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ABSTRACT

As Recommender Systems (RS) influence more and more people
in their daily life, the issue of fairness in recommendation is be-
coming more and more important. Most of the prior approaches to
fairness-aware recommendation have been situated in a static or
one-shot setting, where the protected groups of items are fixed, and
the model provides a one-time fairness solution based on fairness-
constrained optimization. This fails to consider the dynamic nature
of the recommender systems, where attributes such as item popu-
larity may change over time due to the recommendation policy and
user engagement. For example, products that were once popular
may become no longer popular, and vice versa. As a result, the sys-
tem that aims to maintain long-term fairness on the item exposure
in different popularity groups must accommodate this change in a
timely fashion.

Novel to this work, we explore the problem of long-term fair-
ness in recommendation and accomplish the problem through dy-
namic fairness learning. We focus on the fairness of exposure of
items in different groups, while the division of the groups is based
on item popularity, which dynamically changes over time in the
recommendation process. We tackle this problem by proposing
a fairness-constrained reinforcement learning algorithm for rec-
ommendation, which models the recommendation problem as a
Constrained Markov Decision Process (CMDP), so that the model
can dynamically adjust its recommendation policy to make sure
the fairness requirement is always satisfied when the environment
changes. Experiments on several real-world datasets verify our
framework’s superiority in terms of recommendation performance,
short-term fairness, and long-term fairness.

CCS CONCEPTS

« Information systems — Recommender systems; - Comput-
ing methodologies — Sequential decision making.
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1 INTRODUCTION

Personalized recommender system (RS) is a core function of many
online services such as e-commerce, advertising, and online job
markets. Recently, several works have highlighted that RS may
be subject to algorithmic bias along different dimensions, leading
to a negative impact on the underrepresented or disadvantaged
groups [15, 17, 18, 39, 52]. For example, the “Matthew Effect” be-
comes increasingly evident in RS, where some items get more and
more popular, while the long-tail items are difficult to achieve rela-
tively fair exposure [27]. Existing research on improving fairness in
recommendation systems or ranking has mostly focused on static
settings, which only assess the immediate impact of fairness learn-
ing instead of the long-term consequences [26, 46]. For instance,
suppose there are four items in the system, A, B, C, and D, with
A, B belonging to the popular group Gy and C, D belonging to the
long-tail group G1. When using demographic parity as fairness con-
straint in recommendation and recommend two items each time,
without considering the position bias, we will have AC, BC, AD,
or BD to be recommended to consumers. Suppose D has a higher
chance of click, then after several times, D will get a higher utility
score than other items, but since D is still in Gy, the algorithm will
tend to recommend D more to maximize the total utility and to
satisfy group fairness. This will bring a new “Matthew Effect” on
Gj in the long term. The above example shows that imposing seem-
ingly fair decisions through static criteria can lead to unexpected
unfairness in the long run. In essence, fairness cannot be defined in
static or one-shot setting without considering the long-term impact,
and long-term fairness cannot be achieved without understanding
the underlying dynamics.

We define static fairness as the one that does not consider the
changes in the recommendation environment, such as the changes
in item utility, attributes, or group labels due to the user feed-
back/interactions throughout the recommendation process. Usu-
ally, static fairness provides a one-time fairness solution based on
fairness-constrained optimization. Dynamic fairness, on the other
hand, considers the dynamic factors in the environment and learns
a strategy that accommodates such dynamics. Furthermore, long-
term fairness views the recommendation as a long term process
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instead of a one-shot objective and aims to maintain fairness in the
long run by achieving dynamic fairness over time.

Technically, we study the long-term fairness of item exposure
in recommender systems, while items are separated into groups
based on item popularity. The challenge is that during the recom-
mendation process, items will receive different extents of exposure
based on the recommendation strategy and user feedback, causing
the underlying group labels to change over time. To achieve the
aforementioned long-term fairness in recommendation, we pursue
to answer the following three key questions:

e How to model long-term fairness of item exposure with changing
group labels in recommendation scenarios?

e How to update the recommendation strategy according to real-
time item exposure records and user interactions?

o How to optimize the strategy effectively over large-scale datasets?

In this work, we aim to address the above challenges simultane-
ously. Specially, we propose to model the sequential interactions
between consumers and recommender systems as a Markov Deci-
sion Process (MDP), and then turn it into a Constrained Markov
Decision Process (CMDP) by constraining the fairness of item ex-
posure at each iteration dynamically. We leverage the Constrained
Policy Optimization (CPO) with adapted neural network architec-
ture to automatically learn the optimal policy under different fair-
ness constraints. We illustrate the long-term impact of fairness in
recommendation systems by providing empirical results on several
real-world datasets, which verify the superiority of our framework
on recommendation performance, short-term fairness, and long-
term fairness. To the best of our knowledge, this is the first attempt
to model the dynamic nature of fairness with respect to changing
group labels, and to show its effectiveness in the long term.

