
Gated-Vdd: A Circuit Technique to Reduce Leakage in
Deep-Submicron Cache Memories

Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy, and T. N. Vijaykumar
School of Electrical and Computer Engineering

Purdue University
1285 EE Building

West Lafayette, IN 47907
icalp@ecn.purdue.edu, http://www.ece.purdue.edu/~icalp

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
ISLPED’00, Rapallo, Italy.
Copyright 2000 ACM 1-58113-190-9/00/0007...$5.00.

90

Abstract
Deep-submicron CMOS designs have resulted in large leakage
energy dissipation in microprocessors. While SRAM cells in on-
chip cache memories always contribute to this leakage, there is a
large variability in active cell usage both within and across appli-
cations. This paper explores an integrated architectural and circuit-
level approach to reducing leakage energy dissipation in instruc-
tion caches. We propose, gated-Vdd, a circuit-level technique to
gate the supply voltage and reduce leakage in unused SRAM cells.
Our results indicate that gated-Vdd together with a novel resizable
cache architecture reduces energy-delay by 62% with minimal
impact on performance.

1 INTRODUCTION
The ever-increasing levels of on-chip integration in the recent
decade have enabled phenomenal increases in computer system
performance. Unfortunately, the performance improvement has
been also accompanied by an increase in a chip’s power and
energy dissipation. Higher power and energy dissipation require
more expensive packaging and cooling technology, increase cost,
decrease product reliability in all segments of computing market,
and significantly reduce battery life in portable systems.

Historically, chip designers have relied on scaling down the tran-
sistor supply voltage in subsequent generations to reduce the
dynamic energy dissipation due to a much larger number of on-
chip transistors. Maintaining high transistor switching speeds,
however, requires a commensurate down-scaling of the transistor
threshold voltage giving rise to a significant amount of leakage
energy dissipation even when the transistor is not switching.
Borkar [3] estimates a factor of 7.5 increase in leakage current and
a five-fold increase in total leakage energy dissipation in every
chip generation.

State-of-the-art microprocessor designs devote a large fraction of
the chip area to memory structures — e.g., multiple levels of
instruction (i-cache) caches and data (d-cache) caches, TLBs, and
prediction tables. For instance, 30% of Alpha 21264 and 60% of

StrongARM are devoted to cache and memory structures [8].
Unlike dynamic energy which depends on the number of actively
switching transistors, leakage energy is a function of the number of
on-chip transistors, independent of their switching activity. As
such, caches account for a large (if not dominant) component of
leakage energy dissipation in recent designs, and will continue to
do so in the future. Unfortunately, current proposals for energy-
efficient cache architectures [7,2,5,1] only target reducing dynamic
energy and do not impact leakage energy.

There are a myriad of circuit techniques to reduce leakage energy
dissipation in transistors/circuits (e.g., multi-threshold or multi-
supply voltage design, dynamic threshold or dynamic supply volt-
age design, transistor stacking, and cooling). These techniques,
however, either impact circuit performance and are only applicable
to circuit sections that are not performance-critical, or may require
sophisticated fabrication process and increase cost.

Modern cache hierarchies are designed to satisfy the demands of
the most memory-intensive application phases. The actual cache
utilization, however, varies widely both within and across applica-
tions. We have recently proposed the Dynamically ResIzable
instruction-cache (DRI i-cache) [11], a novel cache architecture
that exploits this variability in utilization.

Our cache design presents the first fully-integrated architectural
and circuit-level approach to reducing energy dissipation in deep-
submicron cache memories. A DRI i-cache identifies an applica-
tion’s i-cache requirements dynamically, and uses a circuit-level
mechanism, gated-Vdd, to gate the supply voltage to the SRAM
cells of the cache’s unused sections and reduce leakage.

