
Time-Series Event Prediction with Evolutionary State Graph

Wenjie Hu†∗, Yang Yang†, Ziqiang Cheng†, Carl Yang‡, Xiang Ren§
†College of Computer Science and Technology, Zhejiang University, Hangzhou, China

∗Alibaba Cloud, Alibaba Group, Hangzhou, China
‡Emory University, Atlanta, GA, USA

§University of Southern California, Los Angeles, CA, USA
∗dulin.hwj@alibaba-inc.com, †{aston2une, yangya, petecheng}@zju.edu.cn, ‡j.carlyang@emory.edu, §xiangren@usc.edu

ABSTRACT
The accurate and interpretable prediction of future events in time-
series data often requires the capturing of representative patterns
(or referred to as states) underpinning the observed data. To this
end, most existing studies focus on the representation and recogni-
tion of states, but ignore the changing transitional relations among
them. In this paper, we present evolutionary state graph, a dynamic
graph structure designed to systematically represent the evolving
relations (edges) among states (nodes) along time. We conduct anal-
ysis on the dynamic graphs constructed from the time-series data
and show that changes on the graph structures (e.g., edges con-
necting certain state nodes) can inform the occurrences of events
(i.e., time-series fluctuation). Inspired by this, we propose a novel
graph neural network model, Evolutionary State Graph Network
(EvoNet), to encode the evolutionary state graph for accurate and
interpretable time-series event prediction. Specifically, Evolutionary
State Graph Network models both the node-level (state-to-state) and
graph-level (segment-to-segment) propagation, and captures the
node-graph (state-to-segment) interactions over time. Experimental
results based on five real-world datasets show that our approach
not only achieves clear improvements compared with 11 baselines,
but also provides more insights towards explaining the results of
event predictions.

KEYWORDS
Time series prediction, evolutionary state graph, graph networks

ACM Reference Format:
Wenjie Hu†∗, Yang Yang†, Ziqiang Cheng†, Carl Yang‡, Xiang Ren§. 2021.
Time-Series Event Prediction with Evolutionary State Graph. In Proceedings
of the Fourteenth ACM International Conference on Web Search and Data
Mining (WSDM ’21), March 8–12, 2021, Virtual Event, Israel. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/XXXXXX.XXXXXX

1This work was done when the first author was studying in Zhejiang University. Cor-
responding author: Yang Yang, yangya@zju.edu.cn
2The code and data are publicly released at https://github.com/zjunet/EvoNet.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’21, March 8–12, 2021, Virtual Event, Israel
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8297-7/21/03. . . $15.00
https://doi.org/10.1145/XXXXXX.XXXXXX

1 2 3 4
States:

Evolutionary
State Graph:

Xt-1 → Xt

G(t-1)

4

1

2

3
4

1

2

3

Xt-1 Xt Xt+1

Xt → Xt+1

G(t)

… …

……

Figure 1: time-series can be segmented and recognized with several states

(e.g., 1-4). Based on this, we construct the evolutionary state graph, where

each node indicates a state and the edges represent their transitional relations

across adjacent segments. Upon this, we develop EvoNet to further capture sig-

nificant modes for effective time-series event prediction.

1 INTRODUCTION
The prediction of future events (e.g., anomalies) in time-series data
has been an important task for temporal data mining [1, 14, 31, 32].
One common approach is latent state machines. For example, HMM
[38], RNN [6] and their variants [12, 23] use series of latent represen-
tations to encode temporal data. However, such black-box encoding
does not directly capture representative patterns (or referred to as
“states") that carry physical meanings in practice, such as walk or
run in the observations from fitness-tracking devices. While these
methods sometimes can obtain strong results, they are still sensitive
to noises [41], provide poor interpretability, and are hard to debug
when things go wrong. For this reason, many recent studies focus
on discretizing time-series and finding the underlying states, with
methods such as sequence clustering [20, 45], dictionaries (e.g. SAX
[28, 41], BoP [29]) and shapelets [30, 39]. While effectively handling
noises and providing better interpretability, they only recognize
the states but ignore the potential effects of relations among them.

To jointly model the states and their relations, recent studies
have started to explore the usage of graph structures, such as GCN-
LSTM [31] and Time2Graph [10]. However, GCN-LSTM requires an
explicit graph as input (e.g., in-app action graph), which is difficult
to directly get from general time-series data. Time2Graph uses
shapelets to discover states and relations, but it only computes a
single static graph over the whole timeline, despite the fact that the

1

ar
X

iv
:1

90
5.

05
00

6v
4

 [
cs

.L
G

]
 2

5
N

ov
 2

02
0

https://doi.org/10.1145/XXXXXX.XXXXXX
https://github.com/zjunet/EvoNet
https://doi.org/10.1145/XXXXXX.XXXXXX

WSDM ’21, March 8–12, 2021, Virtual Event, Israel Hu et al.

state relations might change over time (e.g., node-level dynamics
and graph-level migration, cf. Section 3.1 for details). To the best of
our knowledge, no existing studies have successfully captured and
modeled the time-varying relations among the time-series states.

In this work, we observe that time-series are often affected by
the joint influence of different states, and in particular, the change of
relations among states. For example, in the sequential observations
from fitness-tracking devices, stopping exercise from an intense run
may cause the fainting event, while the monitoring data will look
normal if one stops exercise from jogging; from online shopping
records, a sudden interest change from electronics to cosmeticsmight
be more suspicious than a smooth one from cosmetics to fashion.

Motivated by such observations, we propose a novel framework
for time-series event prediction, by constructing and modeling a
dynamic graph structure as shown in Figure 1. Following existing
studies [10, 29, 30, 41], we model time-series based on the underly-
ing states. However, to preserve more information from the original
time-series data, we model each time-series segment as belonging
to multiple states with different recognition weights, and leverage
a directed graph to model the transitional relations among states
between adjacent segments. Since the graph evolves along the time-
series, we refer to it as an evolutionary state graph. Our empirical
observations find that: 1) time-series evolution can be translated
into different levels of graph dynamics; 2) when an event occurs, the
time-series fluctuation can be expressed as the migration of graph
structure, in particular, the dynamics of some edges connecting
certain states (Section 3.1).

Despite the insights provided by our empirical observations,
there still remains the challenge of how to quantitatively leverage
the evolutionary state graph to improve the performance of time-
series event prediction. Existing GNN models only consider a static
graph or node-level dynamics [10, 27, 31, 35], which cannot be
directly used for learning with our evolutionary state graph. In light
of this, we propose a novel GNN model, Evolutionary State Graph
Network (EvoNet), to further model the graph-level propagation
and node-graph interactions with a temporal attention mechanism.
The learned representations are then fed into an end-to-end model
for time-series event prediction (Section 3.2).

To validate the effectiveness of EvoNet, we conduct experiments
on five real-world datasets. Our experimental results demonstrate
the superiority of EvoNet over 11 state-of-the-art baselines on time-
series event prediction (Section 4.4).We further conduct comprehen-
sive ablation and hyper-parameter studies to validate the effective-
ness of our proposed method (Section 4.5). Finally, we demonstrate
the insights towards prediction explanation by visualizing EvoNet
and its evolutionary state graph (Section 4.6).

The main contributions of this work are summarized as follows:

• Through real-world data analysis, we find the time-varying rela-
tions among states important for time-series event prediction.
• We propose the evolutionary state graph to capture the dynamic
relations among states, and develop EvoNet to improve the per-
formance of event prediction based on such graphs.
• We conduct extensive experiments on five datasets to demon-
strate that our method can both make more accurate predictions,
and provide more insight towards explaining them.

2 BACKGROUND AND PROBLEM

Time-series event prediction. We consider the task of predicting
future events in a given time-series sequence, following similar
definition in previous work [1, 14, 31, 32]. Each time-series sequence
with 𝑇 chronologically paired segments can be represented as

⟨X1:𝑇 ,Y1:𝑇 ⟩ = {(X1,Y1) , (X2,Y2) , ..., (X𝑇 ,Y𝑇)} ,
where X𝑡 ∈ R𝜏×𝑑 and Y𝑡 ∈ Z denote a time-series segment [3]
and the observed event in the corresponding time (e.g., anomalies),
respectively. Each segment X𝑡 is a contiguous subsequence, i.e.,
X𝑡 = {x1, ..., x𝜏 }, where x𝑖 ∈ R𝑑 is a 𝑑-dimensional observation at
the 𝑖-th time unit; segment length 𝜏 is a hyper-parameter which
indicates certain physical meanings (e.g. 24 hours). If a time-series
sequence can be divided by 𝑇 segments of equal length 𝜏 , we then
have ⟨X1:𝑇 ,Y1:𝑇 ⟩ =

{
({x𝜏×𝑡+1, ..., x𝜏×𝑡+𝜏 },Y𝑡)0≤𝑡<𝑇

}
. In this work,

we aim to predict the future event Y𝑇+1 via discovering time-series
states behind ⟨X1:𝑇 ,Y1:𝑇 ⟩ and modeling their dynamic relations.
State. A state 𝑣 is a segment that indicates a representative pattern
in the time-series sequence, denoted as 𝚯𝑣 ∈R𝜏×𝑑 . In our study, we
adopt existing methods (e.g., Symbolic Aggregate Approximation
[28, 41], Bag of Patterns [29], Shapelets [30, 39], sequence clustering
[20, 45]) for recognizing interpretable states from time-series data
(e.g., symbolic values, shapes or clusters), which are shown to be
effective in handling noises and providing good interpretability. As
a minor but necessary contribution, we present different implemen-
tations of state recognition in the appendix (Section A.2), which
act as interchangeable data pre-processors in our framework, and
we conduct experiments in Section 4.5 to compare them.
Segment-to-state representation. Once the states have been rec-
ognized, one can then models each time-series segment X𝑡 as a
composition of states–i.e., quantify the recognition weight of each
state for a segment to characterize the segment-state associations.
Formally, given a segmentX𝑡 and a state𝚯𝑣 , the recognition weight
P(𝚯𝑣 |X𝑡) is a measurement of similarity, defined as follows.