2 RELATED WORK

2.1 Fairness in Ranking and Recommendation

There have been growing concerns on fairness recently, especially
in the context of intelligent decision-making systems, such as rec-
ommender systems. Various types of bias have been found to exist
in recommendations such as gender and race [1, 11], item popu-
larity [52], user feedback [15] and opinion polarity [43]. Different
notions of fairness and algorithms have since been proposed to
counteract such issues. There are mainly two types of fairness defi-
nitions in recommendations: individual fairness and group fairness.
The former requires treating individuals similarly regardless of
their protected attributes, such as demographic information, while
the latter requires treating different groups similarly. Our work fo-
cuses on the popularity group fairness, yet also addresses individual
fairness through accommodation to dynamic group labels.

The relevant methods related to fairness in ranking and recom-
mendation can be roughly divided into three subcategories: opti-
mizing utility (often represented by relevance) subject to a bounded
fairness constraint [8, 18, 39, 44], optimizing fairness with a lower
bound utility [52], and jointly optimizing utility and fairness [7].
Based on the characteristics of the recommender system itself, there
also have been a few works related to multi-sided fairness in multi-
stakeholder systems [6, 16, 30]. These works have proposed effec-
tive algorithms for fairness-aware ranking and recommendation,
yet they fall in the category of static fairness where the protected

attribute or group labels were fixed throughout the entire ranking
or recommendation process. Therefore, it is not obvious how such
algorithms can be adapted to dynamic group labels that change the
fairness constraints over time. The closest literature to our work
on dynamic fairness includes Saito et al. [35] and Morik et al. [32],
which incorporated user feedback in the learning process, and could
dynamically adjust to the changing utility with fairness constraints.
However, they focused on the changing utility of items and did not
consider the scenario where group labels could be dynamic due to
the nature of recommendations being an interactive process. To
the best of our knowledge, we make the first attempt on dynamic
group fairness, focusing on the changing group labels of items.

2.2 RL for Recommendation

In order to capture the interactive nature of recommendation sce-
narios, reinforcement learning (RL) based solutions have become
an important topic recently. A group of work [5, 24, 45] model the
problem as contextual multi-armed bandits, which can easily in-
corporate collaborative filtering methods [9, 50]. In the meantime,
some literature [28, 29, 37, 41, 42, 51] found that it is natural to
model the recommendation process as a Markov Decision Process
(MDP). In general, this direction can be further categorized as ei-
ther policy-based [10, 12, 14, 47] or value-based [33, 48, 51] methods.
Typically, policy-based methods aim to learn a policy that generates
an action (e.g. recommended items) based on a state. Such policy is
optimized through policy gradient and can be either deterministic
[14, 25, 38, 47] or stochastic [10, 12]. On the other hand, value-based
methods aims to model the quality (i.e. Q-value) of actions so that
the best action corresponds to the one with best value.

There also exist several works considering using RL to solve
fairness problems in machine learning [21, 40]. Jabbari et al. [21]
considered to optimize the meritocratic fairness defined in [22]
based on long-term rewards. Their work is designed for a specific
fairness constraint and is not suitable for our problem setting. Wen
et al. [40] studied a reinforcement learning problem under group
fairness constraint, where the state consists of both the feature
and the sensitive attributes. They developed model-free and model-
based methods to learn a decision rule to achieve both demographic
parity and near-optimal fairness. Different from our work that
focuses on item-side fairness, they focused on the user-side fairness.

3 PRELIMINARY

3.0.1 Markov Decision Processes. In this paper, we study rein-
forcement learning in Markov Decision Processes (MDPs). An MDP
isatuple M = (S, A, P, R, i1, y), where S is a set of n states, A is
a set of m actions, P : S X A xS — [0, 1] denotes the transition
probability function, R : § X A X S — R is the reward function,
u: S — [0,1] is the starting state distribution, and y € [0,1) is
the discount factor. A stationary policy 7 : & — P(A) is a map
from states to probability distributions over actions, with 7(als)
denoting the probability of selecting action a in state s. We denote
the set of all stationary policies by II. In reinforcement learning,
we aim to learn a policy 7, which maximizes the infinite horizon
discounted total return J (),

J(m) = TI::” Z YR (st at,St+1)] , (1)
=0



where 7 denotes a trajectory, i.e., T = (s, ao, $1,41,...), and 7 ~
is a shorthand indicating that the distribution over trajectories
depends on 7 : 5o ~ p,ar ~ 7w (-|st),st+1 ~ P (st ar). Let R(7)
denote the discounted return of a trajectory, we express the on-
policy value function as V" (s) = E;~ [R(7)|so = s], the on-policy
action-value function as Q” (s, a) = Er~; [R(7)|so = s, a9 = a], and
the advantage function as A" (s, a) = Q" (s,a) — V™ (s).