While voltage gating effectively eliminates the leakage in SRAM
cells, it may adversely impact cell performance and prohibitively
increase cell area. This paper evaluates in detail the design space
for gated-Vdd with respect to performance, energy, and area trade-
offs. Our results indicate that: (i) a PMOS gated-Vdd transistor
incurs negligible impact on cell performance and area but only
reduces leakage by an order of magnitude, (ii) an NMOS dual-Vt
gated-Vdd transistor virtually eliminates leakage with minimal
impact on the cell area but increases cell read time by 35%, (iii) a
wide NMOS dual-Vt gated-Vdd transistor with a charge pump
offers the best configuration and virtually eliminates leakage with
minimal impact on cell speed and area, and (iv) using gated-Vdd a
DRI i-cache reduces the overall energy-delay in applications by
62%.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F344166.344526&domain=pdf&date_stamp=2000-08-01

91

The rest of the paper is organized as follows. In Section 2, we
present an overview of a DRI i-cache. In Section 3, we describe the
circuit-level gated-Vdd mechanism to reduce leakage in SRAM
cells. In Section 4, we present experimental results. Finally, we
conclude the paper in Section 5.

2 DRI I-CACHE OVERVIEW
The key observation behind a DRI i-cache design is that there is a
large variability in i-cache utilization both within and across pro-
grams leading to large energy inefficiency in conventional caches;
while the memory cells in the cache’s unused sections are not
actively referenced, they leak current and dissipate energy. Our
approach to resizing the cache increases or decreases the number
of sets used in the cache. In this section, we present an overview of
a DRI i-cache’s anatomy. For a more detailed description of a DRI
i-cache, please refer to [11].

2.1 DRI i-cache design
Much like conventional adaptive computing frameworks, our
cache uses a set of parameters to monitor, react, and adapt to
changes in application behavior and system requirements dynami-
cally. Figure 1 depicts the anatomy of a direct-mapped DRI i-cache
(the same design applies to set-associative caches). The cache
monitors itself in fixed-length sense intervals, measured in number
of dynamic instructions (e.g., one million instructions). A miss
counter counts the number of cache misses in each sense interval.
At the end of each sense interval, the cache upsizes/downsizes,
depending on whether the miss counter is lower/higher than a pre-
set miss-bound value. The factor by which the cache resizes (up or
down) is called the divisibility. To avoid thrashing, a DRI i-cache
never downsizes beyond a preset size-bound value. The cache’s
adaptive parameters are all set at the start of execution.

Among these parameters, the key parameters that control the i-
cache’s size and performance are the miss-bound and size-bound.
The combination of these two key parameters provides accurate
and tight control over the cache’s performance. Miss-bound allows
the cache to react and adapt to an application’s instruction working
set by “bounding” the cache’s miss rate in each monitoring inter-

val. Thus, the miss-bound provides a “fine-grain” resizing control
between any two intervals independent of the cache size. Applica-
tions typically require a specific minimum cache capacity beyond
which they incur a large number of capacity misses and thrash.
Size-bound provides a “coarse-grain” resizing control by prevent-
ing the cache from thrashing due to a small size.

The other two parameters, the sense interval length and divisibility,
are less critical to a DRI i-cache’s performance. Intuitively, the
sense interval allows selecting an interval length that best matches
an application’s phase transition times, and the divisibility deter-
mines the amount by which the working set size changes.

Resizing the cache requires that we dynamically change the cache
block lookup and placement function. Conventional (direct-
mapped or set-associative) i-caches use a fixed set of index bits
from a memory reference to locate the set to which a block maps.
Resizing the cache either reduces or increases the total number of
cache sets thereby requiring a larger or smaller number of index
bits to look up a set. Our design uses a mask to find the right num-
ber of index bits used for a given cache size (Figure 1). Every time
the cache downsizes, the mask shifts to the right to use a smaller
number of index bits and vice versa. Therefore, downsizing
removes the highest-numbered sets in the cache in groups of pow-
ers of two. The mask can be folded into the address decoder trees
of the data and tag arrays, so as to minimize the impact on the
lookup time.

Because smaller caches use a small number of index bits, they
require a larger number of tag bits to distinguish data in block
frames. Because a DRI i-cache dynamically changes its size, it
requires a different number of tag bits for each of the different
sizes. To satisfy this requirement, our design maintains as many
tag bits as required by the smallest size to which the cache may
downsize itself. Thus, we maintain more tag bits than conventional
caches of equal size. We define the extra tag bits to be the resizing
tag bits. The size-bound dictates the smallest allowed size and,
hence, the corresponding number of resizing bits. For instance, for
a 64K DRI i-cache with a size-bound of 1K, the tag array uses 16
(regular) tag bits and 6 resizing tag bits for a total of 22 tag bits to
support downsizing to 1K.