P(𝚯𝑣 |X𝑡) =
max([D (X𝑡 ,𝚯𝑣)]𝑣∈V) − D(X𝑡 ,𝚯𝑣)

max([D (X𝑡 ,𝚯𝑣)]𝑣∈V) −min([D (X𝑡 ,𝚯𝑣)]𝑣∈V)
, (1)

where D(X𝑡 ,𝚯𝑣) can be formalized as the Euclidean Distance or
other distances based on different time-series representation and
state recognition methods. (cf. Section A.2 for details in the appen-
dix). The smaller this distance, the higher the weight P(𝚯𝑣 |X𝑡).

3 EVONET FRAMEWORK
In this section, we present a novel framework for time-series event
prediction. We name the proposed framework Evolutionary State
Graph Network (EvoNet), as it transforms the time-series into a
dynamic graph based on the states and recognition weights, and
constructs a GNN-based neural network to capture significant cor-
relations and improve the ability of event prediction.

3.1 Evolutionary State Graph
Inspired by existing models introduced in Section 2, we aim to lever-
age the underlying states for effective and interpretable modeling
of time-series. A straightforward approach is to regard a time series
as a sequence of the most likely states (for each segment in the
sequence), and then model their sequential dependencies [1, 20?].
However, one segment may not belong only to a single state; rather
it should be recognized as multiple states with different weights.

2

Time-Series Event Prediction with Evolutionary State Graph WSDM ’21, March 8–12, 2021, Virtual Event, Israel

State Recognition

(b) Evolutionary State Graph at different times(a) State Recognition in observed time series�

Ⅰ Ⅱ

ⅢⅣ

�

�

�

Flow drop

Evolutionary State Graph Construction

Ⅰ ⅠI ⅠII ⅠV

Unbalanced inflow
and outflow

Figure 2: Example of an evolutionary state graph constructed to predict network anomalies. (a)-(b) present a case in theNetFlow dataset, such that the

hourly inflow and outflow are recorded by the network monitor, while the red line indicates an anomaly occurred in this day. (a) visualizes four states recognized

by EvoNet, while (b) presents the evolutionary state graph in four different intervals (I, II, III, IV marked in (a)). Each node in the graph indicates a state, while

edge’s thickness indicates the weights of relations. The thicker the edge, the greater the weight. We can see that the evolutionary state graph can help to derive

insights to analyze time-series, such as the fact that an unbalanced inflow and outflow or flow dropwill lead to anomalies (e.g., state transitions: #2→#16, #8→#23).

(a) Graph-level statistics before and after anomaly (t)

(b) Node-level statistics before and after anomaly (t)

Abnormal Abnormal Abnormal

Abnormal Abnormal Abnormal

Figure 3: The statistics of the constructed evolutionary state graph
in Figure 2. (a)-(b) present some statistics based on the graph-level measure-

ments (e.g., betweenness [8], closeness [33], pagerank [34]) and node-level

ones (in-degree) before and after anomaly 𝑡 .

To this end, one can adopt a multiscale recurrent network (MRNN)
[36] to model a multidimensional sequence of state weights, but this
method does not highlight the transitions among the states, which
may essentially determine whether an event occurs. Therefore, in
this work we propose a novel dynamic graph structure to describe
the relations among the states and explore how the dynamic shifts
of states can reveal time-series evolution.
Evolutionary state graph. We define the evolutionary state graph
as a sequence of weighted-directed graphs ⟨G(1:𝑇) ⟩. Specifically,
each graph is formulated as G(𝑡) = {V, E (𝑡) ,M (𝑡) } to represent

the transitions from the states of segments X𝑡−1 to those of X𝑡 .
Each node in the graph indicates a state 𝑣 ; each edge 𝑒 (𝑡)(𝑣,𝑣′) ∈ E

(𝑡)

represents the transitional relation (or relation in short) from 𝑣 to
𝑣 ′, along with the transition weight 𝑚 (𝑡)(𝑣,𝑣′) ∈ M

(𝑡) . Assuming the
state weights observed for each segment to be independent, the
transition weights are computed by
𝑚
(𝑡)
(𝑣,𝑣′) = P

(
𝚯(𝑣, 𝑣′) |X(𝑡−1, 𝑡)

)
= P (𝚯𝑣 |X𝑡−1) × P (𝚯𝑣′ |X𝑡) , (2)

which is the joint weight that X𝑡−1 is recognized to the state 𝑣 ,
while X𝑡 is recognized to the state 𝑣 ′.

Compared with existing time-series representations based on
states, our evolutionary state graph preserves more information
from the original data along the timeline through the modeling
of multiple states in each segment and their changing transitional
relations. It allows the subsequent model to be more powerful and
provide richer interpretations in its predictions, while inheriting
from state-based representations the robustness towards noises.

Real-world example and analysis of evolutionary state graph.
To demonstrate how the evolutionary state graph reveals the evo-
lution of time-series and helps the prediction of events, we conduct
an observational study on the Netflow dataset (cf. Section 4.1 for de-
tails of the dataset). As we can see from the case shown in Figure 2,
when an anomaly event occurs, the state transitions (#2→#16) and
(#2→#8) are more frequent at time I; similarly, the state transitions
(#2→#8) and (#8→#23) are obvious at time II. These transitions
reveal that the unbalanced inflow and outflow (state 8 and state
16), or flow drop (state 23), will cause anomalies of network de-
vices. At time III, no anomaly occurs during this period. We can
see that states primarily stay in #2. There is then an anomaly in the
next immediate moment at time IV. Accordingly, we can see a clear
increase of the state transition #2→#16.

In light of the observations, we conduct statistic analysis related
to the constructed evolutionary state graph based on the abnormal

3

WSDM ’21, March 8–12, 2021, Virtual Event, Israel Hu et al.

(b) Node-graph interacted temporal graph propagation

Global Information

Graph-level Propagation

Node-level Propagation h(t-1) h(t) h(t+1)

U(t-1) U(t) U(t+1)

G(t-1) G(t+1)G(t)

(a) General temporal graph propagation

H(t-1) H(t) H(t+1)

Message Passing

Local Information Aggregation

EvoBlock

1 2

4

5

h(t)
1

3

h(t)
2

h(t)
3

h(t)
5

h(t)
4

H(t-1) H(t) H(t+1)

h(t-1) h(t) h(t+1)

U(t-1) U(t) U(t+1)

Yt-1 Yt+1Yt

G(t-1) G(t+1)G(t)

Local Information Aggregation

Temporal Attention

Figure 4:Overview of EvoNet.After building the evolutionary state graph on the raw time series, EvoNet conducts local information aggregation and temporal

graph propagation. For local information aggregation, each node in graph G(𝑡) has a feature vector h(𝑡)𝑣 . The solid edges indicate the passing messages, while the

dashed edges indicate the feedback ones. The graph-level patterns U(𝑡) and node-level features h(𝑡) are then propagated by the recurrent EvoBlock, based on the

aggregated intermediate representationH(𝑡) : a) The general architecture for EvoBlock on the evolutionary state graph, whereU(𝑡) is pooled from each h(𝑡)𝑣 , 𝑣 ∈ V;

b) The architecture of EvoNet, where graph-level and node-level propagation influence each other, based on the temporal attention mechanism.

samples (an anomaly occurs at time 𝑡) and normal samples (no
anomaly occurs). The distributions of the different graph-level and
node-level measurements at different times (before and after anom-
aly 𝑡) are visualized in Figure 3. From the figure, we can clearly
see that when an anomaly occurs, the abnormal graph (red bar)
tends to be denser; i.e., the betweenness scores gets lower, while the
closeness scores gets higher. Figure 3b presents three typical states
and compares their in-degree before and after anomaly 𝑡 . We can
see that the in-degrees of state 8 and 16, indicating the unbalanced
inflow and outflow, gradually increase before 𝑡 ; this illustrates that
the network gradually becomes abnormal. The in-degree of state
23 suddenly increases, indicating that the flow drop is an unex-
pected event. When no anomaly occurs, we can see that the normal
evolutionary state graph (blue lines) generally remains unchanged.

