
 102

MOS Current Mode Logic for Low Power, Low Noise
CORDIC Computation in Mixed-Signal Environments

Jason M. Musicer
University of California at Berkeley

Berkeley Wireless Research Center
2108 Allston Way, Suite 200

Berkeley, CA 94704

musicer@eecs.berkeley.edu

Jan Rabaey
University of California at Berkeley

Berkeley Wireless Research Center
2108 Allston Way, Suite 200

Berkeley, CA 94704

jan@eecs.berkeley.edu

ABSTRACT

In this work, MOS Current Mode Logic (MCML) is
analyzed for application to low power, mixed signal
environments. A small MCML cell library is developed and
optimized for several different performance requirements. The
cells are then applied to the generation of piplelined CORDIC
structures and compared with equivalent CMOS circuits. MCML
CORDICs are designed which can operate from 125MHz to
310MHz with power consumption varying between 4.3mW and
18.6mW. These power results are up to 1.5 times less than
CMOS CORDICs with equivalent propagation delays. Design
was done in a 0.25µm standard CMOS process from ST
Microelectronics.

Keywords
Current mode logic, CORDIC, Low-energy design, Digital logic.

1. INTRODUCTION
The recent development in VLSI technology has allowed

rapid growth in the area of portable electronic devices. One of the
limiting factors in the deployment of these devices is the battery
life and power consumption of the circuitry. It is critical in future
circuits that power be minimized beyond merely the constraints of
packaging and heat dissipation. As device density increases, it is
also extremely desirable to integrate analog and digital circuitry
onto the same die. This integration has been delayed due
primarily to the difficulty in designed high precision analog
circuitry in the presence of digital noise.

A circuit style that seems to be promising in both reducing
power consumption and providing an analog friendly environment
is MOS Current Mode Logic (MCML). While bipolar CML, a
derivative of ECL logic, has been used for years in high
performance applications, it has become less desirable due to its
high static power consumption and reliance on bipolar processing.
In [1], MCML was analyzed and a 64-bit adaptively pipelined

adder was developed and simulated. It was demonstrated in that
paper that MCML could dissipate less power than equivalent
CMOS circuitry as well as adjust for clock skew and
environmental or process variations.

 The uniqueness of this project is that MCML is analyzed
using near-minimum sized transistors instead of the significantly
larger designs in [1] and gives a much broader comparison with
CMOS logic. It will be shown that area efficient MCML can
actually consume significantly less power than equivalent CMOS
circuitry while maintaining many of the other benefits of
traditional CML such as reduction in dI/dt effects, common mode
noise immunity, and process and voltage variation immunity.

This paper begins with a discussion of MCML gate design.
Examples of several gates will be given and design and simulation
methodologies will be discussed. The second part of the paper
discusses some system level issues of MCML design including
peripheral control circuitry and effects of logic depth. The next
section describes the CORDIC algorithm and implementation and
gives the system level results. Finally, some conclusions are
drawn and future work is presented.

2. MOTIVATION AND THEORY
The basic MCML gate structure is shown below in Figure 1.

MCML gates are differential and steer current between the two
pull up resistances. The total voltage swing, RIV ×=∆ , is set
by adjusting the resistance of the pull-up devices for a given
current. It is important to note that the voltage swing is not rail to
rail but in fact much less, of the order of several hundred mV.

Pull
Down

Network

In0
In0
In1
In1

InN
InN

Out Out

I

RR

Inputs

Figure 1. Basic MCML Gate

With this simple model in mind, we can derive some basic
properties for a circuit composed of MCML gates. For simplicity,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED ’00, Rapallo, Italy.
Copyright 2000 ACM 1-58113-190-9/00/0007…$5.00.