FIGURE 1: A DRI i-cache’s anatomy.

tag index offsetaddress:

size mask: 0 11

+

masked index

mask shift right

miss counter

miss count < miss-bound?miss count > miss-bound?

miss

upsize

mask shift left

downsize

miss-bound compare miss
count

yes

111

resizing range
minimum

size

tag data blockv

DRI I-CACHE

hit/miss?

do
w

ns
iz

eu
ps

iz
e

re
si

zi
ng

 r
an

ge

end of interval?

size-bound

92

2.2 Impact on Energy and Performance
Cache resizing helps reduce leakage energy by allowing a DRI i-
cache to turn off the cache’s unused sections. Resizing, however,
may adversely impact the miss rate (as compared to a conventional
i-cache) and the access frequency to the lower-level (L2) cache.
The increase in L2 accesses may impact both execution time and
the dynamic energy dissipated in L2. While the impact on execu-
tion time depends on an application’s sensitivity to i-cache perfor-
mance, the higher miss rate may significantly impact the dynamic
energy dissipated due to the growing size of on-chip L2 caches [1].
A DRI i-cache may also increase the dynamic energy dissipated as
compared to a conventional cache due to the extra resizing tag bits
in the tag RAM. The combined effect of the above may offset the
gains in leakage energy. In Section 4.2, we will present results that
indicate that the leakage reduction in a DRI i-cache significantly
offsets the increase in the dynamic energy dissipated.

3 GATED-VDD: GATING THE SUPPLY VOLTAGE
Subthreshold leakage current and leakage energy dissipation
increase exponentially with decreasing threshold voltage. To pre-
vent leakage energy dissipation in a DRI i-cache from limiting
aggressive threshold-voltage scaling, we propose a novel circuit-
level mechanism, called gated-Vdd. Gated-Vdd enables a DRI i-
cache to “turn off” the supply voltage and eliminate virtually all
the leakage energy dissipation in the cache’s unused sections. The
key idea is to introduce an extra transistor in the supply voltage
(Vdd) or the ground path (Gnd) of the cache’s SRAM cells; the
extra transistor is turned on in the used sections and turned off in
the unused sections. Thus, the cell’s supply voltage is “gated.”

Gated-Vdd maintains the performance advantages of lower supply
and threshold voltages while reducing leakage and leakage energy
dissipation. The fundamental reason for the reduction in leakage is
the stacking effect of self reverse-biasing series-connected transis-
tors [12]. Gated-Vdd’s extra transistor produces the stacking effect
in conjunction with the SRAM cell transistors when the gated-Vdd
transistor is turned off.

3.1 SRAM cell with gated-Vdd
Cache data arrays are usually organized in banks; each bank con-
tains SRAM cell rows, with each row containing one or more
cache blocks. In this paper, we assume conventional 6-T SRAM
cells with dual-bitline architecture. Figure 2 shows a DRI i-cache
SRAM cell using an NMOS gated-Vdd transistor; PMOS gated-
Vdd is achieved by connecting the gated-Vdd transistor between
Vdd and the SRAM PMOS transistors. The gated-Vdd transistor is
turned on for the cell to be in “active” mode and turned off for the
cell to be in “standby” mode.

Much as conventional gating techniques, the gated-Vdd transistor
can be shared among multiple circuit blocks to amortize the over-
head. To reduce the impact on SRAM cell speed and to ensure sta-
bility of the SRAM, the gated-Vdd transistor must be carefully
sized with respect to the SRAM cell transistors it is gating. While a
gated-Vdd transistor must be made large enough to sink the current
flowing through the SRAM cells during a read/write operation in
the active mode, too large a gated-Vdd transistor may reduce the

stacking effect, thereby diminishing the energy savings. Moreover,
large transistors also increase the area overhead.

3.2 Gated-Vdd with NMOS or PMOS transistors
Using a PMOS or an NMOS gated-Vdd transistor presents a trade-
off between area overhead, leakage reduction, and impact on per-
formance.