Through the example, we show how the transformation of time-
series into evolutionary state graphs allows us to capture the rela-
tions between states and their evolution. Meanwhile, we also learn
that the graph-level and node-level evolutions can reveal differ-
ent contextual information related to the time-series events: the
node-level evolution reveals the states’ skips when events occur,
while the graph-level evolution presents the time-series migration.
Intuitively, we shall capture these two levels of information simul-
taneously when learning with evolutionary state graphs.

3.2 Evolutionary State Graph Network

Overview. Motivated by Section 3.1, unlike most existing works
[1, 30, 41] which model the independent effects of each state, we
develop EvoNet to capture the following two types of information
through the leverage of our evolutionary state graph:

• Local structural influence: the same state 𝑣 will cause different
observations when 𝑣 is transmitted from different states. In other
words, the relations among states matter. For example, stopping
exercise from an intense run may cause fainting, while the moni-
toring data will look healthier if one stops exercise from jogging.

• Temporal influence: previous transitions of states will influence
the current observed data. For example, (intense run→ jogging
→ · · · → stopping exercise) and (jogging → jogging → · · · →
stopping exercise) lead to different fitness effects.

The above two types of influence can be naturally represented by
the evolutionary state graph: the local structural influence is pri-
marily determined by local-pairwise relations among nodes in each
graph, while the temporal influence is determined by how relations
evolve over different graphs. Inspired by Graph Neural Networks
(GNN) [4], we model both the structural and temporal influences
of evolutionary state graph by designing two mechanisms: local
information aggregation and temporal graph propagation.

Figure 4 illustrates the overall structure of EvoNet. Given the ob-
servations ⟨X1:𝑇 ,Y1:𝑇 ⟩, we first recognize states for each segment
X𝑡 and construct the evolutionary state graph ⟨G(1:𝑇) ⟩. Next, we
define a representation vector h(𝑡)𝑣 ∈ R |h | for each node 𝑣 in graph
G(𝑡) to encode 𝑣 ’s node-level patterns, and define a representation
vector U(𝑡) ∈R |U | for G(𝑡) to encode the graph-level information.
Based on this, EvoNet aggregates local structural information by
means of message passing, and further incorporates temporal in-
formation using the recurrent EvoBlock. EvoNet then applies the
learned representations (h,U) towards the prediction task.

Local information aggregation. In order to aggregate the local
structural information in each G(𝑡) , EvoNet aims to make two
linked nodes share similar representations. To achieve this, we let
each node representation h(𝑡)𝑣 in G(𝑡) aggregate the messages of its
neighbors, and thus compute its new representation vector. Initially,
we let h(0)𝑣 =𝚯𝑣 . Recall that𝚯𝑣 is obtained from the state recognition
on all segments, which records the time-series information of state 𝑣 .
Then, following the message-passing neural network (MPNN) [19]
directly, we have the following aggregation scheme:

H(𝑡)𝑣 =
∑︁

𝑣′∈𝑁 (𝑣)
FMP

(
h(𝑡−1)
𝑣′ , 𝑒

(𝑡)
(𝑣,𝑣′)

)
(3)

4

Time-Series Event Prediction with Evolutionary State Graph WSDM ’21, March 8–12, 2021, Virtual Event, Israel

where H(𝑡)𝑣 is the intermediate representation of node 𝑣 following
aggregation, which combines the messages from all neighbors 𝑁 (𝑣)
in the graph G(𝑡) . The message function FMP (·, ·) can be imple-
mented by many existing neural networks, such as GGNN[27]:

FMP
(
h(𝑡−1)
𝑣′ , 𝑒

(𝑡)
(𝑣,𝑣′)

)
=𝑊MP ·

[
𝑚
(𝑡)
(𝑣,𝑣′) × h

(𝑡−1)
𝑣′

]
+ 𝑏MP (4)

where𝑚 (𝑡)(𝑣,𝑣′) × h
(𝑡−1)
𝑣′ is the passing message, while𝑊MP and 𝑏MP

are the learnable parameters, indicating the passing weight and bias.
We also have other implementations for FMP, such as pooling, GCN
[15], GraphSAGE [22], GAT [42], etc. (cf. Section A.3 for details in
the appendix). Herein, we serve FMP as interchangeable modules
in EvoNet and conduct experiments in Section 4.5 to analyze the
effectiveness of different implementations.

Temporal graph propagation. In addition to aggregating the
local structural information, previous transitions also influence cur-
rent representations. Moreover, when events occur, themodes of the
graph-level and node-level evolution will change (Section 3.1). Intu-
itively, we should capture these two kinds of temporal information
simultaneously. To achieve this, we design a recurrent block, named
EvoBlock, to capture the evolving information in the evolutionary
state graph. EvoBlock combines the local aggregated representation
H(𝑡)𝑣 and the past representation

(
h(𝑡−1)𝑣 ,U(𝑡−1)

)
, formulated as

h(𝑡)𝑣 ,U(𝑡) := Frecur
(
H(𝑡)𝑣 , h(𝑡−1)𝑣 ,U(𝑡−1)

)
for 𝑣 ∈ V (5)

where Frecur indicates a recurrent function that allows us to incor-
porate information from the previous timestamp in order to update
current representations. When there are few messages from other
nodes, i.e.,𝑚 (𝑡)(𝑣′,𝑣) → 0,

(
h(𝑡)𝑣 ,U(𝑡)

)
will be more influenced by the

previous
(
h(𝑡−1)𝑣 ,U(𝑡−1)

)
. Otherwise, the messages will influence

current representations more.
As shown in Figure 4a, most existing works implement Frecur

using simple recurrent neural networks on node-level propagation
(e.g., GGSNN [27] adopts GRU [12], GCN-LSTM [31] adopts LSTM
[23], etc.). For the graph-level propagation U(𝑡) , these methods
simply pool the node-level representations, i.e., U(𝑡) =

∑
𝑣∈V h(𝑡)𝑣 .

However, in our empirical observations (Section 3.1), both the graph
and nodes in the evolutionary state graph will present different
temporal information when events occur. In order to improve the
ability of event prediction, Frecur shall consider the contextual
information of previous events Y1:𝑇 when modeling the graph-
level propagation, and then influence the node-level representations
via the node-graph interactions. Accordingly, events are generally
scattered in the timeline; thus, we propose a temporal attention
mechanism for capturing significant temporal information in node-
graph interactions. More specifically, as shown in Figure 4b, we
have

Frecur
(
H(𝑡)𝑣 ,h(𝑡−1)𝑣 ,U(𝑡−1)

)
=



h(𝑡)𝑣 =Φh
(
h(𝑡−1)𝑣 ,H(𝑡)𝑣 ⊕𝛼𝑡U(𝑡−1)

)
U(𝑡) =ΦU

(
U(𝑡−1) ,Y𝑡 ⊕𝛼𝑡

∑︁
𝑣∈V

h(𝑡)𝑣

)
𝛼𝑡 =softmax

(
𝑊𝛼

(
U(𝑡−1) ⊕

∑︁
𝑣∈V

H(𝑡)𝑣

)) (6)

where “⊕” indicates the concatenation operator. The current node-
level representation is computed using the function Φh (·, ·), based

on the past representations
(
h(𝑡−1)𝑣 ,U(𝑡−1)

)
and current aggrega-

tionsH(𝑡)𝑣 , while the current graph-level representation is computed
by ΦU (·, ·) based on the past U(𝑡−1) and current event Y𝑡 , as well as
all node representations h(𝑡)𝑣 . The attention score 𝛼𝑡 re-weights the
node-graph interaction of the 𝑡-th temporal step, which is computed
based on the concatenated patterns of U(𝑡−1) and all aggregations∑

𝑣∈V H(𝑡)𝑣 , under the learnable weight𝑊𝛼 . We use the softmax
function to normalize 𝛼𝑡 during different time steps.

Recurrent function Φ∗ (·, ·) smooths the two inputted vectors of
each temporal step, and can be implemented using many existing
approaches. Herein, we provide an example of Φh (·, ·) implemented
by LSTM. Formally, we have

Φh
(
h(𝑡−1)𝑣 ,H(𝑡)𝑣 ⊕ 𝛼𝑡U(𝑡−1)

)
=

𝜾 (𝑡) =H(𝑡)𝑣 ⊕𝛼𝑡U(𝑡−1)

F(𝑡) =𝜎 (𝑊F · [h(𝑡−1)𝑣 ,𝜾 (𝑡)]+𝑏F) I(𝑡) =𝜎 (𝑊I · [h(𝑡−1)𝑣 ,𝜾 (𝑡)]+𝑏I)

C(𝑡) =F(𝑡) ◦C(𝑡−1) +I(𝑡) ◦𝑡𝑎𝑛ℎ (𝑊C · [h(𝑡−1)𝑣 ,𝜾 (𝑡)]+𝑏C)

O(𝑡) =𝜎 (𝑊O · [h(𝑡−1)𝑣 ,𝜾 (𝑡)]+𝑏O) h(𝑡)𝑣 =O(𝑡) ◦𝑡𝑎𝑛ℎ (C(𝑡))