3.0.2 Constrained Markov Decision Processes. A Constrained
Markov Decision Process (CMDP) is an MDP augmented with con-
straints that restrict the set of allowable policies for that MDP.
In particular, the MDP can be constrained with a set of auxiliary
cost functions Cy, . . ., C, and the corresponding limits dy, . .., d,
which means that the discounted total cost over the cost function
C; should be bounded by d;. Each function C; : S X A XS — R
maps transition tuples to costs, like the reward in traditional MDP.
Let Jc, (r) denote the discounted total cost of policy 7 with respect
to the cost function C;j:

Je;(m) = E

Z Y Ci (st,az, St+1)] . 2
=0

The set of feasible stationary policies for a CMDP is then IIc =
{71' €Il :Vi,Je,(n) < di}, and the reinforcement learning prob-
lem in a CMDP is 7* = argmaxyeq. J(7)., where J(r) is the
discounted total reward defined in Eq. (1). Finally, in analogy to
V7, Q", and A", we denote these by Vgl_, Qgi, and Agi, which re-
places reward function R with cost function C;, respectively.

3.0.3 Constrained Policy Optimization. Inspired by trust re-
gion methods [36], Achiam et al. [2] proposed Constrained Policy
Optimization (CPO), which uses a trust region instead of penalties
on policy divergence to enable larger step sizes. CPO has policy
updates of the following form:

Mes =arg max E  [ATk(s,a)],
o =argmax B[4 (5.0)]
a~J

1
st Jo; (m) + —— E [Ag’f (s, a)] <d; Vi (3)
1—ys~d™ i
a~i

Dk (rllmg) <6

where ITg C IT is a set of parameterized policies with parameters 0
(e.g., neural networks with fixed architecture), d”* is the state dis-
tribution under policy 7y, Dg denotes the average KL-divergence,
and § > 0 is the step size. The set {rg € Iy : Dxr (7||m) < 6} is
called the trust region. Particularly, for problems with only one lin-
ear constraint, there is an analytical solution, which is also given by
Achiam et al. [2]. Denoting the gradient of the objective in Eq. (3) as
g, the gradient of constraint as b, the Hessian of the KL-divergence
as H, and defining ¢ = Jo () — d, the approximation to Eq. (3) is

O1 = argmax g" (6 - Ok)
st.c+b’ (0-06x) <0 (4)

%(Q—Gk)TH(G—Gk) <5

A more comprehensive review of CMDPs and CPO can be seen
in [3] and [2] respectively.

4 PROBLEM FORMULATION

In this section, we first describe a CMDP that models the recom-
mendation process with general constraints, and then, we describe
several fairness constraints, which are suitable for recommenda-
tion scenarios. Finally, we combine these two parts together and
introduce the fairness-constrained optimization problem.

4.1 CMDP for Recommendation

In each timestamp (1, t2, 13, t4, t5, . . . ), when a user sends a request
to the recommendation system, the recommendation agent G will
take the feature representation of the current user and item candi-
dates 7 as input, and generate a list of items L € 7 K to recommend,
where K > 1. User u who has received the list of recommended
item/items L will give his/her feedback B by his/her clicks on this
set of items. Thus, the state s can be represented by user features
(e.g., user’s recent click history), action a is represented by items
in L, reward r is the immediate reward (e.g., whether user clicks
on an item in L) by taking action a in the current state, and cost ¢
is the immediate cost (e.g., whether the recommended item/items
come from the sensitive group).

e State S: A state s; is the representation of user’s most recent
positive interaction history H; with the recommender, as well as
his/her demographic information (if exists).

e Action A: An action a; = {a%, ., af} is a recommendation
list with K items to a user u at time ¢ with current state s;.

e Reward R: Given the recommendation based on the action a;
and the user state s;, the user will provide his/her feedback, i.e.,
click, skip, or purchase, etc. The recommender receives immediate
reward R(s;, a;) according to the user’s feedback.

e Cost C: Given the recommendation based on the action a;, the
environment provides a cost value based on the problem-specific
cost function, i.e., the number of items in the recommendation
list that come from the sensitive group, and sends the immediate
cost C(s¢, ay) to the recommender.

e Discount rate y, and y.: y» € [0, 1] is a factor measuring the
present value of long-term rewards, while y. € [0, 1] is another
factor measuring the present value of long-term costs.

4.2 Fairness Constraints

To be consistent with the previous definition in CMDP for recom-
mendation and solve the dynamic change of underlying labels, we
define analogs of several frequently proposed fairness constraints.

4.2.1 Demographic Parity Constraints. Following [39], we can
use exposure to define the fairness between different groups of
items. Demographic parity requires that the average exposure of
the items from each group is equal. In our setting, we enforce this
constraint at each iteration ¢. Denoting the number of exposure in
a group at iteration ¢ as

Exposure, (G;) = Z ﬂ(alt €Gj), 1=1,..,K (5)

1
ay€ar

Then we can express demographic parity constraint as follows,

Exposure, (Go) _ Exposure, (G1)
|Gol |G1] ’

©)



where groups Gy and G; are divided based on the item popularity
in the recommendation scenario.

4.2.2 Exact-K Fairness Constraints. We define an Exact-K fair-
ness in ranking that requires the proportion/chance of protected
candidates in every recommendation list with length K remains
statistically below or indistinguishable from a given maximum a.
This kind of fairness constraint is more suitable and feasible in
practice for recommender systems as the system can adjust the
value of a. The concrete form of this fairness is shown as below,
Exposure, (Go) <a @
Exposure, (G1)

Note that when a = % and the equation holds strictly, the above

expression would be exactly the same as demographic parity.