To maintain stability and high SRAM cell speed, an NMOS gated-
Vdd transistor needs to be sufficiently wide. One estimate is to use
the sum of the widths of all the transistors that could simulta-
neously switch in the SRAM cells. If an entire cache block is con-
nected to a single NMOS gated-Vdd transistor, the desired width of
the transistor may be determined as the product of the width of one
of the SRAM cell’s NMOS transistors (because only one of the
two is “on” during a read) and the number of cells in the cache
block. Such a wide NMOS gated-Vdd transistor may incur a high
area overhead. Using NMOS gated-Vdd transistors, however, sub-
stantially reduces standby energy dissipation through the stacking
effect of three NMOS transistors between the bitlines and ground.

Alternatively, using a PMOS gated-Vdd transistor significantly
reduces the required transistor width. Dual-bitline architectures
typically precharge the bitlines before read operations, so the
PMOS transistors simply help in holding the cell value intact and
do not contribute to read operations. It reduces the required gated-
Vdd transistor width, resulting in a negligible area overhead. A
PMOS gated-Vdd transistor, however, does not create the isolation
between the bitlines and the ground as does an NMOS transistor,
reducing the amount of energy saving.

The switching speed of a gated-Vdd transistor does not impact the
SRAM cell speed because it switches only when the DRI i-cache
resizes (which is at most every hundreds of thousands of processor
cycles). A gated-Vdd transistor, however, impacts the switching
speed of the cell in the active mode. This impact is mainly due to a
non-zero voltage drop across the gated-Vdd transistor between the
supply rails and the “virtual Gnd” for NMOS gated-Vdd (Figure 2)
or the “virtual Vdd” for PMOS gated-Vdd.

When an SRAM cell with an NMOS gated-Vdd is read, the dis-
charging of the precharged bitlines takes longer due to the non-
Gnd voltage at the virtual Gnd. In contrast, because the PMOS cell
transistors do not contribute to read operations, a PMOS gated-Vdd
transistor does not significantly impact the cell performance. Small

Gnd

gated-Vdd
control

FIGURE 2: SRAM with an NMOS gated-Vdd.

Vdd

wordline

bitlinebitline

virtual Gnd

93

degradation in the cell performance is acceptable because reading
a value from the SRAM cell to the bitlines constitutes only a small
portion of the total DRI i-cache access time. We use CACTI [10] to
model the access time for a 64K DRI i-cache using a 0.18µ pro-
cess. This model indicates that reading data onto the bitlines is
only 6% of the total data access time. The majority of the access
time is in decoding the address (40%) and activating the wordline
(30%) which are not affected in a DRI i-cache. Because reading
data onto the bitlines is such a small portion of the total access
time, small changes in SRAM cell performance will not signifi-
cantly affect overall cache access time.

3.3 Gated-Vdd circuit techniques
There is a design spectrum of gated-Vdd techniques with various
area, energy, and speed trade-offs. The gated-Vdd transistor can be
made wider to lower the virtual Gnd, allowing more discharging
current to flow through the gated-Vdd transistor during a cell read.
Moreover, forward-biasing the gated-Vdd transistor in the active
mode increases the current flow. Alternatively, using a charge
pump to raise the gate voltage of the gated-Vdd transistor would
increase the current flow in the active mode.

Gated-Vdd can be coupled with a dual-threshold voltage (dual-Vt)
process technology to achieve even larger reductions in leakage
[9]. SRAM cells use low-Vt transistors to maintain high speed and
the gated-Vdd transistors use high-Vt to achieve additional leakage
reduction. There is an energy-performance trade-off between high-
and low-Vt gated-Vdd transistors. Raising the threshold voltage for
the gated-Vdd transistor increases the stacking effect and further
reduces leakage current. However, this will impact the read time of
the SRAM cells and may have to be offset with other techniques.

4 RESULTS
The reduction in leakage, overall energy savings, and SRAM cell
performance depend on the circuit technology used for the gated-
Vdd transistor (Section 3). Moreover, depending on the circuit
technology used for gated-Vdd, there is a fundamental trade-off
between reduction in leakage, transistor switching speeds, and area
overhead of a gated-Vdd transistor.

In this section, we first present the methodology used in our circuit
evaluation. Then we present empirical results on the performance,
energy, and area trade-offs of gated-Vdd. Finally, we present results
on reducing energy-delay in applications using a DRI i-cache.