(7)

where F(𝑡) , I(𝑡) and O(𝑡) are forget gate, input gate and output
gate respectively, while 𝜎 is a sigmoid activation function. The
current node vectors are updated by receiving their own previous
memory and current memory. In our experiments, we compare the
performance of different methods for EvoBlock (Table 2).
End-to-EndModel Learning. Thus, the representations h(𝑡)𝑣 and
U(𝑡) capture both the node-level and graph-level information re-
spectively until the 𝑡-th temporal step, which can then be applied
to predict the next event Y𝑡+1. More specifically, we encode the cur-
rent evolutionary state graph G(𝑡) into representation h(𝑡)G based
on the concatenated features of all h(𝑡)𝑣 and U(𝑡) , which can be
formulated as

h(𝑡)G = Ffc

(
U(𝑡) ⊕

∑︁
𝑣∈V

h(𝑡)𝑣

)
(8)

where Ffc acts as a fully connected layer. We then learn a classifier,
such as a neural network or XGBoost [9], which takes h(𝑡)G as input
and estimates the probability of the next event, P

(
Y𝑡+1 | h(𝑡)G

)
. To

learn the parameters 𝜃 of the proposed EvoNet and classifier, we
employ an end-to-end framework, based on the Adam optimization
algorithm [26] to minimize the cross-entropy loss L as follows:

L = −
∑︁

Ŷ𝑡+1 log P
(
Y𝑡+1 |h(𝑡)G

)
+ (1−Ŷ𝑡+1) log

(
1−P

(
Y𝑡+1 |h(𝑡)G

))
(9)

where Ŷ𝑡+1 ∈ {0, 1} is the ground truth that indicating whether
a future event will occur. The procedure of state recognition and
graph propagation are carried out step by step: we first recognize
the states and construct an evolutionary state graph, then conduct
the evolutionary state graph propagation to model the time-series.
|V|-node graphs are constructed in 𝑇 segments, such that the time
complexity of each iteration is 𝑂 (𝑇 × |V|2).

4 EXPERIMENTS
We apply our method to the prediction of upcoming events in
time-series data, and aim to answer the following three questions:
• Q1:How does EvoNet perform on the time-series prediction task,
compared with other baselines from the state-of-the-art?

5

WSDM ’21, March 8–12, 2021, Virtual Event, Israel Hu et al.

• Q2: How does the proposed EvoBlock effectively bridge the
graph-level and node-level information over time?
• Q3: How do different configurations, e.g., state number, segmen-
tation length, implementation of state recognition and message
passing, influence the performance?

4.1 Datasets
We employ five real-world datasets to conduct our experiments, in-
cluding two public ones (DJIA30 andWebTraffic) from Kaggle1, and
another three (NetFlow, ClockErr and AbServe) provided by China
Telecom2, State Grid3 and Alibaba Cloud4, respectively. Table 1
presents the overall dataset statistics.
DJIA 30 Stock Time Series (DJIA30). This dataset comes from
Kaggle. It contains around 15K daily readings, each of which records
four observations on a trading day: three kinds of trade price and
a trade number. The task is to predict abnormal price volatility
(variance greater than 1.0) in the next week (five trading days)
based on the most recent records from the past year (50 weeks). In
total, we identify around 12K normal cases and 3K abnormal ones.
WebTrafficTime Series Forecasting (WebTraffic). This dataset
comes from Kaggle. It contains around 3M daily readings, each of
which records the number of views for a specific Wikipedia article.
The task is to predict whether there will be a rapid growth (curve
slope greater than 1.0) in the next month (30 days) based on the
most recent records from the past 12 months. In total, we identify
around 900K positive cases (rapid growth) and 2M negative ones.
Information Networks Supervision (NetFlow). This dataset is
provided byChina Telecom. It consists around 238K hourly readings,
each of which records the hourly in- and out-flow of network
devices. When an abnormal flow goes through the device ports, an
alarm will be recorded. Our goal is to predict future anomalies (next
day) based on records from the past 15 days. In total, we identify
around 200K normal cases and 20K abnormal ones.
Watt-hour Meter Clock Error (ClockErr). This dataset is pro-
vided by the State Grid of China. It consists of around 6M weekly
readings, each of which records the deviation time and delay of
watt-hour meters. When the deviation time exceeds 120, the meter
is marked as abnormal. Our goal is to predict anomalies in the
next month based on records from the past 12 months. In total, we
identify around 5M normal cases and 1M abnormal ones.
Abnormal Server Response (AbServe). This dataset is provided
by Alibaba Cloud. It consists of around 12K server monitoring series,
each of which records the minutely readings of different metrics
(e.g., CPU, disk, memory, etc.). When a server fails to respond, the
log will record the anomaly. Our goal is to predict anomalies in
next 5 minutes based on records from the previous one hour. In
total, we identify 11.8K normal cases and 0.2K abnormal ones.

4.2 Baseline Methods
We compare our proposed EvoNet with several groups of baselines:

1An online community of data scientists and machine learners.
2A major mobile service provider in China.
3A major electric power company in China.
4The largest cloud service provider in Asia.

Table 1: Dataset statistics

Dataset DJIA30 WebTraffic NetFlow ClockErr AbServe
#(samples) 15,540 2,992,184 238,000 6,879,834 12,224
positive ratio(%) 19.5 28.2 8.6 14.9 1.5

Feature-basedmodels. Several popular feature-based algorithms
have been proposed for time-series analysis. In this paper, we
choose some typical algorithms to compare with our model: Bag
of Patterns (BoP) [29], Vector Space Model using SAX (SAX-VSM)
[41] and Fast Shapelet (FS) [39]. These methods capture different
state representations, which serve as features for event predictions.
Sequentialmodels. Another typical group of algorithms interpret
the time-series as a new sequence of states, and model their sequen-
tial dependencies. In this paper, we use several famous frameworks
as baselines: switching-time-series model (S-HMM) [1] models the
Markov dependencies of state sequences; multiscale recurrent neu-
ral network (MRNN) [36] takes the concatenated multi-source se-
quences (X𝑡 ⊕ Y𝑡) as input and learns one latent representation
for prediction; hierarchical recurrent neural network (HRNN) [11]
captures more correlations between X𝑡 and Y𝑡 , which conducts the
same mechanism as Evoblock.
Graph-based models. Recently, many GNN-based works are pro-
posed to model the (dynamic) graphs. In this paper, we choose
several state-of-the-art algorithms as baselines to model the evo-
lutionary state graph, and conduct the same approaches for event
prediction as EvoNet: gated graph neural network (GGSNN)[27]
initializes the node vector h(0) using a one-hot vector of the corre-
sponding state; it conducts GGNN[27] for local message passing
and only adopts a GRU structure[12] for node-level propagation.
GCN-LSTM[31] uses states’ patterns 𝚯 to initialize the node vector
h(0) ; it conducts GCN[15] for local message passing and LSTM
structure[23] for node-level propagation. EvolveGCN [35] is a dy-
namic graph neural network that builds a multi-layer framework
to combine RNN and GCN; it also focuses on node-level propaga-
tion. ST-MGCN [18] is a spatiotemporal multi-graph convolution
network, in which Y𝑡 serve as contextual information for propa-
gation. It directly fuses the contextual information into node-level
representations rather than learning graph-level representations
and modeling the node-graph interactions. Time2Graph[10] adopts
shapelet to extract states; it aggregates the graphs at different times
as a static graph and conduct DeepWalk[37] to learn graph’s repre-
sentations, which then serve as features for event predictions.
EvoNet variants. We also compare EvoNet with its derivatives by
modifying some key components to see how they fare: 1) we sample
the most possible state sequence (i.e., each segment is recognized
with highest state weight) for each time-series, and directly use
LSTM to model the new sequence without building and modeling
the evolutionary state graph, denoted as EvoNet w/o G; 2) we build
evolutionary state graph for time-series but model it without con-
ducting temporal attention mechanism, denoted as EvoNet w/o A; 3)
we conduct complete EvoNet for time-series modeling, denotes as
EvoNet. Herein, EvoNet uses the state patterns 𝚯 to initialize node
vector h(0) and conducts graph-level and node-level propagation
for ⟨G(1:𝑇) ⟩. We implement state recognition and local message

6

Time-Series Event Prediction with Evolutionary State Graph WSDM ’21, March 8–12, 2021, Virtual Event, Israel

Table 2: Comparison of prediction performance on five real-world datasets (%). The bold text indicates the best performance among all methods, while

the underline text indicates the second-best performance.

