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ABSTRACT
The impact of Artificial Intelligence (AI) on health care has been dra-
matic; however, there is a considerable degree of skepticism among
clinicians about the real-world applicability of advanced predictive
models; for this reason, it is particularly important to emphasize the
need for proper model validation in machine learning. Often model
skepticism is well-placed as modelers may overclaim the real-world
replicability for their models, understate the known limitations, or
simply not be aware of the hidden limits of the modeling approach.
Educational approaches limited to rigorous and thorough justifica-
tion of all model design decisions may not be practical given model
complexity. This also becomes more challenging as state-of-the-art
models with the highest benchmark accuracy are becoming less
interpretable, e.g. ensemble methods or deep learning. However, in
the same way that test-driven development has been a successful
paradigm to navigate the complex coding landscape through a fo-
cus on testable results, we have observed a similar improvement in
modeling strategy when the focus of a predictive model is driven by
validation targets rather than more abstract, theoretical concerns.
In this study, we provide an overview of the common limitations of
model validation methods in medicine. We then present solutions to
address such limitations, with a focus on strengthening the validity
of predictive models.
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1 INTRODUCTION
Machine learning and AI are used extensively in medicine and
further leverage the massive amount of data collected to improve
clinical decisionmaking [1], [2]. Amajor impediment in the medical
application of machine learning and AI is establishing the reliabil-
ity of these predictive models in practice [3], [4]. There are many
scientific and social factors favoring the publication of predictive
models with inflated accuracy, and fewer incentives for machine
learning practitioners to take the additional steps to better evaluate
the real-world utility of their models [5]. Clinicians alone have little
time or resources to vet data driven models on an individual basis,
and when models are applied automatically, e.g. in electronic health
record (EHR) systems, the skepticism and improper validation dur-
ing the vetting process can delay proper application of beneficial
predictive models. Additionally, clinician judgement is often based
on reportable decision-making steps or developed intuitions that
have been verified as accurate over the course of a career, while
such interpretability is often not available to machine learning mod-
els without significant additional steps [6], [7]. When relatively
opaque machine learning models consistently underperform in clin-
ical settings in relation to published performance metrics, it is not
unreasonable to treat such models with skepticism. Therefore, it
is critical to teach the proper strategies for developing models for
health care [8].

Predictive models often augment standard clinical practice by
performing a preliminary screening based on routinely collected
data. For example, in cardiovascular medicine the most promising
directions for AI models include automated risk prediction which
can alert a clinician to a person at high risk of a cardiovascular
event based on a number of factors that a practicing physician may
not have access to in a timely way [9], [10]. This can also include
the prediction of major complications, including death, following
surgery [11]. In fact, available public data sets enable efficient cre-
ation and testing of models to predict a variety of diseases including
heart disease, diabetes, liver disease, dengue fever, and hepatitis
[12]. Data-driven screening helps to minimize the risks of classifier
mistakes, but improved models can help make the process more
reliable.

We also emphasize the need for assurances through properly
validated models as a means of eventually moving beyond the re-
quirement for immediate human interpretability of decisionmaking.
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Much of machine learning policy has focused on the need for model
decisions to be interpretable [13]. This need for accountability has
resulted in the EU declaring that users may have a “right to an
explanation” from machine learning models applied to their data
[14]. Researchers who create methods of explaining the results of
machine learning note the limitations [15], [16]. In particular, requir-
ing language-level, simple mathematical, or visual descriptions of
decision-making steps may be unnecessarily limiting [17]. The prac-
tical utility of knowingwhat led to a diagnosis is beneficial, however,
there are contexts and modeling strategies where a requirement
for thorough understanding of the decision making would limit the
accuracy a model could achieve [18]. An emphasis on proper vali-
dation rather than detailed human language-level understanding is
particularly beneficial in the modern era as state-of-the-art models
in terms of performance are often the most challenging to explain
in a classical way.

We have structured this paper to draw attention to several com-
mon mistakes in establishing validity of machine learning models
in medicine; the most common are presented in Section 2, and
methodological improvements are addressed alongside the mis-
takes as they are presented. The later sections are structured to
provide the necessary tools to address the more sophisticated con-
cerns. Section 3 addresses one of the main limitations of reported
machine learning-based models for clinical application - the lack of
proper sampling for training and testing. Section 4 addresses why
it is important to use the right metrics for validating a predictive
model in medical contexts. This section emphasizes classification
and includes a discussion of regression metrics for judgements of
intensity or clinically useful scoring. Finally, Section 5 presents
how to customize models for any specific application with explicit
suggestions and illustrative examples. An overview of using proper
validation of machine learning approaches in medicine is provided
in the conclusion.

