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ABSTRACT
Penetration Testing (PT) is one of the most effective and widely
used methods to increase the defence of a system by looking for po-
tential vulnerabilities. Reinforcement learning (RL), a powerful type
of machine learning in self-decision making, is demonstrated to be
applicable in PT to increase automation as well as reduce implemen-
tation costs. However, RL algorithms are still having difficulty on
PT problems which have large network size and high complexity.
This paper proposes a multiple level action embedding applied with
Wolpertinger architect (WA) to enhance the accuracy and perfor-
mance of the RL, especially in large and complicated environments.
The main purpose of the action embedding is to be able to repre-
sent the elements in the RL action space as an n-dimensional vector
while preserving their properties and accurately representing the
relationship between them. Experiments are conducted to evaluate
the logical accuracy of the action embedding. The deep Q-network
algorithm is also used as a baseline for comparing with WA using
the multiple level action embedding.

CCS CONCEPTS
•Theory of computation→Reinforcement learning;Markov
decisionprocesses; • Security andprivacy→Penetration test-
ing.

KEYWORDS
deep reinforcement learning, deep Q-network, network simulation

ACM Reference Format:
Hoang Viet Nguyen, Hai Ngoc Nguyen, and Tetsutaro Uehara. 2020. Multiple
Level Action Embedding for Penetration Testing. In The 4th International
Conference on Future Networks and Distributed Systems (ICFNDS) (ICFNDS
’20), November 26–27, 2020, St.Petersburg, Russian Federation. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3440749.3442660

1 INTRODUCTION
Currently, the rapid growth of networking is causingmore andmore
attack threats in cyberspace. Many network security approaches
have been used to improve the security level of systems. One of the
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most effective methods in assessing the defensive capabilities of
network security systems is penetration testing (PT). It is a popular
approach with the main goal is preventing potential attacks from
network systems. By reproducing what actual attacker could do
in real-life, PT is able to find all the vulnerabilities existed on the
target networks. Thus, the network security team can fix security
holes before adversaries can attack the system.

Even though the benefits of PT in secure network systems are un-
deniable, existed obstacles keep organizations from getting access
to its benefits. Firstly, PT is regularly viewed as a costly technique
which uses a lot of resources such as budget and manpower. Per-
forming PT also required engineers who have strong experience
in network security. Secondly, it is a hard task dealing complex
network environments which have a large size and difficult to at-
tack. Even for the experts, finding all of the vulnerabilities currently
present on the system is beyond their capabilities.

For this reason, the use of automatic PT methods is necessary to
offload the workload that humans have to perform. Additionally, it
also provides more accuracy in determining the vulnerabilities than
the manual method. Tenable, Nessus and Metasploit are considered
as useful tools in supporting PT. These tools, however, only assist
security professionals in scanning vulnerabilities rather than help-
ing them exploit systems. In most of the time, experts are the one
who has responsibilities on PT process from information gathering
to exploitation. In recent years, It is becoming increasingly common
to use machine learning to replace human in complex tasks. ML has
been found to be able, in some situations, to cope with complicated
issues more easily and reliably than humans.

Reinforcement learning (RL) a type of ML has been shown is
able to plan and present correct actions in an unstable environment.
RL strives to find out viable options for environmental adaptation
and derive the maximum value by continuously interacting with
the environment and optimizing the action at every turn. Thus,
the ability of RL shows that it is completely sufficient to address
PT issues. Currently, this direction is pursued by researchers and
showing some promising results. Schwartz et al. has proven that the
RL algorithm can automatically exploit vulnerabilities on networks
and deploy attacks on target machines [14]. On the other hand,
Ghanem et al. suggested the capacity to integrate RL with existing
PT systems to execute tasks without human intervention [3].

However, all previous approaches show the limitation in the size
and complexity of the environment that can be addressed. Among
the mentioned articles, the maximum number of machines used for
testing the algorithm’s performancewas 100machines [3]. Schwartz
et al. showed that the figurewas lower, ranging from 30-50machines
[14]. Besides, for complex networks such as networks containing
services that are difficult to attack (low rate of attack success), the
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performance of current algorithms is not good as expected. Besides,
for networks with too many vulnerabilities, finding all of these
vulnerabilities is also not an easy work.