 103

let's assume that our circuit is a linear chain of N identical gates,
all with load capacitance C. The total propagation delay will be
proportional to:

I
VCNNRCDMCML

∆××==

where N is the total logic depth of the circuit.
While static CMOS gates tend to dissipate static and

dynamic power, the current draw of MCML gates is independent
of switching activity. With this assumption, we can write
expressions for power, power-delay, and energy-delay:

ddMCML VINP ××=

ddddMCML VVCN
I

VNCNIVPD ×∆××=∆×= 2

I
VVCN

I
VNCVVCNED dd

ddMCML

223
2 ∆×××=∆×∆=

The delay, power, power-delay, and energy-delay for static
CMOS logic are well known and approximated by [4]:

()αtdd

dd
CMOS

VVk
VCND

−×

××=

2

CMOS
ddCMOS D

VCNP 12 ×××=

2
ddCMOS VCNPD ××=

()αtdd

dd
CMOS VV

V
k

CNED
−

×××=
22

2 2

where k and α are process and transistor size dependent
parameters.

One interesting property to note is that MCML circuits do
not have a theoretical minimum to the energy-delay product
whereas the CMOS circuits do [1]. A designer can arbitrarily
reduce the ED product by increasing the current for a given C,
Vdd, and ∆V. In reality, this is not possible for very large currents
because the robustness of the circuitry will deteriorate if no other
changes are made.

Possibly the most important conclusion from the above
equations comes from the effect of logic depth, N. The
performance of MCML gates in relation to CMOS decreases
linearly with N. This is due to the fact that MCML consumes
static power, even when not switching. It is very important
therefore in MCML circuits to maintain a shallow logic depth. In
slowly clocked circuits, CMOS will not consume as much power
as MCML, but in circuits with high performance requirements,
MCML can have significantly better power-delay or energy-delay.

Another interesting property is that the energy-delay is
proportional to the square of the voltage swing. This fact
encourages the use very low swing circuits. Once again, the
limiting factor is the robustness of the circuitry.

For mixed signal environments, the constant current supplied
by Vdd is extremely desirable. The dI/dt effects are negligible in
comparison to CMOS circuits and the current variation is
theoretically 0. There will be some current change during
switching due to non-idealities, but the change is less than 5% in

circuits simulated. The circuits are also more robust against
power supply noise due to their inherent common mode rejection.

3. CIRCUIT DESIGN
In order to give a fair analysis of the benefits of MCML in

comparison to CMOS circuits, we first had to create a small yet
diverse set of basic gates and test blocks for our experiments. We
chose to compare the following basic circuit blocks: Inverter,
NAND2, NOR2, MUX2, XOR2, XOR3, MUX4, Full Adder,
latches and flip-flops. Examples of several MCML gates are
given below in Figure 2.

RFN

RFP

In

Out (Out)

In

Out (Out)

Buffer/Inverter AND/NAND/OR/NOR

RFN

RFP

A

Out

A

Out

B B

XOR3 D Latch

A

OUT

RFN

RFP RFP

A

OUT

B
B

B
B

C C CCC

CLK

D

RFN

RFP RFP

D

CLK

OUTOUT

Figure 2. MCML Gate Examples

 Each MCML circuit has two control voltages, RFN and

RFP. RFN is used to set the gate voltage of the NMOS current
source and determines the current value. In general, the NMOS
device of the current source has larger than minimum length. This
is to provide higher output impedance for the current source and
to reduce the effects of transistor length mismatch between the
biasing and logic circuits. RFP determines the equivalent
resistance of the pmos load devices. More will be said about how
these control voltages are generated in the next section.

The CMOS versions of each block were optimized for low
power. Traditional sizing rules were used in which the pmos
devices were made twice as wide and all series transistors were
made wider to achieve the same first order delays. Several gates
were taken from the ST Microelectronics standard cell library and
dynamic C2MOS latches were used [2].

 104

MCML circuits have much greater flexibility in design
optimization than CMOS circuits. While CMOS circuits can be
optimized by changing device sizes and VDD, MCML can be
optimized by adjusting the voltage swing, current, VDD, and
transistor sizes. Our optimization strategy went as follows: For
several different currents ranging from 100nA to 100uA per gate,
find the optimal device sizes, voltage swings and VDD’s for
minimum energy-delay product.