4.3 FCPO: Fairness Constrained Policy Optimization

An illustration of the proposed FCPO is shown in Fig. 1, containing
one actor and two critics. Our goal is to learn the optimal policy
for the platform, which is able to maximize the cumulative reward
under a certain fairness constraint, as mentioned in previous section.
Specially, in this work, the reward function and the cost function
are defined as

K
R(s¢, as, St41) = Z 1 (ai gets positive feedback) 8)
I=1

C(st, ap, Se41) = 1 (aﬁ is in sensitive group) 9)

M=

~
Il
—_-

where a; = {a}, e af } represents a recommendation list includ-
ing K item IDs, which are selected by the current policy at time
point t. We can see that the expression of cost function is the same
as Eq. (5), which represents the total number of items in a specific
group exposed to users at time t. Let us consider the sensitive group
as group Gy, then we have
Exposure, (Gy)
Exposure, (G1) =«
Exposure, (Gy) <aExposure, (G1)
(1 + a)Exposure, (Go) <aExposure, (Go) + aExposure, (G1)
(1+ a)Exposure, (Go) <aK
24

C(ss ap, se41) < 1 K=dK

+a
Let C < a’K be satisfied at each iteration, we can get the discounted
total cost,

T T
Je(m) = E | > v Clsn, at,sm] <y vtk (10)
=0 t=0

where T is the length of a recommendation trajectory. Eq. (10) is
the group fairness constraint for our optimization problem and we
can denote the limit of the unfairness d as

T
d:Zyé oK. (11)
=1

Once we finished defining the specific CMDP for recommendation
and we have the specific reward function Eq. (8), cost function Eq.
(9) and the limit of the constraint d, we can take them to Eq. (3) and
build our fairness constrained policy optimization framework. It
is worth noting that our model contains only one linear fairness

A T T T~
Ur, i U, A S\ |G
r “c ~l P
Environment ---_---t> Critic ~LJcritic =~ »EtoZl

Sy

Figure 1: Illustration of the proposed method.

constraint, therefore, as mentioned in Preliminary, we can get an
analytical solution by solving Eq. (4) if the problem is feasible. We
then introduce the framework in the following section.

5 PROPOSED FRAMEWORK

Our solution to the aforementioned fairness constrained optimiza-
tion problem follows an Actor-Critic learning scheme, but with an
extra critic network designed for the fairness constraint. In this
section, we illustrate how to construct and learn each of these
components.

5.1 The Actor

The actor component 7y parameterized by 6 serves as the same
functionality as a stochastic policy that samples an action a; € 7%
given the current state s; € R™ of a user. As depicted in Fig. 2, s; is
first acquired by extracting and concatenating the user embedding
e, € R? and user’s history embedding hy,:

st = [ey; hy], hy = GRU(Hy) (12)

where Hy = {Hl,th, . ,Hg\]} denotes the most recent N items
from user u’s interaction history, and the history embedding h,,
is acquired by encoding N item embeddings via Gated Recurrent
Unites (GRU) [13]. Note that the user’s recent history is organized
as a queue, and it is updated only if the recommended item ai €ay
receives a positive feedback,

{H%, ..., HN, aé} r£>0

H; Otherwise (13)

Hp = {

This ensures that the state can always represent the user’s most
recent interests.

We assume that the probability of actions conditioned on states
follows a continuous high-dimensional Gaussian distribution with
mean p € RK? and covariance matrix 3 € RK4<Kd (only elements
at diagonal are non-zeros and there are actually Kd parameters).
For better representation ability, we approximate the distribution
via a neural network that maps the encoded state s; to g and 3.
Specifically, we adopt a Multi Layer Perceptron (MLP) with tanh(-)
as the non-linear activation function, i.e. (g, ) = MLP(s;). Then,
we can sample a vector from the Gaussian distribution (g, ¥) and
convert it into a proposal matrix W ~ N (g, %) € RKX?, whose
k-th row, denoted by W}, € R9, represents a proposed “ideal” item
embedding. Then, the probability matrix P € RKXIZ| of selecting
the k-th candidate item is given by:

Py = softmax(Wx V"), k=1,...,K, (14)
where V € RIZ ¥4 s the embedding matrix of all candidate items.

This is equivalent to using dot product to determine similarity
between W;. and any item. As the result of taking the action at step



GRU GRU — ... GRU
T o P PPPPY T,
Dj‘;jjj ‘ Item Embedding Extraction ‘
u

H} H? HYN

Figure 2: The architecture of the Actor. 0 consists of param-
eters of both the Actor network in fy and the state represen-
tation model in Eq. (12).

t, the Actor recommends the k-th item as follows:

u]; = argmax P; Vk=1,...,K, (15)
where Py ; denotes the probability of taking the i-th item at rank k.