In this paper, we propose a multiple level action embedding that
can be used with Wolpertinger architecture (WA) to increase the
accuracy in complex environments and the network size that can
be solved by RL [2]. The multiple level action embedding repre-
sents any action in the action space into an n-dimensional vector
by using three levels: action characteristics, network structure and
services vulnerabilities. The embedding can accurately represent
the action in vector based on its characteristics and find related ac-
tions that ensure logically correct requirements. We ran a variety of
experiments to evaluate the effectiveness of the action embedding.
The results show that even with a complex network with services
having a low attack success rate of 20% and a sensitive host rate
of up to 100%, the WA using the action embedding maintains its
performance above 90%. For a large size environment, its perfor-
mance is also very good with an accuracy rate of about 70% for the
network having 256 hosts.

This paper is organized as follows. Section 2 introduces basic
knowledge about RL and review some related works. In section 3,
The design of the multiple level action embedding will be presented
in detail. Section 4 describes the experimental setup and the results
of these experiments. Finally, the conclusion of the paper will be
presented in section 5.

2 RELATEDWORK
Initially, RL was mainly used in game theory with the aim of finding
the best strategy via Markov decision theory and delayed reinforce-
ment [6]. Later, the method of applying a deep neural network to
Reinforcement learning, called Deep Q-network (DQN), proved
to be extremely effective for practical problems [11]. Since then
many scientists have pursued this method, trying to improve the
speed as well as solve the remaining problems of RL. Currently,
there are several commonly used RL algorithms including double
deep Q-network (DDQN), dueling deep Q-network and dueling
double deep Q-network (D3QN) [5, 7, 15]. These algorithms focus
on solving the overestimation problem of action values and trying
to achieve better policies. Some additional techniques such as ex-
perience replay and prioritized experience replay are also used to
support convergence and smooth out the learning process [8, 13].

Although the RL has undergone many improvements since its
introduction, the current RL still faces a scalability challenge. RL ap-
proaches are only appropriate for environmentswith low-dimensions.
Variant DQNwas introduced by Zhao et al. try to solve this problem
by reducing the size of the output layer in the neural network [16].
Dulac-Arnold et al. propose Wolpertinger architecture (WA) handle
the same problem using the action embedding and kNN layers [2].
Wolpertinger architecture uses an actor-critic algorithm [10] with
the main idea of finding the maximum Q-value from similar actions
that increase the chances of the agent finding the best action. WA
has been shown to be effective in problems with large discrete
action spaces.

In recent years, many researchers have tried to take advantage
of the power of RL to solve penetration testing problems. Schwartz
et al. propose the network attack simulator and perform many

experiments to evaluate the ability of DQN algorithm to solve PT
problems [14]. The paper points out that although RL is capable of
applying to PT, with large or complex networks, the performance of
algorithms is not as high as expected. IAPTS, a Partially observable
Markov decision process (POMDP) approach proposed by Ghanem,
tried to deal with the same problems [3]. IAPTS is expected to
improve the performance of the RL algorithm on large networks.
Unfortunately, the experiment was only tested on networks with 10-
100 machines. Currently, the ability to solve in a large and complex
environment is still a challenge when applying RL to PT.

3 THE PROPOSED EMBEDDING APPROACH
In this section, we focus on two main parts: an overview of the
Wolpertinger architecture (WA) and multiple level action embed-
ding design. First of all, the WA, a powerful algorithm that has
been proven to be able to handle problems in large action space [2],
will be discussed in detail. To work with WA, an action embedding
built specifically for a certain problem is necessary. Thus, the paper
proposed a multiple level action embedding which can describe the
properties of actions within the action space of PT problems. The
design of the action embedding will be described in section 3.2

3.1 An overview about Wolpertinger
architecture

For all RL problems, the size of the environment is always amatter of
scrutiny. It is not only the crucial part that determines the efficiency
of the algorithm, but also determines whether the problem can be
solved. Many scientists are pursuing this research direction and
achieved some success. Wolpertinger architecture (WA) a method
of applying deep reinforcement learning and action embedding is
seen as one of the most effective methods. While other articles focus
on shrinking the state space size of the environment, WA mainly
focuses on solving problems with large discrete action spaces.