The limits of the optimization were set by a few measures of
robustness. CMOS circuits tend to be characterized by their gain
and noise margins. Since MCML circuits will produce much less
noise than standard CMOS logic, we felt that noise margin and
gain restrictions should be less severe. We set a lower limit on
gain at 1.4 in order to achieve bistability in our latches and flip-
flops and to create regenerative circuits. The lower bound on
voltage swing was set at 300 mV to ensure signal integrity in the
presence of thermal noise and device mismatch. The limit on
lowering VDD was that the tail current source must stay in the
saturation region.

With these limits on robustness, device sizes and voltage
swings were chosen for a variety of currents. Transistors were
chosen to be minimum sized whenever possible and voltage
swings were kept as low as allowed for complete current
switching. Beyond keeping the minimum robustness metrics, the
circuits were optimized for energy-delay.

4. SYSTEM LEVEL DESIGN
Now that the set of gates was designed and optimized, some

system level decisions needed to be made. The first issues to be
addressed were the generation of the two control voltages, RFP
and RFN.

The RFP voltage determines the DC resistance of the PMOS
loads. Since we would like the voltage swing to remain relatively
constant for varying currents and process parameters, we use a
feedback circuit similar to that used in [1]. A general Variable
Swing Controller (VSC) is shown below in Figure 3:

RFN

RFP

VDD

Inputs

Vlow
VDD
Vlow

VDD
Vlow

+

-Vlow

Figure 3. Variable Swing Controller (VSC)

The VSC allows for a fixed voltage swing across a variety of
currents and also provides an easy mechanism for trading off
speed for power. As the current in the VSC changes (set by
RFN), the opamp forces the value of the low output voltage to be
Vlow by changing the gate voltage, and hence the resistance, of
the pmos loads. The Vlow voltage can be generated by a resistor

network or can come from off-chip. The RFP voltage is then
broadcast to the rest of the MCML components on the chip.

The pull down network of the VSC should in general match
the gate which the VSC is trying to model, but VSCs can be
shared across different gates. The main difficulty in using a single
VSC to set the RFP voltage for different types of gates is that the
voltage swing of the gates will not track Vlow exactly. The
number of VSCs used in a circuit can range from one to several,
depending on the variety of gates used, the control needed over
the voltage swing, and the amount of overhead tolerated in power
and area. In general, if the voltage swing used is small and the
overall block of logic is large, it is beneficial to have the fine
precision from using multiple VSC's. If the voltage swing is
larger than minimal or there is not much variety in topology of the
blocks used, then a single VSC can be used.

The RFN signal determines the amount of current flowing in
the current source and therefore determines the speed and power
of the circuit. The simplest way to set this reference voltage is to
use a current mirror. Alternatively, an adaptive pipelining system
can be used [1] shown in Figure 4:

Logic
and

Registers

VSC1

VSC2

VSC3
Vlow

RFN

RFP1

RFP2

RFP3

CMOS-CML Converter

CMOS-CML Converter

CMOS-CML Converter

CMOS-CML Converter

Inputs

CML-CMOS Converter

CML-CMOS Converter

CML-CMOS Converter

CML-CMOS Converter

Outputs

Datapath

Control
CMOS-CML Converter

Clock
Buffer

Critical Path Model

Phase

Detector

DLL

Figure 4. Adaptively pipelined MCML system

The basic principle behind an adaptive pipeline is to use a

Delay Locked Loop (DLL) to measure the delay through a model
of the critical path of the circuit. If the critical path delay is
greater than the required clock period, then the DLL increases the
RFN voltage and thereby increases the current, speed and power
of the circuit. If the delay is less than the required clock period,
then RFN is decreased and less current is used. Single or multiple
VSC's can be used to maintain a fixed voltage swing as the
current varies. Multiple DLL's could also be used if there are
requirements for multiple RFN voltages to be generated.

The goal of the adaptive pipelining is to make the circuit
timing insensitive to process, temperature, and voltage variations.
For example, if a chip comes back from fabrication and happens
to be near the slow process corner, the adaptively pipelined circuit
will meet the same timing requirements as the chip near the fast
process corner. The difference between the chips will be in the
power consumption and not the timing.