5.2 The Critics

5.2.1 Critic for Value Function. A Critic network V,,(s;) is con-
structed to approximate the true state value function V] (s;) and be
used to optimize the actor. The Critic network is updated according
to temporal-difference learning that minimizes the MSE:

L) =Y (v Vaolso)) (16)

t

where y; = rr + yr Ve (St41).

5.2.2 Critic for Cost Function. In addition to the accuracy per-
formance, we introduce a separate Critic network Vj (s) for the
purpose of constrained policy optimization as explained in section
3.0.3, which is updated similarly with Eq. (16),

L@ =Y (v~ Vplsn) (7

t

where yr = ¢; +yc Vg (se+1)-

5.3 Training Procedure

We also present the detailed training procedure of our model in
Algorithm 1. In each round, there are two phases — the trajectory
generation phase (line 4-13) and model updating phase (line 14-
23), where each trajectory contains T transition results between
consumer and the recommendation agent.

Algorithm 1: Parameters Training for FCPO

1 Input: step size 8, cost limit value d, and line search ratio

2 Output: parameters 6, w and ¢ of actor network, value function,
cost function

3 Randomly initialize 0, w and ¢.

4 Initialize replay buffer D;

5 for Round = 1... M do

6 Initialize user state sy from log data;

7 fort = 1..Tdo

8 Observe current state s; based on Eq. (12);

9 Select an action a; = {a}, e, af} € 7X based on Eq.
(14) and Eq. (15)

10 Calculate reward r; and cost c¢; according to environment
feedback based on Eq. (8) and Eq. (9);

1 Update s;+1 based on Eq. (??);

12 Store transition (sz, az, rz, ¢¢, S¢+1) in D in its

corresponding trajectory.

13 end

14 Sample minibatch of N trajectories 7~ from D;

15 Calculate advantage value A, advantage cost value Ac;

16 Obtain gradient direction dg by solving Eq. (4) with A and A.;

17 repeat

18 0 —0+dg

19 dg — pdo

20 until 7y (s) in trust region & loss improves & cost < d;

21 (Policy update) 6 «— 0;

22 (Value update) Optimize w based on Eq.(16);
23 (Cost update) Optimize ¢ based on Eq.(17);
24 end

5.4 Testing Procedure

After finishing the training procedure, FCPO gets fine-tuned hyper-
parameters and well-trained parameters. Then we conduct the
evaluation of our model on several public real-world datasets. Since
our ultimate goal is to achieve long-term group fairness of item
exposure with dynamically changing group labels, we propose both
short-term evaluation and long-term evaluation.

5.4.1 Short-term Evaluation. This follows Algorithm 1, while
the difference from training is that it only contains the trajectory
generation phase without any updates to the model parameters.
Once we receive the recommendation results in all trajectories,
namely a;, we can use the log data to calculate the recommendation
performance, and compute the fairness performance based on the
exposure records with fixed group labels. We will introduce how to
get the initial group label in the experiment part.

54.2 Long-term Evaluation. This process follows Algorithm 1,
instead of initializing random model parameters, we set well-trained
model parameters into our model in advance. The model parameters
will be updated throughout the testing process so as to model an
online learning procedure in practice; meanwhile, the item labels
will change dynamically based on the current impression results,
which means that the fairness constraint will change through time.
To observe long-term performance, we repeatedly recommend T
times, so the total number of recommended items is TK.



6 EXPERIMENTS
6.1 Dataset Description

We use the user transaction data from Movielens [19] in our ex-
periments to verify the recommendation performance of FCPO!.
We choose Movielens100K and Movielens1M ? datasets, which in-
clude one hundred thousand and one million user transactions,
respectively (user id, item id, rating, timestamp, etc.).

For each dataset, we sort the transactions of each user according
to the timestamp, and then split the records into training and testing
sets chronologically by 4:1, and the last item of each user in the
training set is put into the validation set. Some basic statistics of
the experimental datasets are shown in Table 1. We split items into
two groups Go and G; based on item popularity, i.e., the number
of exposures for each item. Specifically, the top 20% items in terms
of number of impressions belong to the popular group Gy, and the
remaining 80% belong to the long-tail group Gj.

Moreover, for RL-based recommenders, the initial state for each
user during training is the first five clicked items in the training
set, and the initial state during testing is the last five clicked items
in the training set. For simplicity, each time the RL agent recom-
mends one item to the user, while we can adjust the length of the
recommendation list easily in practice.

6.2 Experimental Setup

Baselines: We compare our model with the following baselines,
including both traditional and RL based methods.

e MF: Collaborative Filtering based on matrix factorization [23]
is a representative method for rating prediction. Basically, the
user and item rating vectors are considered as the representation
vector for each user and item.

o BPR-MF: Bayesian Personalized Ranking [34] is one of the most
widely used ranking methods for top-K recommendation, which
models recommendation as a pair-wise ranking problem.

o NCF:Neural Collaborative Filtering [20] is a simple neural network-
based recommendation algorithm. In particular, we choose Neu-
ral Matrix Factorization to conduct the experiments, fusing both
Generalized Matrix Factorization (GMF) and Multiple Layer Per-
ceptron (MLP) under the NCF framework.

e LIRD: It is the short for List-wise Recommendation based on
Deep reinforcement learning [49]. The original paper simply uti-
lizes the concatenation of item embeddings to represent the user
state. For fair comparison, we replace the state representation
with the same structure of FCPO, as is shown is Fig. 2.

