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ABSTRACT

Security researchers have used Natural Language Processing (NLP)
and Deep Learning techniques for programming code analysis tasks
such as automated bug detection and vulnerability prediction or
classification. These studies mainly generate the input vectors for
the deep learning models based on the NLP embedding methods.
Nevertheless, while there are many existing embedding methods,
the structures of neural networks are diverse and usually heuristic.
This makes it difficult to select effective combinations of neural
models and the embedding techniques for training the code vulnera-
bility detectors. To address this challenge, we extended a benchmark
system to analyze the compatibility of four popular word embed-
ding techniques with four different neural networks, including the
standard Bidirectional Long Short-Term Memory (Bi-LSTM), the
Bi-LSTM applied attention mechanism, the Convolutional Neural
Network (CNN), and the classic Deep Neural Network (DNN). We
trained and tested the models by using two types of vulnerable
function datasets written in C code. Our results revealed that the
Bi-LSTM model combined with the FastText embedding technique
showed the most efficient detection rate on a real-world but not on
an artificially constructed dataset. Further comparisons with the
other combinations are also discussed in detail in our result.
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1 INTRODUCTION

Software vulnerabilities could significantly damage the services
and activities of any organization when exploited by cyber-attacks.
To improve the software quality, experts and researchers have ex-
tensively studied both dynamic and static methods for analyzing
software code. Dynamic analyzers examine the program control
flow and are usually developed from the rule-based solutions. This
approach is limited to the number of known vulnerabilities, and
updating rules requires expert knowledge. Static code analyzers,
on the other hand, locate the vulnerabilities without executing a
program source code. This direction has recently attracted more
attention since software source code was proven to share many
identical characteristics with natural language texts [2]. Particularly,
the use of NLP applications in automatically detecting vulnerabili-
ties in code has been investigated. As deep learning gain greater
success in numerous fields, such as in NLP, research shows the
further potential of deep learning application in static code analysis
[25]. Any system built based on machine learning or deep learning
would require a specified embedding technique to generate model
inputs as vector representations. Notwithstanding, there are many
existing embedding techniques in the NLP field such as Word2Vec
[17] and GloVe [21]. Since the number of embedding methods is in-
creasing, selecting a compatible method for specific neural models
can be challenging.

Many deep learning models such as Text-CNN [10] and Long
Short-Term Memory (LSTM) [27] were employed to learn the vul-
nerable patterns from distinguished program code representations
[6, 12, 13]. Most of these studies used Word2Vec to produce code
vector representations, but other embedding methods like GloVe
or FastText [4] have yet to be evaluated on these models. Different
kinds of knowledge representations, such as linguistic contexts of
identifiers and their order sequences, can be extracted by changing
either the embedding technique or the model structure. Therefore,
selecting the most suitable embedding method can be a critical task
since it can affect the vulnerability detection performance of the
classifiers. In this work, we extended the open-source benchmark
API [14] by evaluating three additional word embedding techniques.
We also used the two types of C code datasets which were originally
provided as the baselines for comparisons in the benchmark. We
set up the experiments to explore the effectiveness of the word
embedding techniques for building vulnerability detectors at the
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Figure 1: Approach Overview

function level. We employed the API to build a system to train
and test the vulnerability detectors in a supervised manner of deep
learning.

The main contributions of this paper are summarized as follows:

e We extend a benchmark system by evaluating three addi-
tional word embedding methods to generate input vector
representations from the C program functions.

e We train and test the Bi-LSTM with the Hierarchical At-
tention Network (Bi-LSTM HAN), Bi-LSTM, Text-CNN, and
DNN models on two different datasets.

e We carry out an overall performance evaluation of all trained
models. Specifically, each model is analyzed with distin-
guished input representations to explore the effective com-
binations of the embedding techniques and the models.