2 COMMON VALIDATION MISTAKES
We list the following common mistakes in assessing machine learn-
ing model prediction when applied to medical applications:

• Equating validation set and test set: Only a simple cross-
validation reported

Some computer scientists are aware of the need to separate
training and test data and come to the conclusion that any use of
cross-validation satisfies this concern. Others are aware of the issue
of overfitting even with cross-validation, but understand the nuance
that as long as a limited number of model variants are tested, over-
fitting through cross-validation is minimized. This may have been a
viable strategy in the past when fewer model variations were tested
in each study and the use of reporting k-fold cross-validation results
alone would be less likely to produce biased metrics. However, now
modern hardware enables the testing of many thousands or even
millions of model variations through feature selection, hyperpa-
rameter tuning, model selection, or even ensemble methods. The
potential for overfitting during a simple cross-validation procedure
is much more likely and is a growing concern, with a number of
ways to address it [19], [20], [21].

• Shared variability of train and test samples

For proper model validation in machine learning, the test set
should be independent of the training and validation sets to avoid
inflating reported model accuracy. However, contamination can
occur between training and test sets through a variety of mecha-
nisms that may not be readily apparent to the model designer or
evaluator.

Many models vary depending on the place in which they are
applied. Clearly there is a need to test for different subjects, but
dependence can also come from the same experimenter perform-
ing a procedure, or the same clinic, or the location in which the
population of people reside. In short, any variability present in the
population to which a model will be applied should be systemati-
cally considered when evaluating a given test set. Modelers may
prefer to avoid such variability for cleaner interpretability, but in
clinical practice this variability is the inherent nature of the problem
and a common source of disconnect between reported experimental
accuracy and the accuracy observed in real-life application.

• Relying on the default choice of evaluation metrics
Accuracy is the classification metric that is easiest to understand

but also the one most open for abuse. As a classic example, many
naive threat detection systems can easily be 99.9% accurate by
labeling all cases as non-threatening. Using recall, precision, or
their combination as an F1 score, helps to address this concern,
though other interpretable solutions will be discussed later.

For regression, there is an emphasis onmean squared error (MSE)
because of its prominence as the cost function of choice in intro-
ductory statistics courses and a first exposure to regression. This
reliance on MSE can lead to poor models in practice, particularly for
models addressing a wide range in target values. The right choice of
metric involves judgements on howmuch the model should address
outliers compared to the more common cases, and also what types
of errors would be considered equally costly.

• Lack of validation in software industry
Though such a mistake is not common in the biomedical com-

munity, this is not an unusual observation in papers focused on
software development. For example, in a study by Zelkowitz and
Wallace of 600 articles in software engineering, it was found that
30% of the papers had no validation when it could reasonably be
expected. Additionally, 34% of the papers were validated, but only
by data collected from the authors themselves [22]. (Figure 1)

A lack of independent validation may be from naive modelers
who are not aware of basic overfitting concerns, but more often this
occurs due to a lack of emphasis by the designers. Medical device
prototype articles that focus on system design and implementation
may fit a predictive model then perform minimal testing assuming
that is left for future work. In other cases, efforts may be made to
address reviewers to demonstrate efficacy with only an analysis
of their own data or very limited convenience samples, with little
concern for proper statistical inference.

• Non-representative samples: Absence of natural variability
in population

This error occurs when the population the model will be applied
to is not well represented in the data sampled. This can range
from common concerns like demographics not being represented
to more nuanced concerns that can impact model performance,
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Figure 1: Survey of validation strategies in software engineering by Zelkowitz and Wallace [22]. 600 published software engi-
neering articles were evaluated on the method of validation used, designating “no validation” or “validation only by authors”
in articles where additional validation could be reasonably expected.

such as fitting a model for particular subpopulations in particular
contexts, e.g. patients with a particular disease severity at home
versus in the clinic.