4.1 Circuit evaluation
To perform circuit simulations on a DRI i-cache, we determine the
cache geometry, use that geometry to lay out a portion of the
cache, and extract cell parameters from the layout to estimate
energy dissipation and access time. We use CACTI [10] to deter-
mine the SRAM layout and geometry of a 64K direct-mapped
cache. CACTI estimates the cache’s optimal geometry and area

utilization. With 32-byte blocks, the cache’s data array is divided
into 256 by 256 bit banks. All our circuit and layout measurements
work with a single cache block of 256 bits and a single cell. Using
Mentor Graphics IC-Station, we lay out the SRAM cells of the
256-bit cache block and the gated-Vdd transistor and extract
netlists and area estimates. We modify the netlist to include our
simulation parameters. All simulations use a 0.18µ process and
supply voltage of 1.0V. To simulate read time accurately, we model
the capacitance of a full bitline. To estimate the SRAM speed and
energy dissipation, we vary the spice model’s threshold voltage of
the SRAM and gated-Vdd transistors.

We estimate cell access time and energy dissipation using Hspice
for transient analog analysis. We compute standby and active mode
energy dissipation by measuring average energy dissipated by a
steady state cache block with the gated-Vdd transistor.

4.1.1 SRAM Cell Area
Figure 3 shows a layout from Mentor Graphics ICstation of 64
SRAM cells on the left and an adjoining NMOS gated-Vdd transis-
tor connected to them. In the layout, the gated-Vdd transistor is
actually made up of eight parallel transistors that are each one-
eighth of the total desired width. The total increase in data array
area due to the addition of the NMOS gated-Vdd transistor is about
3% for the layout in the figure. The total width of the gated-Vdd
control lines is close to that of a single SRAM cell and is negligi-
ble. Area increase is negligible for PMOS gated-Vdd because the
transistor is the size of one of the block’s 512 PMOS transistors.

4.1.2 Impact of Lowering Threshold Voltage
Table 1 shows leakage energy with varying SRAM threshold volt-
ages using two NMOS gated-Vdd threshold voltages. From the first
three rows, decreasing the SRAM cell threshold voltages increases
active leakage energy by several orders of magnitude. The standby
column shows the standby mode leakage energy using gated-Vdd,
which is orders of magnitude smaller than active energy. Compar-
ing the first three rows with the last three indicates that decreasing

FIGURE 3: Layout of 64 SRAM cells connected to a single gated-Vdd NMOS transistor.

gated-Vdd
transistor

SRAM
Cell Vt
(V)

Gated-Vdd
Vt (V)

Active
Leakage
Energy (nJ)

Standby
Leakage
Energy (nJ)

0.40 0.40 12 10

0.30 0.40 143 49

0.20 0.40 1700 50

0.40 0.20 12 11

0.30 0.20 143 76

0.20 0.20 1700 165
Table 1: Impact of changing SRAM and gated-Vdd

threshold voltages.

94

the threshold voltage of the gated-Vdd transistors significantly
increases standby leakage energy dissipation.

4.1.3 Impact of Widening Gated-Vdd Transistor
Increasing the width of the gated-Vdd transistor improves SRAM
cell read times but decreases energy savings and worsens the
impact of gated-Vdd on SRAM area. Table 2 shows energy, area,
and relative speed as the width of the gated-Vdd transistor is
increased. In the first row, the gated-Vdd transistor is sized as
described in Section 3.2 and increased in the second and third
rows. The cell and the gated-Vdd transistors threshold voltage is
0.20V for these simulations. There is a clear trade-off in cell read
time against area and standby energy, though the standby energy is
low in all cases.

4.1.4 Gated-Vdd Techniques Combined
Table 3 depicts four circuit-level gated-Vdd techniques we evalu-
ate. The table depicts the percentage of leakage energy saved in the
standby mode, the cell read times, and the area overhead of each
technique relative to a standard low-Vt SRAM cell with no gated-
Vdd. The techniques can be grouped into two categories as indi-
cated. The first category (the first three rows) has lower perfor-
mance and higher energy savings. In contrast, the second has
higher performance but potentially lower energy savings.

From the first two rows, we see that in spite of decreasing the cell
threshold voltage from 0.40V to 0.20V, gated-Vdd manages to
reduce the standby mode energy. The second and third rows illus-
trate the trade-off between energy and speed depending on the
threshold voltage of the gated-Vdd transistor. If we are willing to
sacrifice energy savings for better performance, we may use

PMOS gated-Vdd transistors. The fifth row indicates a slightly
faster read time for gated-Vdd because the PMOS gated-Vdd tran-
sistor creates a virtual Vdd for the SRAM cells slightly lower than
the supply voltage.