The rest of this paper is arranged as follows: Section 2 presents
the related studies where the word embedding techniques and the
studied deep learning models were applied. Section 3 describes
the detailed design of our system. In section 4, we explain the
experiments and performance metrics. Section 5 provides the results
and its comparative analysis. We conclude our work and discuss
future directions in Section 6.

2 RELATED WORK

Motivated by the success of NLP and neural language models, prior
studies observed similarities in semantic and syntactic information
between natural language to the programming language. They took
advantages of the NLP applications for software vulnerability de-
tection and defect prediction [18]. Later, researchers focused on
experiments with more complex machine learning structures while
employing distinctive embedding techniques for producing vector
representations. For example, the Word2Vec embedding algorithm
was implemented for encoding the code vectors extracted from the
Abstract Syntax Trees (ASTs) contexts [22]. The neural network
called feed-forward then used those vectors as inputs for training
the JavaScript code vulnerability detectors. Similarly, Word2Vec
was implemented for generating vector representations from C/C++
source code. These representations and their control flow graphs
(CFGs) data were both utilized to train the vulnerability classifiers
[8]. Another study used the GloVe model for encoding vector repre-
sentations from the Abstracted Symbolic Traces of C programs [9].

Additionally, a vulnerability prediction system, which was devel-
oped based on ensemble machine learning algorithms, employed
the FastText model for the encoding task [7]. Given these points,
many word embedding techniques had been implemented for de-
tecting vulnerabilities in software code. However, due to the variety
of the dataset types and the machine learning model structures,
comparisons between these techniques were not possible to accom-
plish.

The mentioned studies had shown promising results in the vul-
nerability detection task, but their trained models were evaluated
on their self-constructed datasets such as ASTs or CFGs. The suc-
cess of these methods were based on syntactic artificial datasets
which may raise a question on whether these datasets are more
useful than basic inputs such as word vectors. There are studies
that have recently investigated the effectiveness of different repre-
sentations for the neural networks to work on the software code
classification problems. Specifically, a comparative analysis was
conducted to assess how different deep learning models learn over
distinctive input representations of Java code [23]. Furthermore,
Lin (2019) proposed a benchmark framework and compared three
models which are Text-CNN [10], DNN, and Bi-LSTM. The three
models were trained solely on the Word2Vec embedding model,
and further comparison of applying other embedding algorithms
or different neural networks are yet to be explored.

3 APPROACH

3.1 Overview

We aimed to build a system to investigate the effectiveness of four
different word embedding methods for training vulnerable code
classifiers. Figure 1 shows the overview of our approach. In the
initial stage, the system loaded the dataset files and transformed
them into sequences of word tokens which originally are code iden-
tifiers, variables, etc. Each of these sequences stands for a semantic
function representation. By processing the file names, the list of vul-
nerability labels was generated correspondingly. The next stage is
the encoding phase. Here, the system executed the predefined word
embedding algorithm to train and map the sequences of tokens into
vector representations. These vectors will then be partitioned into
training and test sets. Eighty percent of the vector representations
are fed to a designated neural network for training the vulnerability
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Figure 2: Bi-LSTM model with the Hierarchical Attention Network (Bi-LSTM HAN)

detector. When the training process was finished, the rest of the
representations were tested by the trained detector. After the model
was tested, the vulnerable probabilities of the test samples were
generated correspondingly to a raw CSV file. Finally, our system
called a script to process the CSV file data and sorted the list of test
names to another table in the order of their vulnerability probability.
The performance metrics calculation and detection logs were then
automatically collected.

3.2 Encoding Vector Representations

In this phase, each of the sample files was eventually transformed
into a vector representation. This representation is responsible for
keeping both semantic and syntactic knowledge derived from the
source code. In order to obtain the code representations, the em-
bedding layer was initially defined in a configuration file. After the
system finished generating the labels and extracting the sequences
of code tokens from the dataset, the word embedding layer was then
trained from all the extracted tokens. Next, the system loaded the
trained embedding layer to transform the code sequences into the
unified length vectors. Regarding the content of the two datasets,
more than 90% of the samples were found to have the sequence
length shorter than 1000. Therefore, we select the unified length of
the code sequence to 1000 to balance the sparsity and the length
of the dataset [15]. The functions which had the sequence length
longer than 1000 are truncated to 1000. In contrast, the vector rep-
resentations were appended zeros in case their sequence lengths
were shorter than 1000. In our work, Word2Vec, GloVe, FastText,
and GloVe pre-trained models (GloVePre) [21] were implemented.
We configured the dimension setting (d= 100) as the default for all
the embedding methods.

