℎ𝑊 = 0.4)

(a) ML10M (b) AMusic

Figure 8: NDCG@100 vs. kernel bandwidth ℎ𝑊 in aggregat-
ing local models. (ℎ𝑇 = 1.0)

Table 3: NDCG@100 for different anchor selection methods
with varying the number of local models. Coverage is our
anchor selection method.

Dataset Anchor Number of local models
selection 100 200 300

ML10M

Random 0.2030 (89.3%) 0.2052 (95.9%) 0.2068 (97.6%)
K-means 0.2034 (92.9%) 0.2061 (97.1%) 0.2072 (98.6%)
Farthest 0.2005 (83.1%) 0.2028 (93.4%) 0.2042 (96.9%)
Coverage 0.2046 (97.3%) 0.2062 (99.4%) 0.2073 (99.9%)

AMusic

Random 0.0849 (53.5%) 0.0859 (64.8%) 0.0878 (71.3%)
K-means 0.0856 (59.3%) 0.0871 (71.3%) 0.0882 (77.4%)
Farthest 0.0835 (13.3%) 0.0853 (20.4%) 0.0865 (29.2%)
Coverage 0.0865 (74.9%) 0.0883 (83.6%) 0.0893 (88.6%)

the best accuracy, where the coverage of each local model is ap-
proximately 64.5–100%. When the bandwidth is too low, i.e., ℎ𝑇 is
0.5, the accuracy decreases as the number of local models increases.
This implies that the coverage of the local model must be adequate
to capture local correlations for users.

Figure 8 depicts the effect of kernel bandwidthℎ𝑊 in aggregating
local models. When the bandwidth is 0.4–0.8, the performance is
the best, where the coverage of 300 local models is approximately
25.7–100%. When the bandwidth is low, i.e., ℎ𝑊 is 0.2–0.4, the
accuracy for specific users covered by the local model increases,
but this has little effect on the accuracy for the entire set of users.
Coupling this with our observation in Figure 7, we surmise that one
reason for LOCA to outperforming LLORMA and its variants is its
flexibility in using different weights for training and aggregating
local models.

5.6 Illustration of Local Models
Table 4 shows the differences between local models. For the demon-
stration, we chose a target user whomostly rated the movies for two



genres, Sci-Fi and Horror, in the ML10M dataset. The global model
attempts to capture both tastes without identifying the different
genres. By contrast, the local models in LOCA𝑉𝐴𝐸 distinguish dif-
ferent local patterns of user preferences; the first (Local 70) mostly
recommends Sci-Fi movies, whereas the second (Local 179) mainly
suggests horror movies. Some of the recommendations cover the
ground-truth (red-box). We conclude that our local models cap-
ture meaningful local patterns, and LOCA𝑉𝐴𝐸 successfully utilizes
sub-communities consisting of different local patterns.

5.7 Training Time
The training time of a single local model in LOCA𝑉𝐴𝐸 is generally
less than that of a global model, as it tackles a smaller problem.
Further, local models are independent of each other; therefore, we
can train them in parallel. Given sufficient computation power,
LOCA with hundreds of local models can be trained within the
time taken to train a single local model.

Table 5 presents the actual training times measured for a global
model (MultVAE [27]) and LOCA for several benchmark datasets.
First, the time taken to train a single local model is approximately
2–6 times less than that for MultVAE [27]. We also observe that
the training time for 1, 2, and 5 local models is not significantly
different, as we utilize 8x-parallelism with a multi-core. For 10 or
more local models, the training time increases linearly; the increase
in training time within the effective parallelism from 1 to 5 is mainly
due to the variance in the size of the local model. The datasets with
higher concentration shown in Table 1, e.g., MovieLens, tend to
have higher variance in the size of the local model, leading to a
longer waiting time for the largest local model.