Before diving into WA, we will discuss a deep reinforcement
learning (DRL) algorithm that is considered the core of the architec-
ture called the actor-critic algorithm [10]. The actor-critic algorithm
is one of the most popular algorithms which is widely applied in RL.
Comparing to the other DRL algorithms such as DQN and Dueling
DQN, the actor-critic algorithm uses two different neural networks
including a critic network and an actor-network. While the actor-
network is in charge of choosing the appropriate action for each
step, the critic network takes responsibilities of evaluating how
good the action is by calculating the action value and state value of
this action. Upon receiving the valuation from the critic network,
the actor-network will update its policy to take more appropriate
action for the next step. This solution has been shown to be effective
when used in unstable environments [11].

Although the actor-critic algorithm has powerful in solving prob-
lems, it is still having a hard phrase dealing with complicated envi-
ronments. Thus, Gabriel et al. proposedWA leveraging the ability of
the actor-critic algorithm but improve its weakness when applying
to the large action space problems. To increase the ability of the
algorithm, WA uses an additional layer called action embedding.
The main purpose of this layer is to increase the ability to choose
the correct action at each step by considering not only the proto
action selected by the actor-network but also the actions associated
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with it. In other words, the action embedding layer acts as an extra
filter to aid in action selection of the actor-network.

Figure 1: Wolpertinger Architecture

Figure 1 describes how WA works. First of all, WA observes
the current state of the environment. Based on this information,
it chooses a suitable action called the proto action by using the
actor-network. After having the proto action, WA searching for
actions which are most relevant to the one. The action embedding
layer is used to calculate the distance between all actions in action
space compared to the proto action. Using the kNN algorithm [1],
WA will select the most related k actions. Next, the information
about the environment state and k-related actions will be used as an
input for the critic network. At this point, instead of just evaluating
the proto action, the critic network will evaluate k-related actions
and the next state that is obtained after performing these actions.
Finally, evaluation values calculated by the critic network will be
used as a baseline to select the best action. The best action is chosen
using the argmax function and will be used to interact with the
environment at the current step.

The strength of this approach is instead of having to search
randomly on the large action space, the agent can choose the best
action among potential actions. Because the choice of action at
each step is more oriented, the possibility that the agent chooses
correct action is also larger. In this way, actions that have no value
in solving the problem are likely to be rejected early on. As a
result,WAhelps the actor-critic algorithm better handle large action
space environments. Besides, comparing proto action with k-related
actions can also improve the performance of the algorithm. Using a
larger set of actions for the critic network increases the likelihood
of choosing the best action for the current state compared to just
being able to select the proto action which seems right but not
certain.

3.2 Multiple level action embedding
Although the effectiveness has been demonstrated, applying WA
to problems is not an easy approach. One of the challenges when
applying WA to any problem is building a proper embedding ac-
tion. Initially, WA was only built to solve problems with discrete
actions. Therefore, if operators want to apply WA for different
problems, they need to find out how to perform all actions in the
n-dimensional space. In a few cases, especially when there is no
relationship between actions e.g. choosing between left or right
actions, building an embedding can be difficult, not even possible.

When applying WA for PT, we are also facing the same problem.
In PT environments, actions represent for attacker interactions
with network systems. Since the attack is performed using complex
approaches and technique, these actions are also dependent on
many different factors. Therefore, the construction of embedding
action is very difficult for PT.