In a standard CMOS design methodology, designers must
always design for the worst case. This leads to using VDDs
higher than required for the nominal case and therefore increases
power consumption for all designs. With adaptive pipelining,

 105

designers can design for the nominal case for delay and instead,
the power will vary. If multiple chips are used on a board, the
average power consumption of all the chips should approach the
nominal value. This technique can also improve the yield of
circuits and allow for late changes in system clock frequency.

5. CORDIC ALGORITHM
In order to test many of the optimizations and analysis

developed earlier, we felt it was necessary to design a complex
block of logic using MCML. The target block of logic chosen
was a pipelined CORDIC. The basic CORDIC algorithm is used
for iteratively computing angles of vectors and for rotating vectors
[5], [6]. While many different architectures have been proposed to
increase the performance of CORDIC computation, the approach
here was to compare CMOS and MCML implementations using
standard design techniques.

In our implementation of the CORDIC, we decided to
pipeline every iteration, both rotating and necessary scaling
operations. For 8 bits of precision, there were a total of 14
pipeline stages, 8 for rotation and 6 for scaling. Another
important feature to note is that additional bits are required in
order to maintain precision during rotation. The total bit width of
the stages is 12 bits for an 8 bit input and output.

A basic rotation stage of the CORDIC is shown in Figure 5.
The critical path is dominated by the delay of the ripple adder
block. For large bit widths, it becomes highly beneficial to use
carry-bypass or lookahead adders. For our implementation of the
CORDIC, the adder is only 12 bits wide and the non-ripple
topologies will not speed up the circuit very much. To reduce
complexity with little loss in performance, simple ripple adders
were used. In order to better understand the performance of the
CORDIC design, we take a minute here to discuss the design
methodology for ripple adders.

Xi-1 Register Yi-1 Register

XNOR XOR

Signi-1Modei-1

+ +

Xi Register Yi RegisterSigniModei

MUX

Figure 5 : CORDIC Pipeline Stage

6. RIPPLE ADDER DESIGN
The logic equations for a full adder are well known to be an

XOR3 for the sum and a 3 input majority vote for the carry. In
nearly all CMOS ripple adders, an optimization is made which
computes the propagate and generate signals in order to speed up
the carry path. There is a similar possibility for MCML full
adders and 2 implementations can be imagined. The first full

adder uses two, three input gates, one for the sum and one for the
carry. The second full adder used four smaller gates, one for each
the generate, propagate, sum and carry.

While the second full adder will have a lower carry delay, it
is not clear whether this improvement will compensate for the
additional current required due to there now being 4 gates instead
of 2. In fact, for small adders (< 16 bits), it is more efficient to
use the first full adder implementation and this is the circuit used
for the CORDIC:

Cin

RFN

RFP RFP

Cin

Sum Circuit (XOR3)

SUM

B
B

B
B

A AA

B

RFN

RFP RFP

B

Carry Circuit (AB+BCin+ACin)

Cout

A A A

Cout

A A

A

Cin CinCin Cin

SUM

Figure 6 : MCML Full Adder

One interesting optimization which can be made is to have

the sum and carry circuits of the full adder use different amounts
of current. This requires 2 different VSCs, but as we have
previously discussed, this may be an acceptable amount of
overhead. If the sum and carry paths are allowed to have different
currents, we can come up with a first order optimization for the
best energy-delay product.