6 RELATEDWORK
Local Latent Factor Models. The idea of using multiple local models
was studied in [1, 10, 42]. In this study, we mainly discuss the
local latent factor models under the local low-rank assumption. The
existing local latent factor models can be categorized into two types.
First, LLORMA [25] utilized multiple local matrices that represented
local aspects of users, where local models overlapped with each
other. The local collaborative ranking [24] extended this idea to
a pair-wise ranking objective. [38] proposed a local latent factor
model usingWMF [17] under the same architecture. Although these
models are capable of capturing local factors, they did not estimate
global factors for all the users. Therefore, local models may not
cover some users among the entire set of users.

Second, GLSLIM [4] proposed the estimation of a global model
and multiple local item-item models, where the sub-matrices for
local models were disjoint. sGLSVD [5] used the same architec-
ture with SVD [7] as the base model. Compared to the existing
local latent factor models, we assert that LOCA can be viewed as a
generalized framework built upon the AE-based model.

Neural Recommender Models. Deep neural networks (DNNs) have
been widely used for recommender systems [44]. According to the
model applicability, existing studies developed neural recommender
models using various building blocks such as AE [33, 37, 41], MLP [3,
6, 13, 39], CNN [12, 18], RNN [16, 40], and so on.

Table 4: Illustration of top-5 recommendations for user
66005 in ML10M by LOCA𝑉𝐴𝐸 . Out of the many local mod-
els, two were used to provide the final results. The red box
indicates that the recommendation is in the ground truth.

Model Top-1 Top-2 Top-3 Top-4 Top-5

Local 70

Sci-Fi,
Adventure

Sci-Fi,
Horror

Sci-Fi,
Action

Sci-Fi,
Horror

Sci-Fi,
Action

Local 179

Horror,
Action

Horror,
Drama

Horror,
Drama

Horror,
Thriller

Horror,
Drama

Global

Thriller,
Action

Drama Drama,
Mystery

Horror,
Action

Comedy,
Crime

Ground
truth

Sci-Fi,
Action

Horror,
Thriller

Horror,
Action

Horror,
Drama

Horror,
Thriller

Table 5: Total training time (in seconds) ofMultVAE [27] and
LOCA for varying the number of local models.

Dataset MultVAE Number of local models in LOCA𝑉𝐴𝐸

1 2 5 10 15 20

ML10M 949 248 308 410 726 1,101 1,459
ML20M 2,514 427 450 482 1,167 1,495 1,710
AMusic 46 18 27 32 53 76 82
AGames 212 36 42 48 77 92 118
Yelp 369 133 111 154 223 284 352

In this study, we mainly focus on AE-based models that are
widely used to overcome the drawbacks of the existing linear rec-
ommender models, i.e., probabilistic matrix factorization (PMF) [31].
As a pioneering work, AutoRec [33] adopted the conventional AE,
that directly takes the user or item rating vectors as input and re-
constructs the rating vector at the output layer. Unlike AutoRec,
collaborative filtering neural network (CFN) [9] was built upon
stacked DAE to make it more robust. Collaborative denoising au-
toencoder (CDAE) [41] adopted DAE by adding latent user vectors.
MultVAE [27] utilized the multinomial likelihood on top of VAE.
Furthermore, EASE𝑅 [35] proposed the one-layer autoencoder and
developed an analytic solution by relaxing the regularization of
SLIM [30]. Most recently, RecVAE [34] improved on MultVAE by
using a composite prior distribution for the latent codes under the
𝛽-VAE framework.



7 CONCLUSION
This work presents a generalized local factor model, namely Local
Collaborative Autoencoders (LOCA). To our knowledge, it is the first
generalized framework under the local low-rank assumption that
builds on the neural recommendation models. We explore a large
number of local models by adopting a generalized framework with
different weight schemes for training and aggregating them. Be-
sides, we develop a novel method of discovering a sub-community
to maximize the coverage of local models. Our experimental results
demonstrate that LOCA is highly scalable, achieving state-of-the-
art results by outperforming existing AE-based and local latent
factor models on several large-scale public benchmarks.
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