The first thing that we have to determine during the construction
of the action embedding for PT is which factors need to be consid-
ered. For example, we want to attack a laptop and to do this we
need to scan the service running in the machine and then exploit a
running service. With this problem, we see that two actions can be
performed are "scan the machine" and "exploit a running service in
the machine". If only based on the properties of the action ("scan" or
"exploit") we can distinguish the actions from each other but cannot
determine the relationship between them. However, if the object
of the action, the machine, is included, the relationship between
the actions becomes clear. Suppose, after scanning, there is more
than one service running, we need to determine which service will
be used to attack. Thus, to determine exactly an action we need to
consider at least three factors: the characteristics of the action, the
object of the action and the means of the action.

Based on the above idea, the paper proposes to build a multiple
level action embedding using three levels including action charac-
teristics, network structure and service vulnerabilities. Figure 2 and
algorithm 1 show an overview of the embedding. We will discuss
in detail these in the following sections.

Figure 2: Multiple level action embedding

3.2.1 Action characteristics. The first level needs to be considered
when building the embedding is the characteristic of the action.
The action characteristic can be identified by many components
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Algorithm 1:Multiple level action embedding implemen-
tation
Input: All actions in action space a ∈ A

Network structure G(V ,C); subnet v ∈ V ;
connection c ∈ C

All services s ∈ S and its description {ds ,∀s ∈ S}
Output: Vector representation {za ,∀a ∈ A}
Initialize Z empty;
for a ∈ A do

z1a ← atype ;
z2a ← adestination {Unique ID for each action
destination};

z3→5
a ← Node2Vec(G,window_size) {Use Node2Vec to
present network structure};

z6→8
a ← ServiceEmbeddinд(S, {ds∀s ∈ S}) {Represent
services based on its vulnerabilities’ description};

Z .insert(za );
return Z ;

such as their own action type and their destination (the object of
the action).

First of all, an action can be defined by the type of action it
belongs to. In real cyber-attacks, depending on the purpose of the
attack, attackers have to perform a set of different actions. These
actions can be divided into many different categories such as ping
actions, scan actions, send actions and sniffing actions. Thus, the
action type shows not only the properties of each activity but also
the attack method or technique which contains the action.

In this work, the use of the network simulator, which will be
introduced in an experimental setup, reduces the diversity of action
categories. The simulator contains three basic types of actions
including scan subnet, scan host and exploits services. In the action
embedding, the first dimension is used to represent this information.
In other words, the action embedding vector will use its first bit
to describe these types of actions. For example, the first bit can be
assigned -1 to represent the action type scan subnet, while scan
hosts and exploit services actions are represented by the values
0 and 1, respectively. These values are designed to identify the
correlation between actions. While scan subnet action and scan
host action are in the group "scan", the similarity between them is
greater than exploit services action. On the other hand, because
scan host and exploit services action both have an impact on hosts,
they are more interrelated.

Even though the first dimension can fully represent the prop-
erties of the actions on the network simulator, it is possible to
clarify more clearly the difference between them by using the sec-
ond dimension that focuses on the destination of the action. For
scan subnet action, a subnet is considered as the destination of the
action. While, for the other two actions (scan subnet and exploit
services), the main destination of these actions is hosts. In the case
that the number of hosts and subnets are fully acknowledged, these
numbers can be used as values for the second bit of the action
embedding vector. For example, the unique ID of each host and
subnets can be used for the second bit. Next, these values are nor-
malized to be in the range [-1, 1]. Using this technique is a possible

approach to clearly define the different properties between similar
types of actions. However, the downside of this approach is that
the second dimension can not fully demonstrate the similarities
between subnets and hosts since the unique ID is created randomly.

3.2.2 Network structure. As mentioned above, it takes more than
the action characteristic level to fully show the relationship be-
tween the actions in the embedding. The second level shows this
relationship in terms of representing the position of the action des-
tination in the network. In other words, this level is built based on
network structure.

Network structure represents the topology of the network. The
essence of the network is the connection between the machines.
When the number of computers in the network is large and for
easy management, the machines are classified into different sub-
networks. The subnets in the network are usually linked by network
devices such as switches or routers. Because all hosts in a subnet
are typically in a peer position and fully connected to each other,
the network structure is largely determined by the way the subnets
communicate with each other. In more detail, it describes the way
the subnets are connected. Therefore, this article focuses on the
subnet as the main component representing the network structure.