Models
Datasets DJIA30 WebTraffic NetFlow ClockErr AbServe

F1-score AUC F1-score AUC F1-score AUC F1-score AUC F1-score AUC

Feature-
based
models

BoP [29] 24.92±0.40 50.92±0.19 44.31±0.33 66.87±0.09 54.01±0.89 81.36±0.45 60.01±0.49 85.20±0.38 42.59±0.60 70.22±0.37
FS [39] 24.38±0.97 50.55±0.42 43.89±0.76 66.96±0.23 52.84±1.63 79.21±0.69 58.34±0.83 84.32±0.71 46.95±0.91 72.04±0.56
SAX-VSM [41] 26.06±0.45 51.42±0.20 44.66±0.49 67.63±0.15 61.11±1.44 83.95±0.71 62.44±0.65 85.97±0.64 47.98±0.75 73.88±0.49

Sequential
models

S-HMM [1] 25.20 ±0.48 51.14±0.20 43.09±0.41 66.54±0.12 58.05±0.87 81.89±0.49 59.55±0.60 84.99±0.61 48.71±0.60 73.65±0.38
MRNN [36] 21.20±0.42 49.39±0.19 44.43±0.57 67.51±0.17 69.15±0.93 85.11±0.49 60.95±0.87 85.06±0.76 47.08±0.69 72.21±0.46
HRNN [11] 26.43±0.87 52.66±0.29 45.79±0.82 68.27±0.26 72.42±1.25 91.19±0.57 61.14±1.19 85.38±0.83 50.93±0.78 78.13±0.51

Graphical
models

GGSNN [27] 23.72±0.91 51.56±0.31 43.30±1.25 67.14±0.38 72.92±1.54 90.38±0.68 64.96±1.13 86.81±0.84 48.79±0.83 74.08±0.50
GCN-LSTM [31] 25.76±0.85 52.66±0.30 45.67±0.90 68.15±0.29 75.05±1.38 91.43±0.60 65.65±1.04 87.03±0.78 50.95±0.80 78.14±0.50
EvolveGCN [35] 26.16±1.24 53.01±0.55 45.90±1.58 68.38±0.41 75.21±2.47 91.56±1.08 65.82±1.92 87.17±1.29 50.63±1.37 78.01±0.98
ST-MGCN [18] 26.93±0.97 53.39±0.39 45.96±0.91 68.74±0.27 77.79±1.40 91.95±0.64 66.61±1.11 87.78±0.83 51.21±0.85 78.33±0.52
Time2Graph [10] 26.50±0.91 53.28±0.39 46.03±1.12 68.74±0.43 76.94±1.83 91.61±0.64 67.01±1.46 88.00±1.23 50.50±1.02 77.87±0.98

Our models
EvoNet w/o G 25.81±0.80 52.67±0.33 45.66±0.85 68.45±0.38 74.92±1.42 91.40±0.63 65.71±0.99 87.10±0.80 50.89±0.80 78.10±0.50
EvoNet w/o A 29.11±0.83 54.47±0.37 45.95±0.91 68.55±0.25 79.37±1.43 92.45±0.66 69.21±1.17 89.92±0.80 51.20±0.81 78.10±0.50
EvoNet 30.47±0.93 55.07±0.39 47.02±0.95 69.03±0.27 80.25±1.43 92.67±0.65 68.62±1.21 89.76±0.82 53.44±0.87 79.97±0.52

passing using Kmeans [25] and GGNN [27] respectively. We will
study how different implementations influence the performance
later in Section 4.5.

4.3 Implementation details
We conduct experiments on the five real-world datasets.We split the
train/test set by 0.8 at the time line, such that preceding segments
are used for training and the following ones are used for testing.
We also split 10% samples from train set as validation set in order
to avoid overfitting. We run all experiments on a single GPU with
a batch size of 1000, and train our models for 100 iterations in total,
starting with a learning rate of 0.001 and reducing it by a factor of
10 at every 20 iterations. Due to limit space, the hyperparameter
settings of different methods are presented in the appendix (cf.
Section A.4 for details in the appendix).

4.4 Performance Comparison
We compare the performance of EvoNet and other baselines in
order to answer Q1, and also conduct ablation studies to answer
Q2. For the binary event prediction tasks, we use F1 score and AUC
as our evaluation metrics, due to the unbalanced positive ratio. All
reports are the average results of five times repeated experiments,
along with their standard deviations (see details in Table 2).
1. Feature-based models vs. others. We observe that all feature-
based methods perform poorly, because they only capture the states
as features but ignore the influence of relations. FS is unstable
relatively and SAX-VSM outperforms another two methods. We
note that other models capture the relations and outperform feature-
based ones, demonstrating the significance of relation modeling.
2. Sequential models vs. graphical models. We compare the
sequential models with graphical models in order to present the
effectiveness of different methodologies for relation modeling. Most
graph networks outperform MRNN and S-HMM, illustrating that

modeling the dynamic relations of states is more significant com-
pared to modeling their sequential dependencies. HRNN effectively
improves the performance and even beats some graph neural mod-
els on the DJIA30 datasets, which suggest that we should try to
capture the multi-level correlations in the temporal modeling.
3. Effectiveness of temporal modeling. For the temporal mod-
eling on the evolutionary state graph, different graph neural models
adopt different mechanisms. Due to the monotonous information
expression of one-hot annotations, GGSNN is not as good as the
latter methods. Accordingly, GCN-LSTM utilizes more state infor-
mation and performs better. EvolveGCN, which builds multi-layer
deep networks to combine RNN and GCN, is unstable. Time2Graph
models the aggregated static graph and ignores the temporal depen-
dencies, which dose not outperform ST-MGCN and our models. As
we expect, our proposed EvoNet model conducts the node-graph
interaction during the temporal graph propagation, making it more
suitable for the temporal modeling of the evolutionary state graph.
4. Ablation study on propagation mechanism. As shown in
Table 2 (Our models), we attempt to validate the effectiveness of the
proposed EvoBlock. We can see that, due to simple modeling on
state sequence, EvoNet w/o G performs poorly. When we build and
model the evolutionary state graph for time-series (EvoNet w/o A),
the performances are improved with the information of node-graph
interaction. The temporal attention mechanism can capture the
significant correlations during the temporal propagation, meaning
that it outperforms other implementations as expected (EvoNet).
We present several cases in Section 4.6 to support this conclusion.

4.5 Parameter Analysis
We examine the sensitivities of four important parameters to an-
swer Q3: state number |V|, segment length 𝜏 , implementation of
message passing and state recognition. Due to space limitations,
we present the results based on only three datasets in Figure 5.
We test |V| with values from 5 to 100 with interval 10, and test 𝜏

7

WSDM ’21, March 8–12, 2021, Virtual Event, Israel Hu et al.

(a) The number of state (b) The length of segment

(c) Message passing implementation (d) State recognition implementation

Figure 5: The impact of the different parameters. (a)-(d) present com-

parisons of state number |V |, segment length 𝜏 , implementation of message

passing and state recognition, respectively, over three datasets (WebTraffic,

NetFlow and AbServe) in Section 4.1.

with different lengths that are smaller or greater than the period
length of the event. We compare the pooling method, GAT [42],
GraphSAGE [22], GCN [15] and GGNN [27] for message passing, as
well as SAX word [41], Shapelets [30], Kmeans [25] and GMM [7]
for state recognition. The F1-score is used as a metric to compare
these parameters across the datasets.
1. Sensitivities of state number |V|. As shown in Figure 5a,
prediction performance curves differ depending on the dataset,
illustrating that the state number |V| is sensitive to the data owns
patterns. Moreover, the performance is not bound to improve as
|V| increases, suggesting that |V| is an empirically determined
parameter and is unsuitable for large values.
2. Sensitivities of segment length 𝜏 . Another sensitive parame-
ter is the segment length 𝜏 , the variation of which may change the
temporal scale of event Y𝑡 , and thus the positive ratio of ground
truth. We can see the performances in Figure 5b do not vary sig-
nificantly, meaning that it can be an empirical parameter that is
generally determined by the realistic demand (e.g. an acceptable
temporal scale of anomaly detection, etc.)
3. Implementation of message passing. Figure 5c presents the
comparisons for different implementations of message passing. We
can observe that GAT and GraphSAGE perform poorly and are
unstable due to their full attention or sampling operation, which is
unsuitable for the small-scale graph. The performances of GGNN
and GCN are similar, and both outperform the pooling method.
4. Implementation of state recognition. As shown in Figure 5d,
we test different implementations of state recognition, and further
compare them with some feature-based baselines (i.e., SAX-VSM
[41] and Fast Shapelets [39]). We can see that EvoNet can clearly im-
prove the performance of SAX-VSM and Fast Shapelets when mod-
els the relations. Moreover, the implementations of cluster methods
and shapelet outperform the SAX word; this is because each SAX

(a) Raw time series�

(b) Temporal attention score�

(c) Evolutionary state graphs in different intervals (d) Aggregation of all graphs in the timeline

(e) Visualization of several recognized states�

I ⅠI

Ⅰ ⅠI

ŏ

0.2 0.4 0.6 0.8

2 4 0 3 5

C
PU

 U
til

iz
at

io
n

Figure 6: A case of EvoNet conducted for anomaly analysis of cloud
service. (a) visualizes the raw time-series of CPU utilization. The red lines

indicates anomaly events during different intervals (𝜏 = 5). We set 10 states

for constructing evolutionary state graph and conducting EvoNet. Heat map

in (b) presents the attention score 𝛼𝑡 of EvoNet at different temporal steps.

(c)-(d) visualize the evolutionary state graph in two different intervals (I, II

marked in (a)) and the aggregated graph in the whole timeline, respectively.

(e) presents the raw segments corresponding to the five different states.

word is simply a symbolic value representing state, while other rep-
resentations are a vector describing state patterns, which provide
more information for modeling the evolutionary state graph.