In this work, we also include a classical fairness baseline called
Fairness Of Exposure in Ranking (FOE) [39] in our experiment
to compare the fairness performance with our model. FOE can
be seen as a reranking framework based on group fairness con-
straints, and it is originally designed for searching problems, so
we made a few modification to accommodate the recommendation
task. We use ranking prediction model such as MF, BPR, and NCF
as the base ranker, where the raw utility is given by the predicted
probability of user i clicking item j. In our experiment, we have
MF-FOE, BPR-FOE and NCF-FOE as our fairness baselines. Since

!https://github.com/Toby GE/FCPO
Zhttps://grouplens.org/datasets/Movielens/

Table 1: Basic statistics of the experimental datasets.

Dataset #users #items #act./user #act./item #act. density
Movielens100K 943 1682 106 59.45 100,000  6.305%
Movielens1M 6040 3706 166 270 1,000,209  4.468%

FOE assumes independence of items in the list, it cannot be applied
to LIRD, which is a sequential model and the order in its recom-
mendation makes a difference. Meanwhile, FOE for personalized
recommendation needs to solve a linear program with size |7 | X | T |
for each consumer, which brings huge computational costs. In order
to make the problem feasible, we let FOE rerank top-200 items from
the base ranker (e.g. MF), and select the new top-K (K<200) as the
final recommendation results.

We implement MF, BPR-MF, NCF, MF-FOE, BPR-FOE and NCF-
FOE using Pytorch with Adam optimizer. For all the methods, we
consider latent dimensions d from {16, 32, 64, 128, 256}, learning
rate Ir from {le-1, 5e-2, le-2, ..., 5e-4, le-4}, and the L2 penalty is
chosen from {0.01, 0.1, 1}. We tune the hyper-parameters using the
validation set and terminate training when the performance on the
validation set does not change within 5 epochs.

We implement FCPO with Pytorch as well. We perform PMF
[31] to pretrain 100-dimensional user and item embeddings, and
fix them through the whole experiment. We set |H;| = 5, and
use 2 layer of GRU to get state representation s;. For the policy
network and each of the two critic networks, we use two hidden
layer MLP with tanh(-) as activation function. Critics are learned
through LBFGS optimizer [4]. Finally, we fine-tune FCPO’s hyper-
parameters on our validation set. In order to examine the trade-off
between performance and fairness, we set different level of fairness
constraint controlled by the values of @’ in Eq. (10) and calculate
the limit d using Eq. (11). We denote the resulting alternatives as
FCPO-1, FCPO-2, and FCPO-3, whose corresponding fairness be
constrained by setting @’ = 1, @’ = 0.8, and a’ = 0.4 correspond-
ingly in our experiments.

Evaluation Metrics: We adopt several common top-K rank-
ing metrics including Recall, F1 Score, and NDCG to evaluate each
model’s recommendation performance. In addition to these accuracy-
based metrics, we also include two fairness measures — Gini Index
and Popularity Rate, with respect to item exposures for individual
items and groups, respectively. Gini Index measures the inequality
among values of a frequency distribution (for example, numbers
of impressions), which can be seen as an individual level measure.
Given a list of impressions from all items, M = [g1, g2, ..., g‘j|], the
Gini Index can be calculated by Eq.(18),

7] 1]

ﬁzz l9: = ;1. (18)

i=1 j=1

Gini Index(G) =

where g represents the mean of all item impressions. Popularity
Rate, on the other hand, simply refers to the proportion of popular
items in the recommendation list against the total number of items
in the list, which can be seen as a popularity level measure of
fairness. Both of the two fairness measures are the smaller, the
fairer to the recommender system.

6.3 Experimental Results

The major experimental results are shown in Table 2, besides, we
also plot the NDCG vs. Negative Gini Index and NDCG vs. Long-
tail Rate in Fig. 3 under the length of recommendation list K =


https://grouplens.org/datasets/Movielens/

Table 2: Summary of the performance on two datasets. We evaluate for ranking (Recall, F; and NDCG, in percentage (%) values,
% symbol is omitted in the table for clarity) and fairness (Gini Index and Popularity Rate, also in % values), whiles K is the length
of recommendation list. When FCPO is the best, its improvements against the best baseline are significant at p < 0.01.