There is a general tradeoff in acquiring data with minimal vari-
ability to remove extraneous factors versus more natural data which
may lead to quantitatively poorer models but more robust perfor-
mance outside of research settings; concerns of realistic application,
when addressed, may be left for the discussion section. However, to
evaluate clinical significance it is important that natural variability
is present in the test cases; also, as discussed in later sections, such
natural variability should be present during training and validation
to improve performance in practice.

3 LIMIT THE IMPACT OF APPLYING MANY
MODELS DURING CROSS-VALIDATION

Simply identifying the common mistakes made in model validation
is a helpful first step. One of the most prevalent issues is the lack of
proper testing of cross-validation results [23], so in this section, we
briefly step through some common ways in which this limitation
and others previously mentioned can be properly addressed.We end
this section with a strong recommendation to consider nested cross-
validation to avoid concerns with arbitrarily selecting a hold-out
test set.

3.1 Pre-registration
Pre-registration is becoming more common in science [24]. This
allows reviewers to note how many models and statistical tests
are applied when significant results are reported to judge the po-
tential for false positive results. Tools include pre-registration at
clinicaltrials.gov and the center for open science OSF study pre-
registration. When pre-registration is not feasible, an exhaustive
reporting of model variations applied to any portion of the data, but
not fully elaborated upon in the manuscript, can help provide simi-
lar information for judgements about overfitting due to multiple
testing.

3.2 Limit Variations Tested during
Cross-validation

Cross-validation is a valuable tool for finding the best model pa-
rameters, however overfitting is a common problem particularly
when many model variants are tested [25]. The impact of multiple
testing during cross-validation is minimized if only a few models
or hyperparameters are tested. Studies which do not use a hold-out
test set during cross-validation rely on this fact, knowingly or not.
If the model performance is to be evaluated using cross-validation
but without a separate test set, the potential for overfitting should
be documented in the manuscript. Furthermore, if it is observed
that many different folds during validation testing select the same
set of parameters producing the preferred model there is stronger
evidence that the model is not overfitting but simply picking the
best model variant; demonstrating the variation in models selected
for each fold can also provide additional evidence that overfitting
is not occurring.

3.3 Nested Cross-validation
Even though simple training/test cross-validation alone is not suffi-
cient to completely remove the potential for overfitting [26], more
sophisticated forms of cross-validation do avoid overfitting. In the
classic training/validation/test set paradigm, the validation set can
be used to select all aspects of the model and a hold-out test set is
used for the final evaluation. However, a hold-out test set may not
be recommended when there is insufficient data. A hold-out test
set which is too small may not represent the population well, and a
larger test set may remove a significant amount of data that may im-
pact performance during training and validation iterations. If there
is limited data for a hold-out test set, but many model variations
will be tested likely leading to overfitting, nested cross-validation
should be considered [27].

Like classic cross-validation, during nested cross-validation the
data is split into “outer” training and testing partitions until all the
data has been a part of the testing partition; however, each training
partition is further divided using an “inner” cross-validation loop
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consisting of training and validation partitions. In this way, multiple
hyperparameters, models, or other model selection mechanisms can
be used to select the best model for application to the test partition
for each round.

4 VALIDATION METRICS APPLIED IN
MEDICINE

A model can be optimally trained and properly evaluated when
the metric of success best matches the needs of the anticipated
environment the model will be deployed in. In this section, we step
through a series of metrics that we believe should be considered
to improve clinical applicability of machine learning models. Each
section will begin with common metrics and end with metrics in
which greater adoption could improve clinical model applicability.

4.1 Classification Metrics
4.1.1 Metrics for Binary andMulti-class ClassificationMedical Prob-
lem. In the classic case of disease screening and diagnosis, the use
of sensitivity and specificity, rather than simply quoting an overall
accuracy metric, is well known [28]. The use of one of these two
metrics without fixing or addressing the other is generally not ac-
ceptable as one can often arbitrarily be increased by minimizing
the other. This is standard practice for binary classification prob-
lems in medicine. There is an increasing prevalence of multiclass
classification problems in medicine [29], [30], [31], [32], it may be
beneficial to emphasize the multiclass counterparts of sensitivity
and specificity. Recall is the percentage of correctly classified sam-
ples over all the samples of a given class. Succinctly, Sensitivity
is recall for the positive group while specificity is recall for the
negative group. The complement to recall is precision. Precision is
the percentage of correctly classified samples over all the samples
of a given class as identified by the classifier. Whereas recall is an
intuitive and readily interpretable metric for evaluating how well
a classifier will perform for an item of a known class, precision
provides the equivalent reliability metric for a sample as identified
by the classifier.