To mitigate the negative impact on SRAM cell speed due to an
NMOS gated-Vdd transistor, we can use a wider transistor with a
charge pump. To offset a wider transistor’s increased leakage cur-
rent, we further raise the gated-Vdd transistor’s threshold voltage.
The last row shows results for increasing the gated-Vdd transistor
width by a factor of four and adding a charge pump that raises the
active mode gate voltage to 1.35V. The resulting SRAM speed
overhead is only around 8% compared to the low threshold voltage
SRAM cells without gated-Vdd. Moreover, the reduction in
standby mode energy is 97%.

4.2 DRI i-cache performance
We use SimpleScalar-2.0 [4] and SPEC95 to model an L1 DRI i-
cache in an out-of-order microprocessor. The DRI i-cache is con-
figured with a sense interval of one million instructions, a divisi-
bility of two, and a miss-bound and size-bound for each
benchmark chosen to keep execution time degradation within 4%.
For each benchmark, we measure the relative execution time of a
system with a DRI i-cache compared to a conventional cache and
the effective DRI i-cache leakage and size as a percentage of a
conventional 64K direct-mapped i-cache.

While a DRI i-cache reduces the average required cache size, it
incurs overhead due to resizing and may affect execution time.
Figure 4 shows relative energy-delay products comparing the leak-
age energy-delay of a DRI i-cache using the wide NMOS gated-
Vdd, dual-Vt technique of Table 3 to that of a conventional i-cache.
We use the analytical models developed by Kamble and Ghose [6]
to estimate the extra L1 and L2 dynamic energy dissipation [11].

The figure also shows the average cache size for each of the bench-
marks as a percentage of a conventional 64K cache. The figure
indicates that a DRI i-cache decreases the average cache size sig-
nificantly. A DRI i-cache reduces the cache size by an average of
62% while increasing execution time by less than 4%.

The benchmarks are grouped into three classes. The first class,
ranging from applu through swim, primarily requires a small i-
cache throughout execution. A DRI i-cache reduces the effective

Area
Increase (%)
of NMOS
Gated-Vdd

Relative
Read
Time

Active
Leakage
Energy (nJ)

Standby
Leakage
Energy (nJ)

2 1.00 1700 166

4 0.90 1710 245

8 0.85 1720 371
Table 2: Widening the gated-Vdd transistor.

Technique
Gated-Vdd
Vt (V)

SRAM
Vt (V)

Active
Leakage
Energy (nJ)

Standby
Leakage
Energy (nJ)

Energy
Savings (%)

Relative
Read
Time

Area
Increase (%)

no gated-Vdd, high Vt N/A 0.40 50 N/A N/A 2.22 N/A

NMOS gated-Vdd, dual Vt 0.40 0.20 1690 50 97 1.30 2%

NMOS gated-Vdd, dual Vt 0.50 0.20 1740 49 97 1.35 2%

no gated-Vdd, low Vt N/A 0.20 1740 N/A 0 1.00 N/A

PMOS gated-Vdd 0.20 0.20 1740 235 86 1.00 0%

NMOS gated-Vdd, dual Vt
wide, charge pump

0.40 0.20 1740 53 97 1.08 5%

Table 3: Energy, speed, and area of gated-Vdd techniques for one cell.

95

cache size to as low as 3% for mgrid. The second class of bench-
marks are those that primarily require the full 64K i-cache
throughout their execution and prevent a DRI i-cache from down-
sizing; they range from apsi to perl. Fpppp is an extreme example
which cannot downsize at all without a large performance degrada-
tion. The last class of benchmarks exhibit distinct phases with
diverse i-cache size requirements. Benchmarks from gcc to tom-
catv are in this group, with average cache sizes from 73% to 13%.

Although we show the relative energy-delay products for the base
DRI i-cache, a different energy-performance trade-off point can be
chosen by adjusting the DRI i-cache parameters [11]. For example,
a more aggressive miss-bound setting would significantly decrease
the overall leakage energy but would have a larger impact on exe-
cution time.