Methods Recall (%) T F1(%) 1T NDCG (%) T Gini Index (%) | Popularity Rate (%) T
K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20
Movielens-100K
MF 1.847 3.785 7.443 2.457 3.780 5.074 3.591 4.240 5.684 98.99 98.37 97.03 99.98 99.96 99.92
BPR-MF 1.304 3.539 8.093 1.824 3.592 5.409 3.025 3.946 5.787 98.74 98.17 97.01 99.87 99.87 99.78
NCF 1.995 3.831 6.983 2.846 4.267 5.383 5.319 5.660 6.510 99.70 99.39 98.80 100.0 100.0 100.0
LIRD 1.769 5.467 8.999 2.199 4.259 4.934 3.025 3.946 5.787 99.70 99.41 98.81 100.0 100.0 100.0
MF-FOE 1.164 2.247 4.179 1.739 2.730 3.794 3.520 3.796 4.367 86.29 84.05 82.98 92.90 91.89 90.98
BPR-FOE 0.974 2.053 4.404 1.496 2.568 3.933 3.127 3.514 4.332 86.50 84.38 83.78 92.17 91.36 90.70
NCF-FOE 1.193 1.987 4.251 1.759 2.398 3.698 4.033 3.897 4.633 96.92 94.53 90.44 100.0 100.0 100.0
FCPO-1 4.740 8.607 14.48 4.547 5.499 5.855 6.031 7.329 9.323 98.73 98.07 96.75 92.60 90.42 85.85
FCPO-2 3.085 5.811 10.41 3.270 4.164 4.953 4.296 5.203 7.104 97.95 96.88 94.78 70.07 68.28 65.55
FCPO-3 0.920 1.668 3.329 1.272 1.807 2.535 2.255 2.369 2.871 75.23 74.06 73.23 36.52 36.66 36.94
Movielens-1M
MF 1.152 2.352 4.650 1.701 2.814 4.103 3.240 3.686 4.574 99.44 99.18 98.74 99.92 99.90 99.86
BPR-MF 1.240 2.627 5.143 1.773 2.943 4.197 3.078 3.593 4.632 98.93 98.44 97.61 99.40 99.23 98.96
NCF 1.178 2.313 4.589 1.832 2.976 4.382 4.114 4.380 5.080 99.85 99.71 99.42 100.0 100.0 100.0
LIRD 1.961 3.656 5.643 2.673 3.758 4.065 3.078 3.593 4.632 99.87 99.73 99.46 100.0 100.0 95.00
MF-FOE 0.768 1.534 3.220 1.246 2.107 3.345 3.321 3.487 4.021 92.50 91.06 91.32 98.89 98.78 98.68
BPR-FOE 0.860 1.637 3.387 1.374 2.233 3.501 3.389 3.594 4.158 90.48 88.92 89.01 96.56 96.12 95.78
NCF-FOE 0.748 1.403 2.954 1.230 1.980 3.175 3.567 3.589 4.011 97.73 96.57 95.04 100.0 100.0 100.0
FCPO-1 2.033 4.498 8.027 2.668 4.261 5.201 4.398 5.274 6.432 99.81 99.67 99.34 99.28 96.93 91.70
FCPO-2 1.520 3.218 6.417 2.015 3.057 4.145 3.483 3.920 5.133 99.47 99.10 97.41 72.66 68.27 71.35
FCPO-3 0.998 1.925 3.716 1.449 2.185 2.948 2.795 2.987 3.515 88.97 88.34 87.70 63.43 62.73 61.45

NDCG-Megative Gini Index@20 ML-100K NDCG-Longtail Rate@20 ML-100K

NDCG-Megative Gini Index@20 ML-1M NDCG-Longtail Rate@20 ML-1M
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(a) NDCG vs Negative Gini on ML100K (b) NDCG vs Long-tail Rate on ML100K
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Figure 3: NDCG@20 vs. Negative Gini Index@20 and NDCG@20 vs. Long-tail Rate@20 in two datasets. x-axis is the negative
gini index in 3(a) and 3(c), and is the long-tail rate in 3(b) and 3(d); y-axis represents the value of NDCG.

20. We analyze and discuss the results in terms of the following
perspectives.

i) Recommendation Performance: For recommendation perfor-
mance, we compare FCPO-1 with MF, BPR, NCF, and LIRD based
on Recall@k, F1@k and NDCG@k. The results of the recommen-
dation performance are shown in Table 2. The largest value on each
dataset and for each evaluation measure is significant at 0.01 level.
Among all the baseline models, NCF is the strongest on Movie-
lens100K: when averaging across recommendation lengths, NCF
gets 11.45% improvement than MF, 18.01% than BPR, and 6.17 % than
LIRD; and LIRD is the strongest on Movielens1M: when averaging
across recommendation lengths, LIRD gets 17.69% improvement
than MF, 14.50% than BPR, and 9.68 % than NCF.