The Word2Vec model was originally implemented in the Lin
API [14]. The model was provided by the GenSim [24] package. It
provided two training algorithms namely Continuous Bag of Words
(CBOW) and Skip-gram. Skip-gram aims to predict the context of
a word, while CBOW learns to predict the word by its context.
Hence, CBOW was selected to learn the syntactic code sequence
knowledge but not its context. The embedding dimension size for
the word vector is the same as d, and its window is 5. In addition,

the GloVe was implemented by the glove-python package with
the learning rate at 0.05. The window setting is 10, and the model
was trained with four threads in 500 Epochs. The vector represen-
tations obtained from the GloVe model are quite different from
Word2Vec since GloVe presented its representations by factorizing
the logarithm of the corpus word co-occurrence matrix.

The GloVePre model was implemented to watch the baseline
difference between converting words to vectors and code identifiers
to vectors. The pre-trained layer was selected with the 100d pre-
trained model GloVe.6B.100d.txt. Finally, the FastText model was
constructed from the GenSim package. To train the FastText model,
the number of threads and the window size were configured to 4 and
5 like in the Word2Vec model, while the rest of the parameters were
set as default. In our work, FastText and GloVe were regarded as the
main comparisons to the Word2Vec model in training the neural
networks. Particularly, FastText can construct the vector for the
word from its character n-grams even when the word is out of its
vocabulary. Altogether, the code sequences were transformed into
vector representations with the shape of (1000,10) by the selected
embedding models.

3.3 Training Deep Models

The previous phase passes the meaningful code embedding vectors
as inputs to train a predefined neural model. Particularly, the train-
ing and validation process utilized 80 percent of the embedding
vectors. By learning from the extracted information from those
vectors, the model could therefore differentiate the vulnerable and
non-vulnerable code files. Our work concentrated on extending
the evaluation of different code representations. We selected the
Bi-LSTM, the Text-CNN, the DNN, and the Bi-LSTM HAN [6] mod-
els for learning the features extracted from the embedded code
representations. The three preceding models were originally built
in the API, while the Bi-LSTM model with Attention Mechanism
was selected as an extra model for comparison.

The Bi-LSTM, Text-CNN, and DNN models in this work were
designed in the same way as those in the original API [12]. Figure 2
illustrates the network architecture of the Bi-LSTM HAN model; it
consists of six layers. The first layer, which takes the vector inputs
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Table 1: The distribution of the vulnerable functions on two datasets.

Training and validation set (unit: files) Test set (unit: files)
Dataset
The vulnerable Total number The vulnerable Total number
number number
The Nine- projects dataset 1155 48934 318 12234
The SARD dataset 31682 60000 3318 15000
Table 2: Performance Metrics.
Metric Name Formula Explanation
. TP@k% The proportion of top-K functions that are actual
Precision at rank K (O e ——
TP@k%+FP@k% vulnerable functions.
_ TP@k% The proportion of the relevant functions that are in the
Recall at rank K ROK% = ——————————
TP@k%+FN@k% top-K.

from the embedding layers, is a bidirectional LSTM recurrent layer
with 64 LSTM cells. The second layer is the attention layer which
can provide key features for training more precisely the prediction
model. The third layer is a dropout regulation layer with the dropout
rate at 0.5. The last three layers are dense layers. The first dense
layer contains 64 neurons, and the number of neurons is decreased
by fifty percent in the next dense layer. The last dense layer has
only one neuron and converges the output into a singly probability
by using sigmoid activation function.