4.6 Case Studies
In this section, we apply our EvoNet method to a real-world anom-
aly prediction scenario in Alibaba Cloud5, enabling us to demon-
strate how this method can be used to find meaningful relational
clues to explain its results. As described in Section 4.1, the minutely
time-series of server monitor are segmented by the interval 𝜏 = 5
(empirical length). In order to present clearly, we cluster 10 states
for constructing evolutionary state graph and conduct EvoNet for
anomaly prediction.We visualize the results including several states
and the evolutionary state graph at different times. The temporal
attention scores learned by EvoNet are also visualized to validate
its effectiveness. All results are presented in Figure 6.
1. Effectiveness of temporal attentionmechanism. As shown
in Figure 6(a)-(b), we adopt heat map to visualize the attention
scores 𝛼𝑡 learned by Eq 6 at different times. We can see that the
attention scores successfully highlight the positions of anomalies in
(a) (i.e., the positions near 13:00 and 20:00), which demonstrate that
the temporal attention mechanism is useful for EvoNet to capture
significant temporal information.
5Our method has been deployed by SLS, Alibaba Cloud, the largest log service provider
in China, acting as a common function.

8

https://www.aliyun.com/product/sls

Time-Series Event Prediction with Evolutionary State Graph WSDM ’21, March 8–12, 2021, Virtual Event, Israel

2. Interpretability of evolutionary state graph. We then ex-
plore how an evolutionary state graph can be used to find meaning-
ful insights that can explain anomaly event. As shown in Figure 6(a),
we mark two intervals, I and II, to visualize evolutionary state graph
and explore some meaningful insights. The results are shown in Fig-
ure 6(c)-(d). We can see that there is a major transition #2→#4→#0
(i.e., thick edges) in the graph of I, while #3→#5 is a major tran-
sition in the graph of II. Note that there is an anomaly occurring
immediately after interval II. When we aggregate all evolutionary
state graphs in the timeline (Figure 6(d)), we can find that the tran-
sition #2→#4→#0 is the major path in the graph, while #3→#5 is
a rare path (i.e., thin edges). These observations indicate that the
transition #3→#5 occurred in interval II is abnormal, which is con-
sistent with the anomaly of cloud service. As shown in Figure 6(e),
we present the average curve of segments with different states.
We can see that the transition #2→#4→#0 indicates a process of
service, i.e., CPU utilization rises from 0.25 to 0.75 and drops after
maintaining a period. On the contrary, transition #3→#5 indicates
that CPU utilization rises to 0.5 and then drops immediately. These
observations demonstrate that this anomaly may be caused by the
CPU’s fault.

5 RELATEDWORK

time-series modeling. time-series modeling aims to capture the
representative patterns underpinning observed data. One impor-
tant trend here is sequential modeling, such as HMM [38], RNN
[6] and their variants [12, 23, 24, 45] and fitting auto-regressive
models [2]. They define one latent representation to capture all
the patterns by modeling the sequential dependencies, rather than
distinguishing different states. Another trend is mining discretized
sequential patterns, such as switch time-series models [1] and dic-
tionaries [28, 29, 41]. They model the time-series by capturing
different states of segments independently, but ignore the influ-
ence from their relations. Recently, some works use hierarchical
or attention connections to incorporate the above two technique
and get good performance [11, 43]. However, most of them only
capture the patterns of states, ignoring their relations. Some works
have applied graph structure into the relation modeling of time-
series states [10, 20, 31], which aims to represent different segments,
rather than capturing the dynamics. To the best of our knowledge,
no existing studies have successfully modeled the time-varying
relations among states.
Graph neural networks. Models in the graph family [4, 15, 16, 22,
27, 42, 46] have been applied to many real-world scenarios, includ-
ing learning the dynamics of physical systems [5, 40], predicting the
chemical properties of molecules [17], predicting traffic on roads
[18] and reasoning about knowledge graphs [21], etc.. These studies
present the effectiveness of GNNs for modeling structural infor-
mation. Some works focus on summarizing models and refining
formal expressions. The message-passing neural network (MPNN)
unified various graph convolutional network and graph neural
network approaches by analogy to message-passing in graphical
models [19]. The non-local neural network (NLNN) has a similar
vein, which unified various “self-attention”-style approaches by
analogy to methods from graphical models and computer vision
for capturing long range dependencies in signals [44]. Recently,

some works have attempted to model dynamic graphs using GNNs
[18, 31, 35], although they focus primarily on the explicit graphical
structure. To the best of our knowledge, no existing studies have
successfully modeled dynamic relations in non-graphical data, such
as time-series.

6 CONCLUSIONS
In this paper, we study the problem of how relations among states
reflect the evolution of temporal data. We propose a novel represen-
tation, the evolutionary state graph, to present the time-varying re-
lations among time-series states. In order to capture these effective
patterns for downstream tasks, we further propose a GNN-based
model, EvoNet, to conduct dynamic graph modeling. As for the vali-
dation of EvoNet’s effectiveness, we conduct extensive experiments
on five real-world datasets. Experimental results demonstrate that
our model clearly outperforms 11 state-of-the-art benchmark meth-
ods. Based on this, we can find some meaningful relations among
the states that allow us to understand temporal data.
Acknowledgments. Yang Yang’s work is supported by NSFC (61702447),
the National Key Research and Development Project of China (No. 2018AAA
0101900), the Fundamental Research Funds for the Central Universities,
and research funding from the State Grid Corporation of China. Xiang
Ren’s work is supported by the DARPA MCS program under Contract No.
N660011924033 with the United States Office Of Naval Research and NSF
SMA 18-29268. Wenjie Hu’s work is supported by Alibaba Group.

REFERENCES
[1] Pierre Ailliot and Valerie Monbet. 2012. Markov-switching autoregressive models

for wind time series. Environmental Modelling and Software 30 (2012), 92–101.
[2] Anthony Bagnall and Gareth Janacek. 2014. A Run Length Transformation for

Discriminating Between Auto Regressive Time Series. Journal of Classification
(2014), 154–178.

[3] Anthony J Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn J
Keogh. 2017. The great time series classification bake off: a review and experi-
mental evaluation of recent algorithmic advances. DMKD 31, 3 (2017), 606–660.

[4] Peter Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchezgonzalez, Vini-
cius Flores Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, et al. 2018. Relational inductive biases, deep
learning, and graph networks. arXiv: Learning (2018).

[5] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and
Koray Kavukcuoglu. 2016. Interaction networks for learning about objects,
relations and physics. NeurIPS (2016), 4509–4517.

[6] Yoshua Bengio, Patrice Y Simard, and Paolo Frasconi. 1994. Learning long-term
dependencies with gradient descent is difficult. TNNLS 5, 2 (1994), 157–166.

[7] Philippe Loic Marie Bouttefroy, Abdesselam Bouzerdoum, Son Lam Phung, and
Azeddine Beghdadi. 2010. On the analysis of background subtraction techniques
using Gaussian Mixture Models. ICASSP (2010), 4042–4045.

[8] Ulrik Brandes. 2001. A Faster Algorithm for Betweenness Centrality. Mathemati-
cal Sociology 25, 2 (2001), 163–177.

[9] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. SIGKDD (2016), 785–794.

[10] Ziqiang Cheng, Yang Yang, Wei Wang, Wenjie Hu, Yueting Zhuang, and Guo-
jie Song. 2020. Time2Graph: Revisiting Time Series Modeling with Dynamic
Shapelets. AAAI (2020), 3617–3624.

[11] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. 2017. Hierarchical Multiscale
Recurrent Neural Networks. ICLR (2017).

[12] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2015.
Gated Feedback Recurrent Neural Networks. ICML (2015), 2067–2075.

[13] Michael Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. NeurIPS
(2016), 3844–3852.

[14] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomezro-
driguez, and Le Song. 2016. Recurrent Marked Temporal Point Processes: Em-
bedding Event History to Vector. SIGKDD (2016), 1555–1564.

[15] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional
networks on graphs for learning molecular fingerprints. In NeurIPS. 2224–2232.

9

WSDM ’21, March 8–12, 2021, Virtual Event, Israel Hu et al.

[16] Rui Feng, Yang Yang, Wenjie Hu, Fei Wu, and Yueting Zhuang. 2018. Representa-
tion Learning for Scale-free Networks. AAAI (2018), 282–289.

[17] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein interface
prediction using graph convolutional networks. In NeurIPS. 6530–6539.

[18] Xu Geng, Yaguang Li, Leye Wang, Lingyu Zhang, Jieping Ye, Yan Liu, and Qiang
Yang. 2019. Spatiotemporal Multi-Graph Convolution Network for Ride-hailing
Demand Forecasting. AAAI 33 (2019), 3656–3663.

[19] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural Message Passing for Quantum Chemistry. ICML (2017),
1263–1272.

[20] David Hallac, Sagar Vare, Stephen P Boyd, and Jure Leskovec. 2017. Toeplitz
Inverse Covariance-Based Clustering of Multivariate Time Series Data. SIGKDD
(2017), 215–223.

[21] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. 2017.
Knowledge Transfer for Out-of-Knowledge-Base Entities : A Graph Neural Net-
work Approach. IJCAI (2017), 1802–1808.

[22] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. NeurIPS (2017).

[23] Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation (1997), 1735–1780.

[24] Wenjie Hu, Yang Yang, Jianbo Wang, Xuanwen Huang, and Ziqiang Cheng. 2020.
Understanding Electricity-Theft Behavior via Multi-Source Data. WWW (2020),
2264–2274.