To illustrate the network structure, the paper used the Node2Vec
model which is a graph embedding method [4]. Node2Vec is built
to inherit the strengths of Random walk and Word2Vec [9]. It is
capable of representing any graph as an n-dimensional vector but
still retains the properties of the node in relation to its neighbours.
Therefore, Node2Vec is a perfect fit for expressing network structure
when our main concern is the relationships between subnets.

Figure 3: An example demonstrates network structure using
Node2Vec on two dimensions space

Figure 3 shows results of representing network structure using
Node2Vec on 2-dimensional space. Initially, all subnets that have the
same connection to a network device such as a router are considered
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Figure 4: Services embedding

fully connected to each other. These subnets will be represented
graphically as nodes linked together pair by pair. After having a full
graph, Node2Vec is used to learn the features of the graph. Finally,
the graph is demonstrated as an n-dimensional vector.

In fact, the paper converts the information about the subnet and
connections into a three-dimensional vector instead. The reason
behind this is making sure that the multiple level action embedding
can deal with complex environments. At that time, the more infor-
mation in the vector means the more accurate it is in representing
the network topology. The information obtained from the process
will be is described from 3th to 5th bits of the action embedding
vector. It is worthwhile to notice that the network structure values
each action received are based on the subnet that the action des-
tination (the object of the action) belongs to. While a scan subnet
action will obviously take value corresponding to the subnet, a scan
host action and an exploit services action will be assigned the value
of the subnet containing its host.

We will discuss in more detail how this level affects the per-
formance of the RL. By giving the network topology to the agent,
the agent is indirectly instructed to work in two directions: select-
ing a subnet that is directly related to the current attacked subnet
and searching for potential sensitive hosts present in the current
subnet. These directions contribute to increasing the strategy of
the agent, thereby increasing the performance of the RL algorithm.
For example, when the agent has successfully attacked a subnet,
it will extend the attack to neighbouring subnets to increase the
likelihood of success rather than searching in the entire network.
In addition, since sensitive hosts are considered the primary target
of an attack, it is appropriate to make the agent exploiting in deep
into the current subnets to find sensitive hosts.

3.2.3 Services vulnerabilities. Having action characteristics and
network structure levels, the action embedding is now able to distin-
guish actions and the object of each action in the network. However,
when deploying exploits on hosts, services are also an important

factor to be considered. In the network, because of containing many
vulnerabilities, services are seen as a weaknesses point that attack-
ers use to attack the network. Hence, the final level of the action
embedding focuses on services vulnerabilities.

To determine which services are most likely to be successfully
hacked and the relationship between the services, the article looks
at security vulnerabilities that exist on the service. The idea is that
the more vulnerabilities a service contains, the higher chance of it
being attacked. In addition, the similarity between services can also
be demonstrated by the similarity of the vulnerabilities they contain.
However, information about the similarities of vulnerabilities was
also not simple to obtain. So far, there are no studies focusing on
this information.

Inspired by category embedding and word embedding, this work
determines the correlation between the vulnerabilities using de-
scriptive information about them. More specifically, all security
vulnerabilities are introduced by its name, version and description
on Common Vulnerabilities and Exposures details website [12].
This information source can be used to extract features through
the neural network embedding layers. Each service contains all
information describing the vulnerabilities it contains. From there,
each service can be represented as an n-dimensional vector.

Figure 4 shows how the embedding works for services. Based on
a service list containing existed services on the entire network, the
vulnerabilities and its description related to these services will be
retrieved. For example, Chrome service usually has vulnerabilities
CVE-2019-5832 and CVE-2019-5831, so the descriptions of these
vulnerabilities are taken into account. Next, a words list is con-
structed from this textual information. This word list contains the
unique vocabulary in the data set as well as stop words such as
"a", "an" and "the" have been removed from it. In other words, only
vocabularies which contain important information describing how
the vulnerabilities function are retained. This ensures the accuracy
of the embedding after construction. After that, the pair set showing
each relationship between the services and words are generated. It
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will be used as input to the embedding network. Finally, the embed-
ding network did the training process and results in the embedding
vector for each service.