4 EXPERIMENTS
4.1 Experimental Setup

We set up the experiments to address the following research ques-
tions:

® Question 1: Would changing the embedding method improve
the effectiveness of the vulnerability detector?

® Question 2: How does each combination of the embedding
technique and the neural model perform when using differ-
ent dataset?

® Question 3: Can changing the neural network structure affect
detection performance?

In summary, we had trained and tested 16 classifiers for each
dataset. In detail, we applied four embedding methods to train and
test four different neural networks on two genres of datasets re-
spectively. We configured the Stochastic Gradient Descent (SGD) as
the optimizer for all the networks, followed by the default settings
of Keras. The loss function was set to the binary cross-entropy
algorithm. The deep learning models were implemented in Python
(version 3.6.9) using Keras (version 2.2.4) with a TensorFlow back-
end (version 1.14.0) [1]. Word2Vec and FastText models were con-
structed by the GenSim pip library (version 3.4.0) while the GloVe
model was used from the glove-python (version 1.0.1) package
[11]. Our experiments were designed and carried out on an Ubuntu

server (18.04 LTS) having 64GB RAM with an NVIDIA GeForce
RTX 2080 SUPER 8GB GPU and an Intel(R) Core (TM) i7-9700K
3.60GHz CPU.

4.2 Datasets

In this work, we utilized two different vulnerability datasets for
training the classifiers. Both datasets contain files written in the C
program language where each file represents either a vulnerable
or non-vulnerable function. The first dataset is the Nine-projects
dataset which was originally proposed in the benchmark API [14,
19]. It was constructed from nine open-source projects with the
vulnerability information extracted from the National Vulnerability
Database [20] and the Common Vulnerabilities and Exposures [5]
websites. The second dataset is obtained from the Software As-
surance Reference Dataset [3, 26] project, which contains a large
number of the artificially synthesized function files. The project
covers the vulnerability test functions for C/C++ and Java. In this
paper, we only used the C source code for our experiments. Follow-
ing the studied experiments in the benchmark API, we randomly
extracted 35000 vulnerable and 40000 non-vulnerable C function
files from the SARD functions dataset provided by the same GitHub
repository. The system loaded one dataset at a time. After being
encoded to the labeled vectors, the dataset is distributed with the
rate of 0.8 for the training and validation set, and 0.2 for the test
set. The content of the datasets is described in Table 1. We use this
data partition setting to train and test all the deep learning models.

4.3 Performance Metrics

Precision, Recall, and F1-score are generally used for evaluating
the performance of deep learning models. Nevertheless, in many
cases of vulnerability detection, the dataset imbalance between
non-vulnerabilities and vulnerabilities showed that these metrics
would undervalue the model detection performance [14]. Therefore,
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Table 3: Distribution of precision and recall over top k% retrieved functions among the four models tested on the Nine-projects
dataset: (1-4) DNN, (5-8) Text-CNN, (9-12) Bi-LSTM, (13-16) Bi-LSTM HAN. The highest values for each model are in bold.