[25] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth
Silverman, and Angela Y Wu. 2002. An efficient k-means clustering algorithm:
analysis and implementation. TPAMI 24, 7 (2002), 881–892.

[26] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. ICLR (2015).

[27] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S Zemel. 2016. Gated
Graph Sequence Neural Networks. ICLR (2016).

[28] Jessica Lin, Eamonn J Keogh, Li Wei, and Stefano Lonardi. 2007. Experiencing
SAX: a novel symbolic representation of time series. DMKD 15, 2 (2007), 107–144.

[29] Jessica Lin, Rohan Khade, and Yuan Li. 2012. Rotation-invariant similarity in
time series using bag-of-patterns representation. IJIIS (2012), 287–315.

[30] Jason Lines, Luke M Davis, Jon Hills, and Anthony Bagnall. 2012. A shapelet
transform for time series classification. In SIGKDD. ACM, 289–297.

[31] Yozen Liu, Xiaolin Shi, Lucas Pierce, and Xiang Ren. 2019. Characterizing
and Forecasting User Engagement with In-app Action Graph: A Case Study

of Snapchat. SIGKDD (2019), 2023–2031.
[32] Yue Ning, Sathappan Muthiah, Huzefa Rangwala, and Naren Ramakrishnan. 2016.

Modeling Precursors for Event Forecasting via Nested Multi-Instance Learning.
SIGKDD (2016), 1095–1104.

[33] Tore Opsahl, Filip Agneessens, and John Skvoretz. 2010. Node centrality in
weighted networks: Generalizing degree and shortest paths. Social Networks 32,
3 (2010), 245–251.

[34] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking: Bringing Order to the Web. WWW (1999), 161–172.

[35] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, and Charles E Leisersen. 2020. EvolveGCN: Evolving
Graph Convolutional Networks for Dynamic Graphs. AAAI (2020).

[36] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of
training recurrent neural networks. ICML (2013), 1310–1318.

[37] Bryan Perozzi, Rami Alrfou, and Steven Skiena. 2014. DeepWalk: online learning
of social representations. SIGKDD (2014), 701–710.

[38] L R Rabiner and Biinghwang Juang. 1986. An introduction to hidden Markov
models. IEEE Assp Magazine 3, 1 (1986), 4–16.

[39] Thanawin Rakthanmanon and Eamonn Keogh. 2013. Fast shapelets: A scalable
algorithm for discovering time series shapelets. ICDM (2013), 668–676.

[40] Alvaro Sanchez, Nicolas Heess, Jost Tobias Springenberg, JoshMerel, Raia Hadsell,
Martin A Riedmiller, and Peter Battaglia. 2018. Graph Networks as Learnable
Physics Engines for Inference and Control. ICML (2018), 4467–4476.

[41] Pavel Senin and Sergey Malinchik. 2013. SAX-VSM: Interpretable Time Series
Classification Using SAX and Vector Space Model. ICDM (2013), 1175–1180.

[42] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. ICLR (2018).

[43] Jingyuan Wang, Ze Wang, Jianfeng Li, and Junjie Wu. 2018. Multilevel Wavelet
Decomposition Network for Interpretable Time Series Analysis. SIGKDD (2018),
2437–2446.

[44] Xiaolong Wang, Ross B Girshick, Abhinav Gupta, and Kaiming He. 2018. Non-
Local Neural Networks. CVPR (2018).

[45] Yun Yang and Jianmin Jiang. 2014. HMM-based hybrid meta-clustering ensemble
for temporal data. KBS (2014), 299–310.

[46] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic
Network Embedding byModeling Triadic Closure Process. AAAI (2018), 571–578.

10

Time-Series Event Prediction with Evolutionary State Graph WSDM ’21, March 8–12, 2021, Virtual Event, Israel

A APPENDIX
A.1 Algorithm Details
In order to outline our proposed model in detail, we present the
complete pseudo code of EvoNet to illustrate the learning procedure.
Given the observations ⟨X1:𝑇 ,Y1:𝑇 ⟩ and parameters (|V|, 𝜏, Fstate,
FMP), EvoNet first captures different states by means of the recogni-
tion function Fstate. It then constructs the evolutionary state graph
⟨G(1:𝑇) ⟩ and conducts graph propagation by means of the message
function FMP and EvoBlock. Finally, the learned representations
are fed into an output model for prediction tasks; we use a back-
propagation learning algorithm with cross-entropy loss to train the
entire networks. More details can be found in Algorithm 1.

Algorithm 1 The learning procedure of EvoNet
Input: Observations ⟨X1:𝑇 ,Y1:𝑇 ⟩, parameters (|V|, 𝜏, Fstate, FMP)
Output: Model parameters 𝜃 , event prediction Y′

1: Fstate ← (X1:𝑇 , |V|), train state recognition model
2: for each segment X𝑡 ∈ X1:𝑇 do
3: {P(𝚯𝑣 |X𝑡) ← Fstate (X𝑡 ,𝚯𝑣)}𝑣∈V , get the recognized

weights of states as Eq 1
4: G(𝑡) ← construct the evolutionary state graph as Eq 2
5: end for
6:
7: U(0) ← 0 initialize the graph-level representation
8: for 𝑣 ∈ V do
9: h(0)𝑣 ←𝚯𝑣 , initialize the node-level representation of state 𝑣
10: end for
11: while the parameters of EvoNet have not converged do
12: take 𝑁 samples of

{
⟨X1:𝑇 ,Y1:𝑇 ⟩, ⟨G(1:𝑇) ⟩

}
as a batch

13: for each X𝑡 ∈ X1:𝑇 , Y𝑡 ∈ Y1:𝑇 , G(𝑡) ∈ G(1:𝑇) do
14:

{
H(𝑡)𝑣

}
𝑣∈V

← FMP
(
G(𝑡) ,

{
h(𝑡−1)𝑣

}
𝑣∈V

)
, conduct mes-

sage passing as Eq 4
15: 𝛼𝑡 ← compute attention score as Eq 6.3
16:

{
h(𝑡)𝑣

}
𝑣∈V

← node-level propagation as Eq 6.1

17: U(𝑡) ← graph-level propagation as Eq 6.2
18: h𝑡G ← compute current feature embedding as Eq 8
19: P

(
Y′
𝑡+1 |h

𝑡
G

)
← estimate the probabilities of the next

event
20: end for
21: 𝜃 ← ∇𝜃

[1
𝑁

∑𝑁
𝑛=1 (L)

]
, back-propagate the loss and train

the whole EvoNet as Eq 9
22: end while

A.2 Implementation of State Recognition
In this section, we present several implementations for state recog-
nition, including sequence clustering [20], SAX words [28] and
Shapelets [30], which have been proven to be competitive for cap-
turing the representative patterns (or states), in previous works.
Sequence Clustering. Cluster methods allow us to find the re-
peated patterns in time-series segments, which can reduce the
dimension and allow us to derive insights capable of explaining

time-series evolution [1, 20?]. Herein, we take Kmeans[25] as ex-
ample; the aim here is to partition the 𝑛 segments X𝑡 into |V| sets
𝛀 = {𝛀1, ...,𝛀 |V |}, so as to minimize the within-cluster sum of
squares, i.e., variance. Formally, the objective is to find:

argmin
𝛀

∑︁
𝑣∈V

∑︁
X𝑡 ∈𝛀𝑣

| |X𝑡 − 𝚯𝑣 | |2 = argmin
𝛀

∑︁
𝑣∈V
|𝛀𝑣 |Var 𝛀𝑣 (10)

where 𝚯𝑣 is the mean of all segments in 𝛀𝑣 . We then normalize
the distance D(X𝑡 ,𝚯𝑣) between a segment X𝑡 and patterns 𝚯𝑣 as
the recognition weight, which can be formulated as follows:
D(X𝑡 ,𝚯𝑣) = | |X𝑡 − 𝚯𝑣 | |2

P(𝚯𝑣 |X𝑡) =
max([D (X𝑡 ,𝚯𝑣)]𝑣∈V) − D(X𝑡 ,𝚯𝑣)

max([D (X𝑡 ,𝚯𝑣)]𝑣∈V) −min([D (X𝑡 ,𝚯𝑣)]𝑣∈V)
(11)

where we adopt Euclidean distance to measure the similarity be-
tween segment X𝑡 and state patterns 𝚯𝑣 ; the smaller this distance,
the more similar they are. We can then construct the evolutionary
state graph to represent the relations among different clusters.
SAX word. Symbolic aggregate approximation (SAX) is the first
symbolic representation for time series that allows for dimensional
reduction and indexing with a lower-bounding distance measure. It
transforms the original time-series segments into several average
values (PAA representation6) and converts them into a string.