As mentioned above, a service may contain more than one vul-
nerabilities, so the embedding vector represents the service which
will be the mean of all the vulnerabilities it contains. Likewise, for
a host or a subnet, the embedding vector will be the mean of all
the services contained in that host. This design is in line with the
destination of the action types mentioned earlier. While the exploit
service action should contain service information, scan host and
scan subnet actions should contain embedding information of the
host and the corresponding subnet.

4 EXPERIMENTS AND RESULTS
4.1 Experimental Setup
In this section, we will focus on the components used for experi-
ments. there are three main components: the network simulator
used to perform PT, experimental scenarios and evaluation metrics
of experiments.

4.1.1 The network simulator. The network simulator is one of the
important components of the system because it is the primary
environment for performing PT. Although there are many methods
that can be used such as real network and virtual machines, the
network simulator is preferred because of its compactness and
ability to support attacks. Currently, there are many network traffic
simulators such as mininet and NS3, but these tools do not support
network attack so it is difficult to use for PT. Therefore, the article
builds the network simulator based on NAS a network simulator
proposed by Schwart et al. [14]. It used text-based approach andwas
designed specifically for PT. As a result, NAS is not compact and
can be applied to many different systems, but also fully supports
attacks in PT in the environment with a large number of machines.
However, the downside of NAS is that attacking a machine in the
NAS is far more likely to succeed than it really is. Therefore, the
article builds a NAS-based network simulator however adds more
rules to increase the difficulty of the attack, while partially limiting
the attacker’s capabilities.

The network simulator consists of two main components includ-
ing the network model and the MDP environment. The network
model contains the core parts of the network and acts as a stan-
dalone system. It contains the basic components of the network
simulator including subnets, connections, hosts, services and fire-
walls. The MDP environment used as agent input is defined by
tuple including {State, Action, Reward, Transition}.

The components of the network model defined in the JSON file
are then loaded and created the corresponding components. These
components are built on the basis of NAS. While the connections,
firewalls and services sections have only been changed in format,
some rule changes are included in the subnets and hosts. Each
component mimics the real-life network behaviour.

• A subnet contains one or multiple hosts.
• Connection determines which subnets are linked directly to
each other.
• A host represents a device existed on the network.
• Services represent the applications running on a host

Figure 5: The Network Simulator

• Firewalls are used to limit the services that can be used to
communicate between subnets.

In order for the RL algorithm to be able to solve the problems,
they need to be put in a suitable format. In this article, PT problems
are shown in the form of MDP represented by tuple {State, Action,
Reward, Transition}. The state represents the knowledge that the
attacker has in the current network environment. It is built based
on the information from all the hosts including the scannable state,
the attacked state, and the available state of each service running
on all of the hosts. The action is defined to mimic the activities
of real attackers. It includes three types of actions scan subnets,
scan hosts and exploits service. The transition function shows how
actions affect the environment. Finally, the reward function is used
as the guideline for the agent. This function tells the agent when it
has selected the correct action. To do that, the agent will receive an
immediate reward for each corrective action. It will use this value to
update its policy. In this article, the reward value is calculated by the
cost for each action and the reward achieved for each action. While
the cost of the scan action is equal value, the cost of the exploit
service depends on each service. Every time the agent successfully
attacks a normal it will get a reward value of r, for a sensitive host,
the reward is 3r. This repeats continuously until the agent finds a
way to achieve the maximum value in the environment.

4.1.2 Experimental scenarios. For the test involving the action
embedding and the complexity of the environment, a standard
network scenario is used. The standard scenario includes 5 subnets,
15 hosts and 5 exploitable services. The number of hosts in each
subnet belongs to the set [3, 3, 2, 3, 4] respectively. Subnets are
interconnected by two main clusters subnet (1, 2, 3) and (3, 4, 5).
The number of sensitive hosts in the scenario is 5

For the experiment to test the scalability of the algorithm, a
set of scenarios is defined. These scenarios have 5 subnets with
the connection between subnets similar to the standard scenario.
However, to test scalability, the number of hosts in these scenar-
ios ranges from 10-256 hosts. On these scenarios, the number of
sensitive hosts accounts for 10% of the total number of hosts. That
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means scenarios with a large number of hosts not only have larger
network sizes but also increase complexity.