4.1.2 F1 Score to Balance Precision and Recall. When the applica-
tion of the multiclass classifier does not readily distinguish which
metric is preferred, the harmonic mean of precision and recall, F1
score can be used for a given class. The practical advantage of the
harmonic mean is that it heavily penalizes F1 score when either
precision or recall for a class is low. For example, let us consider
a naive binary classifier that always indicated a positive case for
an event which is rarely positive, say only 2% of the time. This
would result in 100% for recall for the positive case (sensitivity),
however, the precision for such a classifier, if samples are chosen
randomly from the population, would be only 2%. The arithmetic
mean of precision and recall in this case would be 51% which would
seem to give too much credit to this terrible classifier. However,
the harmonic mean, for which the F1 score is based, would report
only ∼ 4%. Precision, recall, or F1 score can be selected for opti-
mization in a straightforward way, especially for model selection
using cross-validation. Modelers would benefit from being aware
of these options in their model package of choice.

4.1.3 Context of Misclassification by Confusion Matrix. For model
tuning, particularly with selection during cross-validation, an over-
all metric is necessary to select the best model. However, for inter-
pretation and human evaluation it should be noted that, in most
cases, overreliance on a single metric for a multiclass classification
is an oversimplification of the results, as some classes are more
readily distinguished than others, and the manner in which misclas-
sification occurs provides useful information. In this case a provided
confusion matrix or reported scores for each class and common
misclassifications are more valuable to provide context.

4.1.4 Addressing Class Imbalance. One of the main concerns in
providing an overall classification metric is how class imbalance
should be addressed. There are a few common options in averaging
scores over multiple classes to address this:

• Precomputed: Determine the results across classes and cal-
culate the true positives, false negatives, and false positives
to compute overall metrics. This is a common default when
optimizing based on overall accuracy.

• Unweighted average: Average the score reported for each
class and calculate the average, regardless of the number of
samples in each class.

• Weighted average: Average the score across classes, but
weigh the contribution of each class by a function of the
number of samples. If single errors from each class are to be
approximately equal, the weight can be proportional to the
size of the class, however, arbitrary weights can be used if
certain classes are more critical, or costs for particular errors
are known.

4.1.5 ROC-AUC Curve for Evaluating Model Efficiently in Binary
Classification. In the case of binary classification, a model can be
fit with an option to tradeoff between higher sensitivity or higher
specificity. If a reasonable range for either of these parameters
cannot be estimated, one may evaluate the overall discriminability
of the model over a range of sensitivities and specificities.

The ROC curve (Receiver Operating Characteristic) is a plot
which displays the change in the sensitivity at fixed specifiers.
The common terminology is the true positive rate (equivalent to
sensitivity) is plotted along with false negative rate (1 - specificity).
ROC curves are used in medicine for the evaluation of a clinical
test. In order to distill the information in the ROC curve to a single
metric to represent discriminability, the area under the ROC curve is
often used - abbreviated ROC-AUC. A naive classifier would result
in a 0.5 ROC-AUC while a perfect discriminator would evaluate to
1. This is a valuable metric in evaluating binary classifiers when
the application domain is not clear about an appropriate specificity
for direct comparison of different classification strategies.

4.2 Regression Metrics
The evaluation metrics used when predicting a numeric value can
often be more challenging to interpret than for classification. Gen-
erally, the goal is to minimize a collective error metric over a set of
test cases. There are a variety of ways to combine those errors and
each method is based on a set of assumptions of which the modeler
should be aware.
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• Minimizing mean square error (MSE) is a common default,
but comes with assumptions: For most people this is the
default scoring metric used. There are many reasons for this,
with the primary reason being that a first exposure to re-
gression is often with linear regression using least-squares
techniques [33]. Mathematically, summed squared distances
represent natural Euclidean distance and minimization tech-
niques for quadratic cost functions are fairly simple. Practi-
cally, if there is no reason for a person to prefer any of the
metrics below, this is not an unreasonable choice as it pe-
nalizes large errors more than a series of smaller errors, but
not excessively so. In some cases, modelers report the sum
of squares error, however, to aid in interpretability the root
sum of squares error (RMSE) should be reported as the units
will be the same as the original measurement and readily
interpretable.