Herein, we can consider each SAX word as a state 𝑣 and extend
the corresponding average value 𝑎 as representative patterns of
the time series segments, i.e., 𝚯𝑣 = [𝑎, ..., 𝑎]. Based on this, we
can normalize the distance D(X𝑡 ,𝚯𝑣) as the recognition weight,
following the approach outlined in Eq 1. Subsequently, we can
construct the evolutionary state graph to represent the relations
among SAX representations.
Shapelet. A shapelet 𝚯𝑣 is a segment that is representative of
a certain class. More precisely, it can separate segments into two
smaller sets, one that is close to 𝚯𝑣 and another that is far from 𝚯𝑣

according to some specific criteria, such that for a given time series
classification task, positive and negative samples can be put into
different groups. The criteria for these can be formalized as

Lshapelet = −𝑔
(
Dpos (X𝑡 ,𝚯𝑣),Dneg (X𝑡 ,𝚯𝑣)

)
(12)

where Lshapelet measures the dissimilarity between positive and
negative samples towards the shapelet 𝚯𝑣 .D∗ (X𝑡 ,𝚯𝑣) denotes the
set of distances with respect to a specific group, i.e., positive or neg-
ative class; the function 𝑔 takes two finite sets as input and returns
a scalar value to indicate how far apart these two sets are. This
could be information gain or some dissimilarity measurements on
sets (i.e., KL divergence). We can then adopt the same approaches
as in the above definitions to recognize states’ weights and con-
struct the evolutionary state graph to represent the relations among
shapelets.

A.3 Implementation of Message Passing
As for the implementations of message passing in local information
aggregation, there are many existing works addressing this issue,
such as pooling, GGNN [27], GCN [15], GraphSAGE [22], GAT
[42], etc.. Herein, we present their implementation details. Broadly
speaking, the aim of message passing is to aggregate the messages
6https://jmotif.github.io/sax-vsm_site/morea/algorithm/PAA.html

11

WSDM ’21, March 8–12, 2021, Virtual Event, Israel Hu et al.

of node 𝑣 ’s neighbors, and thus to compute its new representation
vector, the scheme of which is

H(𝑡)𝑣 =
∑︁

𝑣′∈𝑁 (𝑣)
FMP

(
h(𝑡−1)
𝑣′ , 𝑒

(𝑡)
(𝑣,𝑣′)

)
(13)

where H(𝑡)𝑣 is the intermediate representation of node 𝑣 after aggre-
gation; moreover, FMP (·, ·) is the specific message function, which
combines the messages from all 𝑣 ’s neighbors 𝑁 (𝑣) in graph G(𝑡) .
Pooling. Pooling is a simple implementation, which receives the
neighbors’ messages by computing the production of these neigh-
bors’ representation and current transition weight. This approach
can be formulated as

FMP
(
h(𝑡−1)
𝑣′ , 𝑒

(𝑡)
(𝑣,𝑣′)

)
=𝑚

(𝑡)
(𝑣,𝑣′) × h

(𝑡−1)
𝑣′ (14)

where 𝑣 ′ ∈ 𝑁 (𝑣) is a neighbor of node 𝑣 and h(𝑡−1)
𝑣′ is its repre-

sentation of the last temporal point.𝑚 (𝑡)(𝑣,𝑣′) is the current relation
weight, which is computed by Eq 2 (see details in Section 3.1).
GGNN. Gated Graph Neural Networks [27] implement a message-
feedback mechanism: in short, when node 𝑣 ′ passes a message to
node 𝑣 via edge (𝑣 ′ → 𝑣), 𝑣 will send a feedback message to 𝑣 ′. This
approach aggregates the in-degree and out-degree messages from
its neighbors, which is formulated as

FMP
(
h(𝑡−1)
𝑣′ , 𝑒

(𝑡)
(𝑣,𝑣′)

)
=𝑊in ·

[
𝑚
(𝑡)
(𝑣′,𝑣) × h

(𝑡−1)
𝑣′

]
+

𝑊out ·
[
𝑚
(𝑡)
(𝑣,𝑣′) × h

(𝑡−1)
𝑣

]
+ 𝑏

(15)

where𝑊,𝑏 is the learnable weight and bias, which is related to
the downstream task. From the perspective of the whole graph
(adjacency matrix), we in fact build a new graph with the opposite
directed edges. Hence, the above scheme can be reformulated as

M (𝑡) =

M (𝑡)

𝑖𝑛

M (𝑡)𝑜𝑢𝑡

 =


[
𝑚
(𝑡)
(𝑣,𝑣′)

]
𝑣,𝑣′∈V[

𝑚
(𝑡)
(𝑣,𝑣′)

]⊤
𝑣,𝑣′∈V

 (16a)

H(𝑡) =𝑊 · M (𝑡) · h(𝑡−1) + 𝑏

= [𝑊𝑖𝑛 𝑊𝑜𝑢𝑡] ·

M (𝑡)

𝑖𝑛

M (𝑡)𝑜𝑢𝑡

 · h(𝑡−1) + [𝑏𝑖𝑛 𝑏𝑜𝑢𝑡]
(16b)

where Min =

[
𝑚
(𝑡)
(𝑣,𝑣′)

]
𝑣,𝑣′∈V

is the adjacency matrix in graph

G(𝑡) ; “⊤” indicates the transposition operator, i.e.,Mout is actually
the transposition matrix ofMin.
GCN. Graph ConvolutionNetworks [15] adopt spectral approaches
to represent the graph. It computes the eigendecomposition of the
graph Laplacian, defined as

H(𝑡) = ℧(𝑡)𝑔(𝚲(𝑡))℧(𝑡)⊤ · h(𝑡−1) (17)
where ℧(𝑡) is the matrix of eigenvectors of the normalized graph
Laplacian L(𝑡) = IV − D(𝑡)

− 1
2M (𝑡)D(𝑡) −

1
2 = ℧(𝑡)𝑔(𝚲(𝑡))℧(𝑡)⊤

(D(𝑡) is the degree matrix andM (𝑡) is the adjacency matrix of the
graph G(𝑡)), with a diagonal matrix of its eigenvalues 𝚲(𝑡) . 𝑔(·)
is the filter function, which can be approximated by a truncated
expansion in terms of Chebyshev polynomials [13].
GraphSAGE. In order to avoid transductive learning and natu-
rally generalize to unseen nodes, Hamilton et al. [22] proposed the
general inductive framework, GraphSAGE, which generates new
representation by sampling and aggregating features from a node’s
local neighborhood. The difference between this approach and the
aforementioned GGNN (Eq 15) is that the former does not utilize the
full set of neighbors, but rather fixed-size set of neighbors through
uniform sampling.
GAT. Graph Attention Networks adopt a self-attention strategy,
which involves computing the representations of each node attend-
ing to it over its neighbors. The attention coefficients are computed
in the node pair (𝑣, 𝑣 ′)

𝛼
(𝑡)
(𝑣,𝑣′) =

exp
(
LeakyReLU

(
𝑊

(
h(𝑡−1)𝑣 ⊕ h(𝑡−1)

𝑣′

)))
∑

𝑣′′∈𝑁 (𝑣) exp
(
LeakyReLU

(
𝑊

(
h(𝑡−1)𝑣 ⊕ h(𝑡−1)

𝑣′′

))) (18)

where 𝛼 (𝑡)(𝑣,𝑣′) is the attention coefficient of node 𝑣 and 𝑣 ′ in G(𝑡) ,

which reweights the edge𝑚 (𝑡)(𝑣,𝑣′) . We can then adopt an approach

similar to Eq 3 to obtain H(𝑡)𝑣 of each node.

A.4 Hyperparameter Settings
We have discussed several important hyperparameter settings of
the proposed model in Section 4.5. We conduct grid search for our
proposed model and baselines in order to find the adaptive hyper-
parameters and compare fairly. The remaining aspects of parameter
options are introduced below to facilitate better reproductivity.
Hyperparameters in EvoNet. We test EvoNet at the number of
states |V|, segment length 𝜏 , the size of graph-level representation
|U| (the size of node-level representation |h| is determined by state
recognition, since h(0)𝑣 = 𝚯𝒗), while the search space may differ
between different datasets. We test |V| with values from 5 to 100
with interval 10, and further test 𝜏 with different lengths that are
smaller or greater than the period length of the corresponding
dataset. We test |U| from 24 to 210 with exponential interval 1. In
batch-wise training for EvoNet, the batch size is set to 1000, and
we choose the Adam algorithm [26] as the loss optimizer.
Hyperparameters in baselines. As for baselines, we use the
source code provided on TSLearn7 for several feature-based models,
and code the sequential models by ourselves. For the graphical
models, we conduct the experiments on the provided codes in
GitHub. If the parameter interface is open, we adopt the same grid
search approach to search the best parameters. Due to the binary
event prediction tasks, we use XGBoost [9] with same parameters
for all methods in order to improve the overall performance.

7https://tslearn.readthedocs.io/en/latest

12

	Abstract
	1 Introduction
	2 Background and Problem
	3 EvoNet Framework
	3.1 Evolutionary State Graph
	3.2 Evolutionary State Graph Network

	4 Experiments
	4.1 Datasets
	4.2 Baseline Methods
	4.3 Implementation details
	4.4 Performance Comparison
	4.5 Parameter Analysis
	4.6 Case Studies

	5 Related Work
	6 Conclusions
	References
	A Appendix
	A.1 Algorithm Details
	A.2 Implementation of State Recognition
	A.3 Implementation of Message Passing
	A.4 Hyperparameter Settings