4.1.3 Evaluation metrics. The multiple level action embedding is
checked with logic accuracy. Although it is subjective, testing with
this method still gives us an overview of the ability to represent
actions of the embedding. For experiments applying the action em-
bedding to WA, the proportion of sensitive hosts being successfully
attacked is considered the primary metric. The reason for choosing
this metric is to be consistent with the real-world attack process
that sensitive hosts are positions that bring value to the attacker
during the attack. The reward gained during the training is only
used to check the ability of the agent to learn and ensure the results
are not overfitting.

4.2 Experiments and Results
The effectiveness of multiple level action embedding is evaluated
based on two main experiments: action embedding testing and the
performance when applying it to WA for PT problems.

4.2.1 Action embedding testing. To evaluate the accuracy of the ac-
tion embedding, some experiments were conducted. First of all, we
conduct experiments on service vulnerabilities level. The purpose
of the experiment is testing the ability of the level in classifying
the vulnerabilities into the appropriate service category and deter-
mining the relationship between services. After that, we will test
the accuracy of the multiple level action embedding by using it for
some actions, analyzing the obtained result and ensuring that it
satisfies logical accuracy.

To check the accuracy of the service vulnerabilities level, we
tested on the top 45 applications ordered by the total number of
distinct vulnerabilities from CVE details website. The description of
these services is used as an input for the neural network embedding.
After the training process, each service will be represented as a
3-dimensional vector.

Table 1: The top 5 most related services of Safari

The experiment finding the top 5 most relevant services of the
Safari application is shown in the table 1. The result shows that
the applications similar to Safari are Icloud, Reader, Apple Tv and
Chrome. Logically we can consider that this is an accurate result
when Safari, Icloud and Apple Tv are all Apple apps, so the rela-
tionship between these services is undeniable. On the other hand,
Safari and Chrome are both browsers so there are some similarities

between them. With this result, we see that the service vulnera-
bilities level achieves its accuracy in representing the service to a
vector-based on its vulnerabilities.

Table 2: Testing on different proto actions using multiple
level action embedding
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Next, we perform an experiment to see the accuracy of the em-
bedding for actions. Table 2 shows us the top 10 actions that are
most similar to some proto actions including three different types
of action. For the proto action "scan subnet 192.168.0.0", the most re-
lated actions is scan hosts existed in the subnet 192.168.0.0 and scan
the subnet 192.168.1.0 which is directly connected to it. This result
demonstrates that the embedding increases the agent’s strategy by
finding potential hosts on the current subnet as well as expanding
the search for neighbouring subnets. For the proto action "scan host
192.168.0.1", the embedding gives the same results. However, since
the proto action is scan host, the order of the agent’s tactics has
changed. At this point, the agent will prioritize scanning all hosts on
the network, then try to see if it can exploit those hosts and finally
scan the subnet that contains the current host. This is a sensible
tactic that helps agents increase their likelihood of success. Finally,
for the proto action "exploit service Safari on host 192.168.0.1", the
agent prioritizes the exploit action type and focus on service that
most related with Safari on all of the hosts on current subnet. With
this strategy, the agent can check which service is suitable to attack
the 192.168.0.1 host and check if other hosts can be hacked with
the Safari service. Thus, the agent’s ability to attack successfully is
also increased. In conclusion, we find that regardless of the proto
action, the multiple level action embedding enhances the agent’s
ability to attack success by indirectly increasing its tactics.