Precision and Recall calculated for top k% retrieved functions

Index Model Embedding | Dataset 1% 10% 20% 50%

P k% R k% P_k% R_k% P k% R k% P k% | R k%
1 DNN Word2Vec 9 Projects 34.4% 13.2% 17.3% 66.7% 10.7% 82.1% 5.2% 99.4%
2 DNN GloVe 9 Projects 37.7% 14.5% 16.5% 63.5% 10.2% 78.6% 5.1% 97.2%
3 DNN FastText 9 Projects 23.8% 9.1% 16.8% 64.5% 10.4% 79.9% 5.0% 96.9%
4 DNN GloVe_Pre | 9 Projects 39.3% 15.1% 15.6% 60.1% 10.4% 79.9% 5.0% 95.6%
5 Text-CNN Word2Vec 9 Projects 85.3% 32.7% 21.3% 81.8% 11.7% 89.6% 5.1% 98.7%
6 Text-CNN GloVe 9 Projects 86.1% 33.0% 21.7% 83.3% 11.9% 91.2% 5.2% 99.1%
7 Text-CNN FastText 9 Projects 81.2% 31.1% 21.3% 81.8% 11.6% 89.3% 5.1% 98.4%
8 Text-CNN GloVe Pre | 9 Projects 83.6% 32.1% 21.1% 81.1% 11.8% 90.9% 5.0% 96.9%
9 Bi-LSTM Word2Vec 9 Projects 86.9% 33.3% 21.3% 82.1% 12.1% 93.1% 5.1% 98.7%
10 Bi-LSTM GloVe 9 Projects 82.0% 31.5% 20.5% 78.9% 11.5% 88.4% 5.2% 99.4%
11 Bi-LSTM FastText 9 Projects 86.1% 33.0% 22.1% 84.9% 12.2% 93.7% 5.2% 99.7%
12 Bi-LSTM GloVe Pre | 9 Projects 74.6% 28.6% 20.3% 78.0% 11.6% 89.3% 5.1% 98.4%
13 Bi-LSTM_HAN Word2Vec 9 Projects 69.7% 26.7% 21.2% 81.5% 11.9% 91.2% 5.1% 98.1%
14 Bi-LSTM_HAN GloVe 9 Projects 74.6% 28.6% 19.8% 76.1% 11.3% 87.1% 5.1% 98.4%
15 Bi-LSTM_HAN FastText 9 Projects 771% 29.6% 19.7% 75.8% 1.7% 89.6% 5.1% 98.7%
16 Bi-LSTM_HAN GloVe_Pre | 9 Projects 66.4% 25.5% 20.0% 76.7% 11.7% 89.9% 5.0% 96.9%

the metrics applied for evaluating our classifiers are the ranked
retrieval precision and recall (P@K% and R@K%). Moreover, our
approach aimed for the retrieval task of vulnerable function, these
metrics are well recommended for this task and would be more
appropriate for evaluating the detection results [16]. In detail, when
a detector finished testing, it produced a ranked list of functions
by sorting the vulnerability probability. Among the top k percent
of the total retrieved functions, we have TP@k% stands for the
number of the truly vulnerable samples, while FP@k% denotes
the false vulnerable ones. Next, FN@k% denotes the number of

the truly vulnerable functions that could not be discovered when
retrieving the top k% highest vulnerable probability. Accordingly,
P@K% and R@K% are then calculated as in Table 2.

5 RESULTS
5.1 Evaluation of the Vulnerability Detectors
on the Nine-projects dataset

Table 3 indicates the detection results of all trained models on the
test set of the Nine-projects dataset. Specifically, the first four rows
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Table 4: Distribution of precision and recall over top k% retrieved functions among the four models tested on the SARD dataset:
(1-4) DNN, (5-8) Text-CNN, (9-12) Bi-LSTM, (13-16) Bi-LSTM HAN. The highest values for each model are in bold.