Our FCPO approach achieves the best top-K recommendation
performance against all baselines on both datasets. On the one hand,
when averaging across recommendation lengths on Movielens100K,
FCPO gets 33.09% improvement than NCF; on the other hand, when
averaging across recommendation lengths on Movielens1M, FCPO
gets 18.65 % improvement than LIRD. These observations imply that
the proposed method does have the ability to capture dynamic user-
item interactions, which captures better user preferences resulting
in better recommendation results. Another interesting observation
is that FCPO is better than LIRD even though they use the same
state representation and similar training procedure. This may be
attributed to the trust-region-based optimization method, which
stabilizes the model learning process.
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Figure 4: Long-term performance on Movielens100K (first
column) and Movielens1M (second column). X-axis is rec-
ommendation step, y-axis is the evaluated metric (first row:
NDCG, second row: Gini, third row: Popularity Rate) on ac-
cumulated item exposure from beginning to current step.

ii) Short-term Fairness Performance: For fairness performance,
we compare three FCPOs with MF-FOE, BPR-FOE, and NCF-FOE
based on Gini Index@k and Popularity Rate@k, which are also
shown in Table 2. We can easily see that there exists a trade-off
between the recommendation performance and the fairness perfor-
mance both in FCPO and FOE, which is understandable, as most
of the long-tail items have relatively fewer user interactions. In
order to better illustrate the trade-off between FCPO and FOE, we
fix the length of the recommendation list at 20 and plot NDCG
against Negative Gini Index and Long-tail Rate in Fig. 3 for both
datasets, where the long-tail rate is equal to one minus popularity
rate. The blue line represents FCPO under three different levels of
fairness constraint. We choose Negative Gini Index and Long-tail
Rate instead of the original ones as they are the bigger, the better,
which is easier for comparison. In most cases, for the same Gini
Index, our method achieves much better NDCG; meanwhile, under

the same NDCG scores, our method achieves better fairness. In
other words, our method FCPO can achieve much better trade-off
than FOE in both individual fairness (measured by Gini Index) and
group fairness (measured by Long-tail Rate). We can see that even
with the light fairness constraint, FCPO-1 is better than traditional
baselines and the FOE-based methods on group fairness.

iii) Efficiency Performance: We compare FOE-based methods
with FCPO in terms of the single-core CPU running time to gener-
ate a recommendation list of size K = 100 for all users. The running
time between the base ranker of FOE-based methods is relatively the
same, but the additional reranking step of FOE may take substantial
time. In our observation on Movielens100K dataset, the recommen-
dation time is 90min, 6h30min, and 60h30min for reranking from
200, 400, and 800 items, respectively, while FCPO only takes around
3h and select items from the entire item set (1682 items). Our ob-
servation on Movielens1M dataset shows that FOE-based methods
take 10h30min, 43h30min, and 397h to rerank from 200, 400, and
800 items, respectively, while FCPO takes around 11h33min select-
ing in the entire item set (3706 items). As mentioned before, these
experiments are running on single-core CPU for fair comparison,
therefore, we can easily speed them up by using parallel computing.

6.4 Long-term Fairness in Recommendation

We compared FCPO with a static short-term fairness solution (i.e.,
MF-FOE) for 400 steps of recommendation. For MF-FOE, we run 4
rounds of K = 100 recommendations to let it capture the dynamics
of the item group labels, while FCPO only needs to continuously
run for 400 steps. In other words, MF-FOE keeps the same item
group labels for K item recommendations and has to retrain its
parameters after the labels updated at the end of each round. As
mentioned in section 6.2, FOE-based method becomes significantly
time-consuming when dealing with large candidate item sets. Thus,
instead of doing whole item set fairness control, we first select the
top 2K items as candidates, and then apply FOE to rerank the items
and generate the final K recommendations.

As shown in Fig. 4(c), 4(d), 4(e), and 4(f), when model conver-
gences, MF-FOE performs much worse than FCPO on both Gini
Index and Popularity Rate on two datasets. Within each round of
MF-FOE, fairness metrics quickly converges and they are further

improved only when the item exposure information is updated. On
the contrary, since FCPO makes adjustment of its policy accord-

ing to the fairness feedback, it can successfully and continuously
suppress the fairness metric to a much lower value during testing.
As shown in Fig.4(e) and Fig.4(f), due to this dynamic change of
recommendation policy, FCPO exhibits greater fluctuation and un-
stable behavior than MF-FOE. Though we kept skeptical whether
the fairness performance gap between MF-FOE and FCPO will even-
tually vanish, we do observe that MF tends to much favor popular
items than unpopular ones in Table 2. As a result, setting a very
small K (e.g. K < 20) to speed up the recommendation could re-
sult in a candidate set filled with popular items and applying FOE
becomes futile. Besides, the overall performance of MF-FOE - espe-
cially on accuracy metrics (corresponding to Fig. 4(a) and 4(b)) - is
consistently outperformed by FCPO, which indicates that MF-FOE
sacrifices the recommendation performance more than FCPO in
order to control fairness.
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CONCLUSION AND FUTURE WORK

In this work, we propose to model the long-term fairness in recom-
mendation with respect to dynamically changing group labels. We
accomplish the task by addressing the dynamic fairness problem
through a fairness-constrained reinforcement learning framework.
Experiments on standard benchmark datasets verify that our frame-
work achieves better performance in terms of recommendation ac-
curacy, short-term fairness, and long-term fairness. In the future, we
will generalize the framework to optimize individual fairness con-
straints and other recommendation scenarios such as e-commerce
recommendation and point-of-interest recommendation.
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