4.2.2 Evaluation of application effectiveness and WA. The com-
plexity of the environment is represented by three configurations:
sensitive host configuration, service score configuration and quan-
tity configuration. The sensitive host configuration is about the
ratio of the number of sensitive hosts to the total number of ma-
chines. The higher this ratio, the more complicated the problem.
The service score configuration is about the rate of attack success
when using certain service. The lower the service score means the
harder it is for the service to be hacked, which means, the higher
the complexity of PT problems. Quantity configuration is about the
total number of machines on the network. The larger the number
of machines, the harder it is for the agent to attack successfully. To
evaluate the effect of the embedding on the RL for the PT problem,
we perform the experiment on all three configurations. The com-
plexity of the configurations in the experiments will be increased
gradually.

All experiments related to sensitive host and service score con-
figurations will be done on an environment with 15 hosts and 5
services. In each episode, the number of max steps the agent can
execute is twice the action space. The test will run in a total of
1000 episodes. For sensitive host configuration, the sensitive host
ratios performed in the experiment are 20, 40, 60, 80 and 100%,
respectively. For service score configuration, attack success rates
of all services will decrease in the order of 100%, 80%, 60%, 40% and
20%. On the other hand, for quantity configuration, we will conduct
experiments with network size in a range of 10-256 hosts.

The figure 6 shows the results of these experiments. With the
changing in the sensitive host configuration (figure 6a), as the rate
of sensitive hosts increases, the performance of the DQN algorithm
decreases from 81% to 46%, corresponding to the sensitive host
ratio of 0.2 and 1. Meanwhile, WA using the multiple level action
embedding performances remained at greater than 95%. For the

Figure 6: The sensitive machine attacked proportion results
of three configurations

service score configuration, experimental results recorded the same
pattern (figure 6b). The DQN algorithm is greatly affected by the
service score, performance drops from 90% with service score of 1
to nearly 50% when service score is 0.2. In contrast, the WA using
the embedding was only slightly affected by the service score and
kept performance greater than 90%. In addition, although the DQN
algorithm has very good performance with networks with a small
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number of hosts, with a number of machines greater than 64 the
algorithm is no longer capable of solving the problem and hitting
the bottom 0% (figure 6c). Although the WA using the action em-
bedding performance is still influenced by the number of machines,
on the large network with 256 hosts, it still keeps an acceptable
performance around 70%. These results prove that applying the
multiple level action embedding with WA into the PT problem is
extremely efficient. It not only increases the network size that the
algorithm can solve but also increases the accuracy of the algorithm
when facing complex environments.

5 CONCLUSION
In this work, we focus on increasing the applicability of RL when
applying to PT. The multiple level action embedding is proposed
to increased the accuracy and performance of RL algorithms when
solving PT problems. It is also an important component for applying
to the Wolpertinger architecture which is an effective method for
environments having large action space. Many experiments have
been conducted to evaluate the accuracy of the action embedding.
DQL algorithm is also used as a baseline to compare with WA using
the action embedding.

The main contribution of the paper is to improve the efficiency of
the RL to solve the PT problem when the network has a large num-
ber of hosts and a complicated environment. Using multiple level
system including three levels: action characteristics, network struc-
ture and services vulnerabilities; the action embedding is capable of
accurately representing actions in the form of n-dimension vectors,
distinguishing and calculating the relationship between them. As a
result, the multiple level action embedding can instruct the agent
indirectly to increase its tactics during the training process.

The result shows that the embedding not only is able to represent
all actions in the environment’s action space but also find all actions
most relevant to any given one while still being logically accurate.
When applied to the RL for PT, the WA using the action embedding
outperforms the DQN algorithm for complex environments. Even
with the high sensitive hosts rate (up to 100%) and the low service
score (service success rate = 20%), it still keeps performance above
90%. Additionally, the network size of up to 256 hosts can still be
handled with an acceptable accuracy of about 70%.

The next development direction of the problemmight be to apply
it to more realistic environments in order to reduce the distance
between this research and the real-world network system. Addition-
ally, using the word embedding to show the correlation between
the problems could cause confusion if the description of the vulner-
abilities was incomplete. Hence, a method which is able to show
the correlation between services based on their properties could be
developed to deal with this situation.
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