Precision and Recall calculated for top k% retrieved functions

Index Model Embedding | Dataset 1% 10% 20% 50%

P k% R k% P k% R k% P k% R k% P k% | R k%
1 DNN Word2Vec SARD 79.3% 3.6% 59.7% 27.0% 51.8% 46.9% 41.3% | 93.4%
2 DNN GloVe SARD 37.3% 1.7% 42.7% 19.3% 40.8% 36.9% 38.2% 86.4%
3 DNN FastText SARD 7.3% 0.3% 8.3% 3.7% 16.1% 14.5% 29.3% 66.1%
4 DNN GloVe Pre | SARD 46.7% 21% 43.9% 19.8% 42.4% 38.4% 39.4% | 89.0%
5 Text-CNN Word2Vec SARD 100.0% | 4.5% 100.0% | 45.2% 87.9% 79.5% 44.2% | 99.9%
6 Text-CNN GloVe SARD 100.0% | 4.5% 100.0% | 45.2% 78.2% 70.7% 435% | 98.2%
7 Text-CNN FastText SARD 100.0% | 4.5% 100.0% | 45.2% 86.1% 77.9% 436% | 98.6%
8 Text-CNN GloVe Pre | SARD 100.0% | 4.5% 100.0% | 45.2% 86.9% 78.6% 441% | 99.6%
9 Bi-LSTM Word2Vec SARD 100.0% | 4.5% 100.0% | 45.2% 89.1% 80.6% 44.2% | 100.0%
10 Bi-LSTM GloVe SARD 100.0% | 4.5% 100.0% | 45.2% 88.9% 80.4% 44.2% | 100.0%
1 Bi-LSTM FastText SARD 100.0% 4.5% 100.0% 45.2% 89.1% 80.6% 44.2% 100.0%
12 Bi-LSTM GloVe Pre | SARD 100.0% | 4.5% 100.0% | 45.2% 88.7% 80.2% 44.2% | 100.0%
13 Bi-LSTM_HAN Word2Vec SARD 100.0% | 4.5% 100.0% | 45.2% 88.6% 80.1% 442% | 99.9%
14 Bi-LSTM_HAN GloVe SARD 100.0% | 4.5% 100.0% | 45.2% 88.8% 80.3% 44.2% | 100.0%
15 Bi-LSTM_HAN FastText SARD 100.0% | 4.5% 100.0% | 45.2% 88.9% 80.4% 44.2% | 100.0%
16 Bi-LSTM_HAN GloVe_Pre SARD 100.0% 4.5% 99.9% 45.2% 88.7% 80.2% 44.2% 100.0%

summarize the performance of the DNN models trained on four
embedding methods. The DNN model trained on the GlovePre em-
bedding technique achieved the highest precision and recall when
retrieving the top 1% of the vulnerable samples. However, the DNN
model that used Word2Vec achieved the highest precision and recall
for the other categories of Top k% retrieved functions. At the top 1%
of the retrieved functions, the DNN applied GloVe model presented
better results than the one using FastText. Nonetheless, when re-
trieving more than 10% vulnerable files, there are no significant
differences in the performance among the models that used GloVe,

FastText and GlovePre. Among the trained Text-CNN models, the
model combined with the GloVe embedding techniques got the
highest detention rates for all the top k% items (Table 3, Index 5 -
9). This is followed by the model which employed the Word2Vec
method. Additionally, the Text-CNN models that used FastText, and
GlovePre did not show clearly which one is better than the other
and had the lowest detection rates.

Table 3 (Index 9 - 12) illustrates the detection performance of
the Bi-LSTM detectors trained on four embedding methods. The
Bi-LSTM models trained on Word2Vec and FastText showed quite
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identical rates at Top 1% retrieved functions. Their precision rates
were 86.9% and 86.1% respectively, and these are the highest de-
tection rates among all of the trained deep models. For the rest
of the Top k% items, using FastText achieved better results than
using Word2Vec. The lowest testing performance was the model
that applied GloVe, followed by the one that applied GlovePre. In
the group of Bi-LSTM HAN models, the model which employed
FastText had the highest precision and recall rates at Top 1% and
Top 50%. When retrieving 10% and 20% of the detector which used
Word2Vec got the best performance. The Bi-LSTM HAN models
that combined with GloVe and GlovePre had the most insufficient
detection results.

Overall, the Bi-LSTM detectors that applied FastText achieved
the highest performance on the Nine-projects dataset at Top 10%,
Top 20%, and Top 50% categories. The Text-CNN classifiers gener-
ally perform better than the Bi-LSTM with the attention mechanism.
The DNN classifiers had the lowest detection results when compar-
ing to the other classifiers. The DNN model is a generic structure
and not specifically designed for processing sequential data nor
for spatial data. This explain why the DNN perform poorly with
the sequential code data. Given these points, our results clearly
showed that both changing the neural network structures and the
embedding techniques could impact noticeably to the detection
results on the real-world vulnerability dataset.