Let Ic be the current in the carry gate and Is be the current in
the sum gate. Also let N be the number of bits of the adder. If we
assume a linear relationship between the current and delay, we
can easily write that:

()

()
Is
k

Ic
k

N
Ic
k

Tp

tptpNtpTp

tot

ctosctocabtoctot

321 1

1

+×−+=

+×−+=

For simplicity, assume k1 = k2 = k3 = k. Also, let
IsrIc ×= . Then,






 +×=

Ic
rNkTptot

We can also write the expressions for power, power-delay,
and energy-delay:

()

() ()

() ()
Icr

rNrVDDkED

r
rNrVDDkPD

VDDIc
r

rP

×
+×+××=

+×+××=

××+=

2
2 1

1

1

 106

If we plot the energy-delay as a function of r and normalize,
we get a function which looks like:

Figure 7 : Effects of Current Scaling on MCML Adders

Evident from the graph is that the potential benefits of
current scaling are significant for large adders. For N=4, the
optimal scaling for energy-delay is actually to use equal current in
the sum and carry circuits. In the case of N=64, the energy delay
for equal current is about 50% greater than with optimal scaling
with r = 5. An estimate for the optimal point is at r = log2(N)-1.

These numbers are not completely accurate due to some of
our previous assumptions about k, but letting r = log2(N)-1 is a
good starting point. In reality, the lower current gates tend to also
have smaller transistors so that the optimal r should be slightly
higher than predicted. Of course for large adders, other circuit
techniques can be used such as carry-bypass or carry-lookahead,
but this shows a general trend for the effects of logic depth and
current scaling. In the CORDIC, N=12 so a ratio of r=4 is used.

7. CORDIC RESULTS
Now that we have discussed the benefits of using multiple

VSC's to allow different currents in the CORDIC ripple adders,
we can look at the overall results. We designed 3 different
MCML CORDICs, each optimized to a different performance
level. For the high performance CORDIC, more current is used
throughout to reduce delay. As a result of the increased current,
slightly larger transistors, higher VDD, and higher voltage swing
are required to maintain the desired DC properties. In the low
performance mode, small currents are used and it can therefore
utilize reduced voltage swing and VDD. The CMOS design is not
optimized for different performance levels but it was rather
simulated at 4 different values of VDD.

Besides using different performance levels, we can report
two sets of results: one utilizing adaptive pipelining and the other
one not. The non-adaptively pipelined results use the worst case
clock frequency and the nominal power consumption. The worst
case clock frequency assumes worst case process corner and +/-
10% variation in VDD for CMOS. Since the MCML circuits
consume a constant amount of current, the variation on VDD will
be much smaller and is assumed to be negligible but the worst
case process corner is still used. The adaptively pipelined results
use the nominal clock frequency and power consumption. All

clock frequencies used have a 10% margin over the total critical
path delay. The results are summarized in Tables 1-3.

Table 1. CMOS CORDIC Results

Nominal VDD (V) 2.5 2.0 1.5 1.0
Worst Case VDD (V) 2.25 1.8 1.35 0.9

Nominal Delay (ns) 2.71 3.38 5.01 12.1

Worst Case Delay (ns) 3.68 4.78 7.57 21.7

Clock Frequency (MHz) 250 190 120 40
Power (mW) 22.6 10.3 3.45 0.48

Power-Delay (pJ) 90.4 54.2 28.8 12.0

Energy-Delay (pJ*ns) 362 285 240 300

Table 2. MCML CORDIC Results - No Adaptive Pipelining

Performance Level High Med. Low
VDD (V) 1.1 1.05 1.0

Voltage Swing (V) 0.4 0.35 0.3

Worst Case Delay (ns) 3.29 4.86 7.84

Clock Frequency (MHz) 275 185 115
Power (mW) 18.6 9.00 4.33

Power-Delay (pJ) 67.6 48.6 37.7

Energy-Delay (pJ*ns) 246 263 328

Table 3. MCML CORDIC Results - With Adaptive Pipelining

Performance Level High Med. Low
VDD (V) 1.1 1.05 1.0

Voltage Swing (V) 0.4 0.35 0.3

Nominal Delay (ns) 2.94 4.45 7.30

Clock Frequency (MHz) 310 200 125
Power (mW) 18.6 9.00 4.33

Power-Delay (pJ) 60 45.0 34.6

Energy-Delay (pJ*ns) 194 225 277

There are several important things to notice about the final

data. The most important trend to realize is shown in Figure 8
and concerns the relative performance of MCML to CMOS as a
function of clock frequency. One can see that for high
performance requirements, the energy-delay of MCML is
significantly lower than for CMOS. As the performance
requirement lessens, the gains from MCML also decrease until
CMOS performs better than MCML. This agrees with our earlier
analysis that MCML has no optimal point in the energy-delay but
CMOS does. It is also interesting to note that MCML circuits can
provide faster designs than possible in CMOS at maximum VDD.