5 CONCLUSIONS
This paper explored an integrated architectural and circuit-level
approach to reducing leakage energy dissipation while maintaining
high performance in deep-submicron cache memories. At the
architectural level, a dynamically resizable cache resizes and
adapts to an application’s i-cache requirements during execution.
We proposed a circuit-level technique, gated-Vdd, to gate the sup-
ply voltage to, and reduce leakage in, the SRAM cells in the
unused sections of a dynamically resizable instruction cache.

We evaluated and presented simulation results from running the
SPEC95 applications on a SimpleScalar model of a DRI i-cache.
The results indicated that a 64K DRI i-cache reduces the energy-
delay at best by 87% and on average by 62% with less than 4%
impact on execution time. We evaluated and presented results on a
spectrum of circuit techniques to implement supply voltage gating
with varying leakage reduction, performance, and area overhead
trade-offs. The results indicated that a wide NMOS dual-Vt gated-
Vdd with a charge pump reduces leakage most with minimal
impact on cell speed and area.

ACKNOWLEDGEMENTS
This research is supported in part by SRC under contract 2000-HJ-
768, and DARPA under contract DAAH04-96-1-0222. This mate-
rial is also based upon work supported under a National Science
Foundation Graduate Fellowship.

REFERENCES
[1] D. H. Alboensi. Selective cache ways: On-demand cache

resource allocation. In Proceedings of the 32nd Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO 32), Nov. 1999.

[2] N. Bellas, I. Hajj, and C. Polychronopoulos. Using dynam-
ic management techniques to reduce energy in high-perfor-
mance processors. In Proceedings of the International
Symposium on Low Power Electronics and Design (IS-
LPED), Aug. 1999.

[3] S. Borkar. Design challenges of technology scaling. IEEE
Micro, 19(4):23–29, July 1999.

[4] D. Burger and T. M. Austin. The SimpleScalar tool set, ver-
sion 2.0. Technical Report 1342, Computer Sciences De-
partment, University of Wisconsin–Madison, June 1997.

[5] K. Inoue, T. Ishihara, and K. Murakami. Way-predicting
set-associative cache for high performance and low energy
consumption. In Proceedings of the International Sympo-
sium on Low Power Electronics and Design (ISLPED),
pages 273–275, Aug. 1999.

[6] M. B. Kamble and K. Ghose. Analytical energy dissipation
models for low power caches. In Proceedings of the Inter-
national Symposium on Low Power Electronics and Design
(ISLPED), Aug. 1997.

[7] J. Kin, M. Gupta, and W. H. Mangione-Smith. The filter
cache: An energy efficient memory structure. In Proceed-
ings of the 30th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO 30), pages 184–193,
Dec. 1997.

[8] S. Manne, A. Klauser, and D. Grunwald. Pipline gating:
Speculation control for energy reduction. In Proceedings of
the 25th Annual International Symposium on Computer Ar-
chitecture, pages 132–141, June 1998.

[9] L. Wei, Z. Chen, M. C. Johnson, K. Roy, and V. De. De-
sign and optimization of low voltage high performance dual
threshold CMOS circuits. In Proceedings of the 35th De-
sign Automation Conference, pages 489–494, 1998.

[10] S. J. E. Wilson and N. P. Jouppi. An enhanced access and
cycle time model for on-chip caches. Technical Report 93/
5, Digital Equipment Corporation, Western Research Lab-
oratory, July 1994.

[11] S.-H. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N. Vi-
jaykumar. Dynamically resizable instruction cache: An en-
ergy-efficient and high-performance deep-submicron
instruction cache. Technical Report ECE-007, School of
Electrical and Computer Engineering, Purdue University,
2000.

[12] Y. Ye, S. Borkar, and V. De. A new technique for standby
leakage reduction in high performance circuits. In IEEE
Symposium on VLSI Circuits, pages 40–41, 1998.

FIGURE 4: Relative energy-delay and average cache size in a DRI i-cache.

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
E

ne
rg

y
D

el
ay L1 Static Energy

Extra Dynamic Energy

ap
plu

co
mpre

ss li

mgr
id

sw
im ap

si

fpp
pp go

m88k
sim perl gc

c

hy
dro2d

ijp
eg

su
2co

r

tom
ca

tv

13

Average Cache Size (%)

8 13 3

50

73

25
13

44

73
100

25
13

50
62