5.2 Evaluation of the Vulnerability Detectors
on the SARD dataset

For the model test results on the SARD dataset, the detectors that
employed the DNN model showed the most inefficient detection
rates. To be more specific, Table 4 (Index 1 - 4) indicates that the
DNN model combined with the Word2Vec embedding method pro-
duced the highest detection rates. This is followed by the models
that used GloVe and GlovePre respectively.

The DNN model which employed FastText had the lowest detec-
tion rates. In fact, this result is quite identical to the DNN models
which were trained on the Nine-projects dataset. Among the trained
Text-CNN models, the model using Word2Vec achieved the most
effective performance, while the one that employed GloVe was the
least effective model. When retrieving less than 20% of the vulnera-
ble samples, all of the Text-CNN models could retrieve 100% of the
vulnerable files.

In addition, Table 4 (Index 9 - 16) shows that the detection rates
at Top 1%, Top 10% and Top 50 % of the vulnerable samples were
similar between the Bi-LSTM and Bi-LSTM HAN models. In this
case, the results of the two models also showed that changing the
embedding methods does not affect the performance. Owing to
the fact that the SARD dataset had a well-balanced rate between
vulnerable and non-vulnerable samples, the detectors could be
trained sufficiently. Particularly, all the detectors can also reach
their highest precision at Top 1% and Top 10% categories like in the
case of Text-CNN.

In summary, the detectors that employed Bi-LSTM and Bi-LSTM
HAN performed better than those used Text-CNN on average. This
can be explained since Bi-LSTM model is well-known for dealing
with sequential data. Furthermore, the bidirectional characteristic
of Bi-LSTM allowed the model to learn effectively the sequence data

ICFNDS 20, November 26-27, 2020, St.Petersburg, Russian Federation

from both forward and backward directions. Our results showed
that changing the embedding techniques still affects the detection
performance in the case of the DNN and the Text-CNN models.
Meanwhile, the Bi-LSTM and Bi-LSTM HAN detectors showed no
significant differences in detection performance regardless of using
different embedding methods.

6 CONCLUSION AND FUTURE WORK

This paper presented an approach to compare the effectiveness of
four word embedding methods for several neural networks. The sys-
tem trained the models and tested them on two genres of function
level datasets written in the C programming language. Training
the detectors on the SARD dataset required more time since its size
is much larger than the other dataset. Among all of the considered
embedding techniques, FastText achieved the shortest time con-
sumption for training the vulnerability detectors, while training
with GloVe consumed the longest time.

With the real-world implemented dataset, the models showed
differences clearly in detection performance. In contrast, the trained
some models such as the Bi-LSTM models could present sufficient
but identical vulnerability retrieval results. This is due to the vulner-
ability patterns extracted from the artificially synthesized samples
that are much simpler to capture compared to the real-world sam-
ples by the neural networks. This is worth noticing since the real
vulnerable dataset in the released software code can be limited to
size and numbers in varied scenarios. Thus, it is vital to choose the
effective combination of embedding techniques and neural network
structures to build an effective detection system that can adapt well
to the dataset.

Our work evaluated the use of word embedding algorithms for
four different neural networks, and the system can train the vulner-
ability detectors at the function level. It can assist users to explore
the good combinations of embedding methods and deep learning
models to build effective vulnerability detection systems. In the
future, we can extend our work in several ways to improve system
performance. First, we can collect and build up the volume of the
real vulnerable dataset to resolve the imbalance issue in the open-
source dataset. Second, we improve the input embedding layer for
the neural networks by using a Lexer to build an intermediate rep-
resentation of the code. This could use a much smaller vocabulary
size and consequently reduce the dimensionality of the training
examples. Finally, more complex neural network models should be
experimented with to reduce the gap between natural language text
and programming. This would allow the vulnerability detection
system to learn better and accommodate to other programming
languages.
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