• Minimizing mean absolute error (MAE) for weighing errors
across all samples more: If the goal is to strictly minimize
the sum of errors between regression estimates and the true
values, the absolute error metric is the preferred metric as
it penalizes errors in proportion to their magnitude (rather
than the square in MSE). Though sum of squares minimiza-
tion is more common across regression software packages,
often an equivalent routine exists to minimize absolute error.
This metric is also simple to select for any model during
cross-validation during model selection. Note, however, that
both MSE and MAE cause trained models to bias toward
correction of high magnitude values [34].

• Minimizing log error to penalize percent error: If the goal is
to minimize the percent error rather than the magnitude of
the error directly the metric of choice is the log error. This
is a result of the natural property of the logarithm as multi-
plicative errors become additive errors when a logarithmic
function is applied. Note that one can either formulate the
log error with absolute error terms or as a sum of squares.
In the case of the log of square errors, the preferred metric
is the root mean squared logarithmic error (RMSLE) which
penalizes similar percentage errors but penalizes higher per-
centage outliers to a greater degree than absolute log error
would.

4.3 Explicit Cost Function with Bayesian
Decision Theory

The previous metrics all weigh errors differently depending on the
type of error, however, all do so in relative terms without explicitly
referencing the cost of an error. In medicine, although clinicians
often weigh competing risks and costs on a daily basis there is a nat-
ural aversion to making those costs explicit. In any case, the tools of
Bayesian decision theory can be applied in scenarios with explicit a
priori costs or implicit costs to be estimated from repeated decisions.
If the costs of an error are known or approximated, Bayesian deci-
sion theory can be used to build a model which explicitly minimizes
such costs. If the task is a multi-class classification, a matrix can
simply be filled in with the relative costs of each type of misclassi-
fication. For example, errors in screening tests and diagnostic tests
can often be weighted differently depending on the consequences.

5 TAILORING MODEL TO THE INTENDED
APPLICATION

5.1 The Case for Collecting More Realistic Data
Predictive models are often developed with specific populations and
contexts. This may lead to developed models that perform better
for some populations in particular contexts while being rendered
inapplicable to others. Validity can be lost when any system is
used for a population or in a context for which it wasn’t properly
tested. The goal of the reviewer, funder, and ultimately consumer
of medical predictive models is to assure the test scenarios reflect
the target population, and the proper context for that population.
This is often summarized as seeking more natural variability in the
model rather than limited, lab-acquired data sets.

When more realistic data is collected, the goals of the model
have to adapt to the challenges in the research approach [35]. More
natural data collection will likely be more difficult depending on
the way in which the data is acquired (e.g. from patients, from
hospitals, by natural observation) and accuracies may suffer when
there is insufficient data as a result of these difficulties. With more
variability, more data is required to reach peak performance. A
recommended way to assess the need for more data is through
the use of a learning curve which plots the accuracy of generated
models in the test sets relative to the amount of data collected.
With difficult-to-collect data (e.g. rare clinical patient samples) an
upward learning curve can help support the potential for a mod-
eling approach with more data when there are practical limits to
preliminary real-world sampling.

5.2 Emphasizing Subject-wise Cross-validation
Many researchers create predictive models with an understanding
that there is more variability across individuals than within indi-
viduals. When the goal of a predictive model is to predict future
status of an individual using prior data collected on that individual,
one can use validation methods that split an individual’s data be-
tween training and testing. When data on a particular individual is
plentiful, a model can be constructed using that individual’s data
only, however, as is often the case, the individual data can simply
be included with all subjects and split between training and test-
ing. Because across-person sample variability is often greater than
within-person variability, model testing with an individual’s data
in both train and test sets often leads to higher reported accuracy.

However, if the likely application is meant for use in a lab or
at-home setting where steps will not be made to collect an indi-
vidual’s data and tailor the model to the individual, such reported
results should be discarded. Straightforwardly, if the goal of the
developed model is to be applied to people for which it has not
been specifically trained, the modelers and reviewers should be
emphasizing subject-wise cross-validation. For specific recommen-
dations, subject-wise cross-validation should be primary rather
than secondary in an abstract and throughout the narrative of a
paper. Subject-wise cross-validation models will necessarily be less
accurate than individually-trained models, however, with enough
subjects the differences should be diminished. This can be observed
in learning curves where the accuracy on the test set is plotted
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Figure 2: Evidence for benefits of tuning machine learning models to subject populations and context (a) An activity recogni-
tionmodel applied to individuals with Parkinson’s disease performs poorly when trained on non-Parkinson’s health subjects,
but improves by 31.9% when trained on separate Parkinson’s subjects [37] and (b) An activity recognition model was testing
on data collected at home for incomplete spinal cord injury subject data. By training the model data from other subjects at
home, as opposed to similar subject in the instructed lab environment, the accuracy improved by 31.0% [41].