2 4 6 8 10 12 14 16 18 20
0.5

1

1.5

2

r = Ic/Is

E
ne

rg
y

D
el

ay
 (

N
or

m
al

iz
ed

)

N=4 N=8
N=16

N=32

N=64

 107

Figure 8. MCML vs. CMOS CORDIC Performance

The next thing to notice is the effect of process and voltage

variations on CMOS and MCML. Even without adaptive
pipelining, the MCML circuits have much more constant delays
under varying conditions, especially at the low performance end.
For a CMOS VDD = 1.0V, the process and voltage variation
creates a difference of 80% in worst case delay from the nominal.
The low performance MCML variation is only about 7%. With
adaptive pipelining, this variation reduces to 0. The large
variations in CMOS significantly reduce the allowable clock
frequency and hurt the energy-delay dramatically.

At the time of this paper submission, physical design of the
CORDIC is still underway. While simulation data is not yet
available, Figure 9 shows the layout of a single pipeline stage.
The area of this pipeline stage can be compared to the equivalent
CMOS implementation and is approximately 25% larger for the
MCML design.

The final result to examine is the actual supply current
variation in MCML compared to CMOS. The supply current for
the high performance MCML CORDIC varies from 16.4mA to
17.2mA for a net variation of +/- 0.4mA or 2.4%. The low
performance CORDIC has current variation from 4.0mA to
4.4mA for a total of +/- 0.2mA or 4.8%. For comparison, the

CMOS block has current which varies from 0 to 40mA for
VDD=2.5V.

8. CONCLUSIONS
 MOS Current-Mode Logic seems to be a promising

alternative to standard CMOS design for high performance, low-
power applications if used properly. While the complexity of
design is much higher in MCML, it has been shown that
significant reductions can be achieved in power-delay and energy-
delay product of deeply pipelined, high performance computation.

MCML's other benefits include static current draw from the
supplies, common mode noise rejection, insensitivity to process
changes, and friendliness to neighboring analog circuit
components.

9. REFERENCES
[1] M. Mizuno, M. Yamashina, K. Furuta, H. Igura, H. Abiko,

K. Okabe, A. Ono, H. Yamada, “A GHz MOS, Adaptive
Pipeline Technique Using MOS Current-Mode Logic,” IEEE
Journal of Solid-State Circuits, Vol 31, No. 6, June 1996,
p784-791.

[2] Jan Rabaey, “Digital Integrated Circuits: A Design
Perspective,” Prentice Hall, 1996.

[3] Dake Liu and Christer Svennson, “Trading Speed for Low
Power by Choice of Supply and Threshold Voltages,” IEEE
Journal of Solid-State Circuits, Vol 28, No. 1, January 1993,
p10-17.

[4] Anantha P. Chandrakasan and Robert W. Broderson,
“Minimizing Power Consumption in Digital CMOS
Circuits,” Proceedings of the IEEE, Vol 83, No. 4, April
1995, p498-523.

[5] J.E. Volder, "The CORDIC trigonometric computing
technique," IRE Trans. Electron. Comput., vol. EC-8, p. 330-
334, Sept. 1959

[6] J. S. Walther, "A unified algorithm for elementary
functions," in Proc. AFIPS Spring Joint Comput. Conf.,
1971, p. 379-385.

Figure 9. MCML CORDIC Pipeline Stage Layout

0 50 100 150 200 250 300 350
180

200

220

240

260

280

300

320

340

360

380

Clock frequency (MHz)

E
ne

rg
y

D
el

ay
 (

pJ
*n

s)

CMOS

MCML - No Adap

MCML - With Adap

VDD=1.0

VDD=1.5

VDD=2.0

VDD=2.5

	Main Page
	ISLPED'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