relative to the amount of data - in this case, the number of sub-
jects used. With enough subjects, over time similar individuals may
be represented in the data set which would cause the model to
converge with an individual or pooled subject model.

5.3 Tailoring to the Population
Trained models may function on subpopulations that differ from
the group for which the model was designed. However, in medical
application such uses are best validated for the particular popula-
tion. In the cases in which the model validation demonstrates poor
performance, it may be possible to improve that performance by
tailoring the model to the specific subpopulation.

For example, when creating an activity recognition system for
older individuals or people with movement disorders, unique pat-
terns of movement may be misidentified. A study validating step
counters among age groups demonstrated most function well for
young adults but tend to undercount among older adults [36].
Population-specific data can be directly used to improve training
accuracy. For example, Figure 2(a) shows a model trained on non-
Parkinson study participants performed poorly when applied to
participants with Parkinson’s (60.3% accuracy). However, when
the model was trained on separate Parkinson’s participants, the
model performance dramatically improved (92.2% accuracy) [37].
Similar improvements can be observed in other subject populations
including incomplete spinal cord injury subjects [38], lower-limb
amputees [39], and even toddlers [40]. A dramatic improvement in
accuracy is possible when trained with data from the population to
which the model will be applied.

5.4 Tailoring to the Context
Continuing to use activity recognition using wearable devices as an
illustration, it is well known that activity recognition systemswhich
are designed using data in the clinic often perform poorly when
used outside the clinic. One reason for this is that the types of move-
ments observed when instructed in the clinic differ significantly
from the natural movements at home. For example, instructing a

person to walk in the clinic leads to a very stereotyped pattern
of walking that will be fairly similar across individuals, whereas
someone naturally walking at home would have a different gait
including more irregular intervals of movement, changes in direc-
tion, and irregular cadence. To know how a recognition system
would work at home one it is important to also consider at-home
collected data for a proper assessment. However, we can do more
than simply validate in a particular context; through machine learn-
ing we can use data collected in a particular context to increase
the accuracy of a model in that context. For example, Figure 2(b)
exhibits an activity recognition study involving adult participants
with incomplete spinal cord injury, it was observed that accuracy
dropped to 54.6% when testing a classifier on at-home activities in
a lab setting. But when the classifier was trained on at-home data,
the accuracy increased to 85.6% [41]. In general, having data which
matches the context in which the data set will be applied enables
higher accuracy, particularly in scenarios where data is difficult to
acquire.

6 CONCLUSION
It is critical in the practice of medicine that decisions are made accu-
rately. Due to the challenge of thoroughly understanding decisions
of complex learning models, proper validation is becoming increas-
ingly critical. We addressed a number of common mistakes ranging
from a simple lack of adequate validation to common mistakes like
reporting validation error as test error. Poor subject sampling and
lack of natural variability in training and testing (variability that is
ever-present in medical applications!) are concerns that are simple
to state but nuanced to address.

We suggest some methodological improvements directly, such
as a greater use of subject-wise cross-validation and nested cross-
validation, which should be emphasized in machine learning and AI
education. It is also important to be aware of the implicit assump-
tions in the metrics used, or at least recognize alternate metrics and
practical reasons to consider them - e.g. mean error versus log error
metrics. Most importantly, in medical contexts the balance between
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predictive power and the need for natural variability can be simul-
taneously addressed through proper sampling of populations and
context. It is important that models designed for particular groups,
particular contexts, or even particular individuals be tested in a
way that matches how the developed model will be applied.

In conclusion, we note that by acquiring the data sets with more
natural variability tailored to the applied context, avoiding over-
fitting, and evaluating models by using more appropriate metrics,
predictive models in medicine will be more reliable, robust, and
replicable. Through this greater accuracy, we hope to see more
acceptance of machine learning in healthcare and a corresponding
increase in the benefits that quality predictive models can provide
for medical practice.
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